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Abstract

In many areas of medicine, security, and life sciences, we want to allocate lim-
ited resources to different sources in order to detect extreme values. In this paper,
we study an efficient way to allocate these resources sequentially under limited
feedback. While sequential design of experiments is well studied in bandit theory,
the most commonly optimized property is the regret with respect to the maximum
mean reward. However, in other problems such as network intrusion detection, we
are interested in detecting the most extreme value output by the sources. There-
fore, in our work we study extreme regret which measures the efficiency of an al-
gorithm compared to the oracle policy selecting the source with the heaviest tail.
We propose the EXTREMEHUNTER algorithm, provide its analysis, and evaluate
it empirically on synthetic and real-world experiments.

1 Introduction

We consider problems where the goal is to detect outstanding events or extreme values in domains
such as outlier detection [1], security [18], or medicine [17]. The detection of extreme values is
important in many life sciences, such as epidemiology, astronomy, or hydrology, where, for example,
we may want to know the peak water flow. We are also motivated by network intrusion detection
where the objective is to find the network node that was compromised, e.g., by seeking the one
creating the most number of outgoing connections at once. The search for extreme events is typically
studied in the field of anomaly detection, where one seeks to find examples that are far away from
the majority, according to some problem-specific distance (cf. the surveys [8, 16]).

In anomaly detection research, the concept of anomaly is ambiguous and several definitions ex-
ist [16]: point anomalies, structural anomalies, contextual anomalies, etc. These definitions are
often followed by heuristic approaches that are seldom analyzed theoretically. Nonetheless, there
exist some theoretical characterizations of anomaly detection. For instance, Steinwart et al. [19]
consider the level sets of the distribution underlying the data, and rare events corresponding to rare
level sets are then identified as anomalies. A very challenging characteristic of many problems in
anomaly detection is that the data emitted by the sources tend to be heavy-tailed (e.g., network traf-
fic [2]) and anomalies come from the sources with the heaviest distribution tails. In this case, rare
level sets of [19] correspond to distributions’ tails and anomalies to extreme values. Therefore, we
focus on the kind of anomalies that are characterized by their outburst of events or extreme values,
as in the setting of [22] and [17].

Since in many cases, the collection of the data samples emitted by the sources is costly, it is im-
portant to design adaptive-learning strategies that spend more time sampling sources that have a
higher risk of being abnormal. The main objective of our work is the active allocation of the sam-
pling resources for anomaly detection, in the setting where anomalies are defined as extreme values.
Specifically, we consider a variation of the common setting of minimal feedback also known as
the bandit setting [14]: the learner searches for the most extreme value that the sources output by
probing the sources sequentially. In this setting, it must carefully decide which sources to observe
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because it only receives the observation from the source it chooses to observe. As a consequence,
it needs to allocate the sampling time efficiently and should not waste it on sources that do not have
an abnormal character. We call this specific setting extreme bandits, but it is also known as max-k
problem [9, 21, 20]. We emphasize that extreme bandits are poles apart from classical bandits, where
the objective is to maximize the sum of observations [3]. An effective algorithm for the classical
bandit setting should focus on the source with the highest mean, while an effective algorithm for the
extreme bandit problem should focus on the source with the heaviest tail. It is often the case that
a heavy-tailed source has a small mean, which implies that the classical bandit algorithms perform
poorly for the extreme bandit problem.

The challenging part of our work dwells in the active sampling strategy to detect the heaviest tail
under the limited bandit feedback. We proffer EXTREMEHUNTER, a theoretically founded algo-
rithm, that sequentially allocates the resources in an efficient way, for which we prove performance
guarantees. Our algorithm is efficient under a mild semi-parametric assumption common in ex-
treme value theory, while known results by [9, 21, 20] for the extreme bandit problem only hold in
a parametric setting (see Section 4 for a detailed comparison).

2 Learning model for extreme bandits

In this section, we formalize the active (bandit) setting and characterize the measure of performance
for any algorithm π. The learning setting is defined as follows. Every time step, each of the K arms
(sources) emits a sample Xk,t ∼ Pk, unknown to the learner. The precise characteristics of Pk are
defined in Section 3. The learner π then chooses some arm It and then receives only the sample
XIt,t. The performance of π is evaluated by the most extreme value found and compared to the
most extreme value possible. We define the reward of a learner π as:

Gπ
n = max

t≤n
XIt,t

The optimal oracle strategy is the one that chooses at each time the arm with the highest potential
revealing the highest value, i.e., the arm ∗ with the heaviest tail. Its expected reward is then:

E [G∗
n] = max

k≤K
E

[
max
t≤n

Xk,t

]

The goal of learner π is to get as close as possible to the optimal oracle strategy. In other words, the
aim of π is to minimize the expected extreme regret:

Definition 1. The extreme regret in the bandit setting is defined as:

E [Rπ
n] = E [G∗

n]− E [Gπ
n] = max

k≤K
E

[
max
t≤n

Xk,t

]
− E

[
max
t≤n

XIt,t

]

3 Heavy-tailed distributions

In this section, we formally define our observation model. Let X1, . . . , Xn be n i.i.d. observations
from a distribution P . The behavior of the statistic maxi≤n Xi is studied by extreme value theory.
One of the main results is the Fisher-Tippett-Gnedenko theorem [11, 12] that characterizes the lim-
iting distribution of this maximum as n converges to infinity. Specifically, it proves that a rescaled
version of this maximum converges to one of the three possible distributions: Gumbel, Fréchet, or
Weibull. This rescaling factor depends on n. To be concise, we write “maxi≤n Xi converges to a
distribution” to refer to the convergence of the rescaled version to a given distribution. The Gum-
bel distribution corresponds to the limiting distribution of the maximum of ‘not too heavy tailed’
distributions, such as sub-Gaussian or sub-exponential distributions. The Weibull distribution co-
incides with the behaviour of the maximum of some specific bounded random variables. Finally,
the Fréchet distribution corresponds to the limiting distribution of the maximum of heavy-tailed
random variables. As many interesting problems concern heavy-tailed distributions, we focus on
Fréchet distributions in this work. The distribution function of a Fréchet random variable is defined
for x ≥ m, and for two parameters α, s as:

P (x) = exp
{
−
(
x−m

s

)α}
.
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In this work, we consider positive distributions P : [0,∞) → [0, 1]. For α > 0, the Fisher-
Tippett-Gnedenko theorem also states that the statement ‘P converges to an α-Fréchet distribution’
is equivalent to the statement ‘1−P is a−α regularly varying function in the tail’. These statements
are slightly less restrictive than the definition of approximately α-Pareto distributions1, i.e., that there
exists C such that P verifies:

lim
x→∞

|1− P (x)− Cx−α|
x−α

= 0, (1)

or equivalently that P (x) = 1 − Cx−α + o(x−α). If and only if 1 − P is −α regularly varying in
the tail, then the limiting distribution of maxi Xi is an α-Fréchet distribution. The assumption of
−α regularly varying in the tail is thus the weakest possible assumption that ensures that the (prop-
erly rescaled) maximum of samples emitted by a heavy tailed distributions has a limit. Therefore,
the very related assumption of approximate Pareto is almost minimal, but it is (provably) still not
restrictive enough to ensure a convergence rate. For this reason, it is natural to introduce an assump-
tion that is slightly stronger than (1). In particular, we assume, as it is common in the extreme value
literature, a second order Pareto condition also known as the Hall condition [13].

Definition 2. A distribution P is (α, β, C,C ′)-second order Pareto (α, β, C,C ′ > 0) if for x ≥ 0:
∣∣1− P (x)− Cx−α

∣∣ ≤ C ′x−α(1+β)

By this definition, P (x) = 1 − Cx−α + O
(
x−α(1+β)

)
, which is stronger than the assumption

P (x) = 1− Cx−α + o(x−α), but similar for small β.

Remark 1. In the definition above, β defines the rate of the convergence (when x diverges to infinity)

of the tail of P to the tail of a Pareto distribution 1 − Cx−α. The parameter α characterizes the

heaviness of the tail: The smaller the α, the heavier the tail. In the reminder of the paper, we will be

therefore concerned with learning the α and identifying the smallest one among the sources.

4 Related work

There is a vast body of research in offline anomaly detection which looks for examples that deviate
from the rest of the data, or that are not expected from some underlying model. A comprehensive
review of many anomaly detection approaches can be found in [16] or [8]. There has been also some
work in active learning for anomaly detection [1], which uses a reduction to classification. In online
anomaly detection, most of the research focuses on studying the setting where a set of variables is
monitored. A typical example is the monitoring of cold relief medications, where we are interested
in detecting an outbreak [17]. Similarly to our focus, these approaches do not look for outliers in a
broad sense but rather for the unusual burst of events [22].

In the extreme values settings above, it is often assumed, that we have full information about each
variable. This is in contrast to the limited feedback or a bandit setting that we study in our work.
There has been recently some interest in bandit algorithms for heavy-tailed distributions [4]. How-
ever the goal of [4] is radically different from ours as they maximize the sum of rewards and not
the maximal reward. Bandit algorithms have been already used for network intrusion detection [15],
but they typically consider classical or restless setting. [9, 21, 20] were the first to consider the
extreme bandits problem, where our setting is defined as the max-k problem. [21] and [9] con-
sider a fully parametric setting. The reward distributions are assumed to be exactly generalized
extreme value distributions. Specifically, [21] assumes that the distributions are exactly Gumbel,
P (x) = exp(−(x − m)/s)), and [9], that the distributions are exactly of Gumbel or Fréchet
P (x) = exp(−(x − m)α/(sα))). Provided that these assumptions hold, they propose an algo-
rithm for which the regret is asymptotically negligible when compared to the optimal oracle reward.
These results are interesting since they are the first for extreme bandits, but their parametric assump-
tion is unlikely to hold in practice and the asymptotic nature of their bounds limits their impact.
Interestingly, the objective of [20] is to remove the parametric assumptions of [21, 9] by offering
the THRESHOLDASCENT algorithm. However, no analysis of this algorithm for extreme bandits is
provided. Nonetheless, to the best of our knowledge, this is the closest competitor for EXTREME-
HUNTER and we empirically compare our algorithm to THRESHOLDASCENT in Section 7.

1We recall the definition of the standard Pareto distribution as a distribution P , where for some constants α
and C, we have that for x ≥ C

1/α, P = 1− Cx
−α.
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In this paper we also target the extreme bandit setting, but contrary to [9, 21, 20], we only make a
semi-parametric assumption on the distribution; the second order Pareto assumption (Definition 2),
which is standard in extreme value theory (see e.g., [13, 10]). This is light-years better and sig-
nificantly weaker than the parametric assumptions made in the prior works for extreme bandits.
Furthermore, we provide a finite-time regret bound for our more general semi-parametric setting
(Theorem 2), while the prior works only offer asymptotic results. In particular, we provide an up-
per bound on the rate at which the regret becomes negligible when compared to the optimal oracle
reward (Definition 1).

5 Extreme Hunter

In this section, we present our main results. In particular, we present the algorithm and the main
theorem that bounds its extreme regret. Before that, we first provide an initial result on the expecta-
tion of the maximum of second order Pareto random variables which will set the benchmark for the
oracle regret. We first characterize the expectation of the maximum of second order Pareto distribu-
tions. The following lemma states that the expectation of the maximum of i.i.d. second order Pareto
samples is equal, up to a negligible term, to the expectation of the maximum of i.i.d. Pareto samples.
This result is crucial for assessing the benchmark for the regret, in particular the expected value of
the maximal oracle sample. Theorem 1 is based on Lemma 3, both provided in the appendix.

Theorem 1. Let X1, . . . , Xn be n i.i.d. samples drawn according to (α, β, C,C ′)-second order

Pareto distribution P (see Definition 2). If α > 1, then:
∣∣∣E(max

i
Xi)− (nC)1/αΓ

(
1− 1

α

)∣∣∣ ≤ 4D2

n (nC)1/α +
2C′Dβ+1

Cβ+1nβ (nC)1/α +B = o
(
(nC)

1/α
)
,

where D2, D1+β > 0 are some universal constants, and B is defined in the appendix (9).

Theorem 1 implies that the optimal strategy in hindsight attains the following expected reward:

E [G∗
n] ≈ max

k

[
(Ckn)

1/αk Γ
(
1− 1

α

)]

Algorithm 1 EXTREMEHUNTER

Input:
K: number of arms
n: time horizon
b: where b ≤ βk for all k ≤ K
N : minimum number of pulls of each arm

Initialize:
Tk ← 0 for all k ≤ K
δ ← exp(− log2 n)/(2nK)

Run:
for t = 1 to n do

for k = 1 to K do
if Tk ≤ N then
Bk,t ←∞

else
estimate ĥk,t that verifies (2)

estimate Ĉk,t using (3)
update Bk,t using (5) with (2) and (4)

end if
end for
Play arm kt ← argmaxk Bk,t

Tkt ← Tkt + 1
end for

Our objective is therefore to find a learner π
such that E [G∗

n] − E [Gπ
n] is negligible when

compared to E[G∗
n], i.e., when compared to

(nC∗)1/α
∗

Γ
(
1− 1

α∗

)
≈ n1/α∗

where ∗ is the
optimal arm.

From the discussion above, we know that the
minimization of the extreme regret is linked
with the identification of the arm with the heav-
iest tail. Our EXTREMEHUNTER algorithm is
based on a classical idea in bandit theory: op-
timism in the face of uncertainty. Our strat-
egy is to estimate E [maxt≤n Xk,t] for any k
and to pull the arm which maximizes its up-
per bound. From Definition 2, the estimation
of this quantity relies heavily on an efficient es-
timation of αk and Ck, and on associated confi-
dence widths. This topic is a classic problem in
extreme value theory, and such estimators exist
provided that one knows a lower bound b on βk

[10, 6, 7]. From now on we assume that a con-
stant b > 0 such that b ≤ mink βk is known
to the learner. As we argue in Remark 2, this
assumption is necessary .

Since our main theoretical result is a finite-time upper bound, in the following exposition we care-
fully describe all the constants and stress what quantities they depend on. Let Tk,t be the number of

samples drawn from arm k at time t. Define δ = exp(− log2 n)/(2nK) and consider an estimator
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ĥk,t of 1/αk at time t that verifies the following condition with probability 1−δ, for Tk,t larger than
some constant N2 that depends only on αk, Ck, C

′ and b:
∣∣∣ 1
αk
− ĥk,t

∣∣∣ ≤ D
√
log(1/δ)T

−b/(2b+1)
k,t = B1(Tk,t), (2)

where D is a constant that also depends only on αk, Ck, C
′, and b. For instance, the estimator

in [6] (Theorem 3.7) verifies this property and provides D and N2 but other estimators are possible.
Consider the associated estimator for Ck:

Ĉk,t = T
1/(2b+1)
k,t


 1

Tk,t

Tk,t∑

u=1

1

{
Xk,u ≥ T

ĥk,t/(2b+1)
k,t

}

 (3)

For this estimator, we know [7] with probability 1− δ that for Tk,t ≥ N2:
∣∣∣Ck − Ĉk,t

∣∣∣ ≤ E
√

log(Tk,t/δ) log(Tk,t)T
−b/(2b+1)
k,T = B2(Tk,t), (4)

where E is derived in [7] in the proof of Theorem 2. Let N = max
(
A log(n)2(2b+1)/b, N2

)
where

A depends on (αk, Ck)k, b,D,E, and C ′, and is such that:

max (2B1(N), 2B2(N)/Ck) ≤ 1, N ≥ (2D log2 n)(2b+1)/b, and N >

(
2D
√

log(n)2

1−maxk 1/αk

)(2b+1)/b

This inspires Algorithm 1, which first pulls each arm N times and then, at each time t > KN , pulls
the arm that maximizes Bk,t, which we define as:

((
Ĉk,t +B2 (Tk,t)

)
n
)ĥk,t+B1(Tk,t)

Γ̄
(
ĥk,t, B1 (Tk,t)

)
, (5)

where Γ̄(x, y) = Γ̃(1− x− y), where we set Γ̃ = Γ for any x > 0 and +∞ otherwise.

Remark 2. A natural question is whether it is possible to learn βk as well. In fact, this is not possible

for this model and a negative result was proved by [7]. The result states that in this setting it is not

possible to test between two fixed values of β uniformly over the set of distributions. Thereupon, we

define b as a lower bound for all βk. With regards to the Pareto distribution, β =∞ corresponds to

the exact Pareto distribution, while β = 0 for such distribution that is not (asymptotically) Pareto.

We show that this algorithm meets the desired properties. The following theorem states our main
result by upper-bounding the extreme regret of EXTREMEHUNTER.

Theorem 2. Assume that the distributions of the arms are respectively (αk, βk, Ck, C
′) second

order Pareto (see Definition 2) with mink αk > 1. If n ≥ Q, the expected extreme regret of EX-

TREMEHUNTER is bounded from above as:

E [Rn] ≤ L(nC∗)1/α
∗

(
K
n log(n)(2b+1)/b + n− log(n)(1−1/α∗) + n−b/((b+1)α∗)

)
= E [G∗

n] o(1),

where L,Q > 0 are some constants depending only on (αk, Ck)k, C
′, and b (Section 6).

Theorem 2 states that the EXTREMEHUNTER strategy performs almost as well as the best (oracle)
strategy, up to a term that is negligible when compared to the performance of the oracle strategy.

Indeed, the regret is negligible when compared to (nC∗)1/α
∗

, which is the order of magnitude of the
performance of the best oracle strategy E [G∗

n] = maxk≤K E [maxt≤n Xk,t]. Our algorithm thus
detects the arm that has the heaviest tail.

For n large enough (as a function of (αk, βk, Ck)k, C
′ and K), the two first terms in the regret

become negligible when compared to the third one, and the regret is then bounded as:

E [Rn] ≤ E [G∗
n]O

(
n−b/((b+1)α∗)

)

We make two observations: First, the larger the b, the tighter this bound is, since the model is then
closer to the parametric case. Second, smaller α∗ also tightens the bound, since the best arm is then
very heavy tailed and much easier to recognize.

5



6 Analysis

In this section, we prove an upper bound on the extreme regret of Algorithm 1 stated in Theorem 2.
Before providing the detailed proof, we give a high-level overview and the intuitions.

In Step 1, we define the (favorable) high probability event ξ of interest, useful for analyzing the
mechanism of the bandit algorithm. In Step 2, given ξ, we bound the estimates of αk and Ck, and
use them to bound the main upper confidence bound. In Step 3, we upper-bound the number of pulls
of each suboptimal arm: we prove that with high probability we do not pull them too often. This
enables us to guarantee that the number of pulls of the optimal arms ∗ is on ξ equal to n up to a
negligible term.

The final Step 4 of the proof is concerned with using this lower bound on the number of pulls of
the optimal arm in order to lower bound the expectation of the maximum of the collected samples.
Such step is typically straightforward in the classical (mean-optimizing) bandits by the linearity of
the expectation. It is not straightforward in our setting. We therefore prove Lemma 2, in which we
show that the expected value of the maximum of the samples in the favorable event ξ will be not too
far away from the one that we obtain without conditioning on ξ.

Step 1: High probability event. In this step, we define the favorable event ξ. We set

δ
def
= exp(− log2n)/(2nK) and consider the event ξ such that for any k ≤ K, N ≤ T ≤ n:

∣∣∣ 1
αk
− h̃k(T )

∣∣∣ ≤ D
√
log(1/δ)T−b/(2b+1),

∣∣∣Ck − C̃k(T )
∣∣∣ ≤ E

√
log(T/δ)T−b/(2b+1),

where h̃k(T ) and C̃k(T ) are the estimates of 1/αk and Ck respectively using the first T samples.

Notice, they are not the same as ĥk,t and Ĉk,t which are the estimates of the same quantities at time
t for the algorithm, and thus with Tk,t samples. The probability of ξ is larger than 1 − 2nKδ by a
union bound on (2) and (4).

Step 2: Bound on Bk,t. The following lemma holds on ξ for upper- and lower-bounding Bk,t.

Lemma 1. (proved in the appendix) On ξ, we have that for any k ≤ K, and for Tk,t ≥ N :

(Ckn)
1

αk Γ
(
1− 1

αk

)
≤ Bk,t≤(Ckn)

1
αk Γ

(
1− 1

αk

)(
1 + F log(n)

√
log(n/δ)T

−b/(2b+1)
k,t

)
(6)

Step 3: Upper bound on the number of pulls of a suboptimal arm. We proceed by using the
bounds on Bk,t from the previous step to upper-bound the number of suboptimal pulls. Let ∗ be the
best arm. Assume that at round t, some arm k 6= ∗ is pulled. Then by definition of the algorithm
B∗,t ≤ Bk,t, which implies by Lemma 1:

(C∗n)
1/α∗

Γ
(
1− 1

α∗

)
≤ (Ckn)

1/αk Γ
(
1− 1

αk

)(
1 + F log(n)

√
log(n/δ)T

−b/(2b+1)
k,t

)

Rearranging the terms we get:

(C∗n)
1/α∗

Γ
(
1− 1

α∗

)

(Ckn)
1/αk Γ

(
1− 1

αk

) ≤ 1 + F log(n)
√
log(n/δ)T

−b/(2b+1)
k,t (7)

We now define ∆k which is analogous to the gap in the classical bandits:

∆k =
(C∗n)

1/α∗

Γ
(
1− 1

α∗

)

(Ckn)
1/αk Γ

(
1− 1

αk

) − 1

Since Tk,t ≤ n, (7) implies for some problem dependent constants G and G′ dependent only on
(αk, Ck)k, C

′ and b, but independent of δ that:

Tk,t ≤ N +G′
(

log2n log(n/δ)
∆2

k

)(2b+1)/(2b)

≤ N +G
(
log2n log(n/δ)

)(2b+1)(2b)

6



This implies that number T ∗ of pulls of arm ∗ is with probability 1− δ′, at least

n−
∑

k 6=∗

G
(
log2n log(2nK/δ′)

)(2b+1)/(2b) −KN,

where δ′ = 2nKδ. Since n is larger than

Q ≥ 2KN + 2GK
(
log2n log (2nK/δ′)

)(2b+1)/(2b)
,

we have that T ∗ ≥ n
2 as a corollary.

Step 4: Bound on the expectation. We start by lower-bounding the expected gain:

E[Gn]=E

[
max
t≤n

XIt,Tk,t

]
≥E

[
max
t≤n

XIt,Tk,t
1{ξ}

]
≥E

[
max
t≤n

X∗,T∗,t
1{ξ}

]
=E

[
max
i≤T∗

Xi1{ξ}
]

The next lemma links the expectation of maxt≤T∗ X∗,t with the expectation of maxt≤T∗ X∗,t1{ξ}.
Lemma 2. (proved in the appendix) Let X1, . . . , XT be i.i.d. samples from an (α, β, C,C ′)-second

order Pareto distribution F . Let ξ′ be an event of probability larger than 1 − δ. Then for δ < 1/2

and for T ≥ Q large enough so that cmax
(
1/T, 1/T β

)
≤ 1/4 for a given constant c > 0, that

depends only on C,C ′ and β, and also for T ≥ log(2)max
(
C (2C ′)

1/β
, 8 log (2)

)
:

E

[
max
t≤T

Xt1{ξ}
]
≥ (TC)

1/α
Γ
(
1− 1

α

)
−
(
4 + 8

α−1

)
(TC)

1/α
δ1−1/α

− 2
(

4D2

T (TC)
1/α

+
2C′D1+β

C1+βTβ (TC)
1/α

+B
)
.

Since n is large enough so that 2n2Kδ′ = 2n2K exp
(
− log2n

)
≤ 1/2, where δ′ = exp

(
− log2n

)
,

and the probability of ξ is larger than 1− δ′, we can use Lemma 2 for the optimal arm:

E

[
max
t≤T∗

X∗,t1{ξ}
]
≥(T ∗C∗)

1

α∗

[
Γ
(
1− 1

α∗

)
−
(
4+ 8

α−1

)
δ′1−

1

α∗ − 8D2

T∗
− 4C′Dmax

(C∗)1+b(T∗)b
− 2B

(T∗C∗)
1

α∗

]
,

where Dmax
def
=maxi D1+βi

. Using Step 3, we bound the above with a function of n. In particular,

we lower-bound the last three terms in the brackets using T ∗ ≥ n
2 and the (T ∗C∗)1/α

∗

factor as:

(T ∗C∗)1/α
∗ ≥ (nC∗)1/α

∗

(
1− GK

n

(
log(2n2K/δ′)

) 2b+1

2b −KN
n

)

We are now ready to relate the lower bound on the gain of EXTREMEHUNTER with the upper bound
of the gain of the optimal policy (Theorem 1), which brings us the upper bound for the regret:

E [Rn] = E [G∗
n]− E [Gn] ≤ E [G∗

n]− E

[
max
i≤T∗

Xi

]
≤ E [G∗

n]− E

[
max
t≤T∗

X∗,t1{ξ}
]

≤ H(nC∗)1/α
∗

(
1
n+

1
(nC∗)b

+GK
n

(
log(2n2K/δ′)

) 2b+1

2b + KN
n + δ′1−1/α∗

+ B
(nC∗)1/α∗

)
,

where H is a constant that depends on (αk, Ck)k, C
′, and b. To bound the last term, we use the

definition of B (9) to get the n−β∗/((β∗+1)α∗) term, upper-bounded by n−b/((b+1)α∗) as b ≤ β∗.
Notice that this final term also eats up n−1 and n−b terms since b/((b+ 1)α∗) ≤ min(1, b).

We finish by using δ′ = exp
(
− log2n

)
and grouping the problem-dependent constants into L to get

the final upper bound:

E [Rn] ≤ L(nC∗)1/α
∗

(
K
n log(n)(2b+1)/b + n− log(n)(1−1/α∗) + n−b/((b+1)α∗)

)
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Figure 1: Extreme regret as a function of time for the exact Pareto distributions (left), approximate
Pareto (middle) distributions, and the network traffic data (right).

7 Experiments

In this section, we empirically evaluate EXTREMEHUNTER on synthetic and real-world data. The
measure of our evaluation is the extreme regret from Definition 1. Notice that even thought we
evaluate the regret as a function of time T , the extreme regret is not cumulative and it is more in the
spirit of simple regret [5]. We compare our EXTREMEHUNTER with THRESHOLDASCENT [20].
Moreover, we also compare to classical UCB [3], as an example of the algorithm that aims for the
arm with the highest mean as opposed to the heaviest tail. When the distribution of a single arm
has both the highest mean and the heaviest-tail, both EXTREMEHUNTER and UCB are expected to
perform the same with respect to the extreme regret. In the light of Remark 2, we set b = 1 to
consider a wide class of distributions.

Exact Pareto Distributions In the first experiment, we consider K = 3 arms with the distributions
Pk(x) = 1−x−αk , where α = [5, 1.1, 2]. Therefore, the most heavy-tailed distribution is associated
with the arm k = 2. Figure 1 (left) displays the averaged result of 1000 simulations with the time
horizon T = 104. We observe that EXTREMEHUNTER eventually keeps allocating most of the
pulls to the arm of the interest. Since in this case, the arm with the heaviest tail is also the arm
with the largest mean, UCB also performs well and it is even able to detect the best arm earlier.
THRESHOLDASCENT, on the other way, was not always able to allocate the pulls properly in 104

steps. This may be due to the discretization of the rewards that this algorithm is using.

Approximate Pareto Distributions For the exact Pareto distributions, the smaller the tail index
the higher the mean and even UCB obtains a good performance. However, this is no longer nec-
essarily the case for the approximate Pareto distributions. For this purpose, we perform the second
experiment where we mix an exact Pareto distribution with a Dirac distribution in 0. We consider
K = 3 arms. Two of the arms follow the exact Pareto distributions with α1 = 1.5 and α3 = 3.
On the other hand, the second arm has a mixture weight of 0.2 for the exact Pareto distribution with
α2 = 1.1 and 0.8 mixture weight of the Dirac distribution in 0. For this setting, the second arm
is the most heavy-tailed but the first arms has the largest mean. Figure 1 (middle) shows the re-
sult. We see that UCB performs worse since it eventually focuses on the arm with the largest mean.
THRESHOLDASCENT performs better than UCB but not as good as EXTREMEHUNTER.

Computer Network Traffic Data In this experiment, we evaluate EXTREMEHUNTER on heavy-
tailed network traffic data which was collected from user laptops in the enterprise environment [2].
The objective is to allocate the sampling capacity among the computer nodes (arms), in order to find
the largest outbursts of the network activity. This information then serves an IT department to further
investigate the source of the extreme network traffic. For each arm, a sample at the time t corre-
sponds to the number of network activity events for 4 consecutive seconds. Specifically, the network
events are the starting times of packet flows. In this experiment, we selected K = 5 laptops (arms),
where the recorded sequences were long enough. Figure 1 (right) shows that EXTREMEHUNTER

again outperforms both THRESHOLDASCENT and UCB.

Acknowledgements We would like to thank John Mark Agosta and Jennifer Healey for the net-
work traffic data. The research presented in this paper was supported by Intel Corporation, by
French Ministry of Higher Education and Research, and by European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement no270327 (CompLACS).
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mation Theory, IEEE Transactions on, 59(11):7711–7717, 2013.
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A Proof of Lemma 3

Lemma 3. Assume that X1, . . . , XT are T i.i.d. samples drawn according to (α, β, C,C ′)-second

order Pareto distribution, then for any x ≥ B:
∣∣∣P

(
max

i
Xi ≤ x

)
−exp

(
−TCx−α

)∣∣∣ ≤Mexp
(
−TCx−α

)

where M =
4

T

(
TCx−α

)2
+

2C ′

Cβ+1T β

(
TCx−α

)β+1
, (8)

where B is defined as:

B = max
(
(2C ′/C)

1/(αβ)
, (8C)

1/α
, (2TC ′)1/(α(1+β))

)
. (9)

Alternatively, let u ∈ (0, 1). When T ≥ log(1/u)Bα/C:

∣∣∣P
(
max

i
Xi ≤ (TC/ log (1/u))

1/α
)
− u

∣∣∣ ≤ u

(
4

T
log(1/u)2 +

2C ′

Cβ+1T β
(log(1/u))1+β

)

= u×O
(
1

T
log (1/u)

2
+

1

T β
log (1/u)

1+β

)

Proof. Consider x ≥ B. Since the samples are i.i.d., we are going to study the following quantity:2

P(max
i

Xi ≤ x) = P (x)T (10)

Since P is a second order Pareto, we have for any x ≥ 0:

1− Cx−α − C ′x−α(1+β) ≤ P (x) ≤ 1− Cx−α + C ′x−α(1+β) (11)

Since x ≥ B, we deduce from the first two terms in (9) that:

Cx−α ≥ 2C ′x−α(1+β) and 2Cx−α ≤ 1/4 (12)

Let cx be the quantity that depends on x and that is such that P (x) = 1 − Ccxx
−α. With such

definition we know by (11) and further by the second inequality in (12) that:

|cx − 1| ≤ C ′x−αβ

C
≤ 1/2. (13)

Let y = Ccxx
−α. By (12) and (13) we get that y ∈ [0, 1

2 ]. For any y ∈ [0, 1
2 ], we have:

−y − y2 ≤ log(1− y) ≤ −y
Taking the exponential, setting y = Ccxx

−α, and raising to the T -th power, we obtain:

exp
(
−T

(
Ccxx

−α
)2) ≤ (1− Ccxx

−α)
T

exp (−T (Ccxx−α))
≤ 1,

which by (10), the definition of cx, and both inequalities in (11) yields:

exp
(
−T

(
2Cx−α

)2 − TC ′x−α(1+β)
)
≤ P(maxi Xi ≤ x)

exp(−TCx−α)
≤ exp

(
TC ′x−α(1+β)

)

After multiplication and subtraction of exp(−TCx−α):

exp
(
−TCx−α

) (
exp

(
−4T (Cx−α)2 − TC ′x−α(1+β)

)
− 1

)

≤ P

(
max

i
Xi ≤ x

)
− exp

(
−TCx−α

)

≤ exp
(
−TCx−α

) (
exp

(
TC ′x−α(1+β)

)
− 1

)

2Notice that uT means ‘u to the power of T ’ and not ‘u transposed’.
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We will now simplify the exp(y) − 1 terms in the previous inequality. For any y such that y ∈
(0, 1/2), we have exp(y) − 1 ≤ 2y and for any y ∈ R we have that y ≤ exp(y) − 1. In particular,

this implies whenever x ≥ B ≥ (2TC ′)1/(α(1+β)), which is the third term in (9):

exp
(
−TCx−α

) (
−4T (Cx−α)2 − TC ′x−α(1+β)

)

≤ P

(
max

i
Xi ≤ x

)
− exp

(
−TCx−α

)

≤ exp
(
−TCx−α

) (
2TC ′x−α(1+β)

)

This implies that for any x ≥ B and M as defined in (8):∣∣∣P
(
max

i
Xi ≤ x

)
− exp

(
−TCx−α

)∣∣∣ ≤M exp
(
−TCx−α

)

We now simply reparametrize this upper bound by setting:

u = exp(−TCx−α)

Then u ∈ (0, 1) and x = (TC/ log (1/u))
1/α

. Then x is larger than B as soon as T is larger than
log(1/u)Bα/C. It follows that for such T , by the reparametrization in u, the rate of convergence of
the distribution to a Fréchet distribution:∣∣∣P

(
max

i
Xi ≤ (TC/ log (1/u))

1/α
)
− u

∣∣∣ ≤ u

(
4

T
(log 1/u)2 +

2C ′

Cβ+1T β
log(1/u)β+1

)

B Proof of Theorem 1

Theorem 1. Assume that X1, . . . , XT are T i.i.d. samples drawn according to (α, β, C,C ′)-second

order Pareto distribution P. If α > 1, then:
∣∣∣E

(
max

i
Xi

)
−(TC)

1/α
Γ
(
1− 1

α

)∣∣∣ ≤ 4D2

T
(TC)

1/α
+

2C ′Dβ+1

Cβ+1T β
(TC)

1/α
+B = o

(
(TC)

1/α
)
,

where D2 > 0 and D1+β > 0 are some universal constants, and B is as defined in (9).

Proof. Since α > 1, by definition of a Fréchet distribution:∫ ∞

0

(
1− exp(−TCx−α)

)
dx = (TC)

1/α
Γ
(
1− 1

α

)
(14)

Notice that in (8) we have two terms of the form exp(−TCx−α)(TCx−α)p, for p = 2 and p =
β + 1. In order to proceed, we first upper-bound the integral of such expression. Through a change
of variable (setting t = TCx−α) we get that for any p > 0:
∫ ∞

0

exp(−TCx−α)(TCx−α)pdx =
(TC)

1/α

α

∫ ∞

0

exp(−t)tp−1−1/αdt = Dp (TC)
1/α

, (15)

where Dp = Γ(p − 1/α)/α is bounded as long as p > 1/α, e.g. if p > 1. From the definition of
expectation we have that:

E

(
max

i
Xi

)
=

∫ ∞

0

P

(
max

i
Xi ≥ x

)
dx

We now bound the difference between this expectation which and the expectation of the Fréchet
distribution.∣∣∣∣E

(
max

i
Xi

)
−
∫ ∞

0

(
1− exp

(
−TCx−α

))
dx

∣∣∣∣ ≤

≤
∫ ∞

0

1− P

(
max

i
Xi ≤ x

)
dx+

∫ ∞

0

(
1− exp

(
−TCx−α

))
dx

≤
∣∣∣∣∣

∫ B

0

1− P

(
max

i
Xi ≤ x

)
dx+

∫ B

0

(
1− exp

(
−TCx−α

))
dx

∣∣∣∣∣

+

∣∣∣∣
∫ ∞

B

1− P

(
max

i
Xi ≤ x

)
dx+

∫ ∞

B

(
1− exp

(
−TCx−α

))
dx

∣∣∣∣ ,
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where in the last term we split the domain of integration at B. We simply bound the first part by B
and for the second term, we use Lemma 3 to obtain:∣∣∣∣

∫ ∞

B

1− P

(
max

i
Xi ≤ x

)
dx+

∫ ∞

B

(
1− exp

(
−TCx−α

))
dx

∣∣∣∣

≤
∫ ∞

0

∣∣∣P
(
max

i
Xi ≤ x

)
− exp

(
−TCx−α

)∣∣∣ dx

≤
∫ ∞

0

exp
(
−TCx−α

)( 4

T

(
TCx−α

)2
+

2C ′

Cβ+1T β

(
TCx−α

)β+1
)

Instantiating (15) for p = 2 and p = β + 1, we deduce that:
∣∣∣E(max

i
Xi)− (TC)1/αΓ(1− α)

∣∣∣ ≤ B +
4D2

T
(TC)1/α +

2C ′Dβ+1

Cβ+1T β
(TC)1/α

Note that since α > 1, we know that Dβ+1 and D2 are finite. This concludes the proof.

C Proof of Lemma 1

Lemma 1. On ξ, we have that for any k ≤ K, and for Tk,t ≥ N ,

(Ckn)
1

αk Γ
(
1− 1

αk

)
≤ Bk,t≤(Ckn)

1
αk Γ

(
1− 1

αk

)(
1 + F log(n)

√
log(n/δ)T

−b/(2b+1)
k,t

)
(16)

Proof. From Step 1, we know that on ξ, we can bound Bk,t as:

(Ckn)
1

αk Γ
(
1− 1

αk

)
≤

(
(Ĉk,t +B2(Tk,t))n

)ĥk,t+B1(Tk,t)

Γ̄
(
ĥk,t, B1(Tk,t)

)

≤ ((Ck + 2B2(Tk,t))n)
1

αk
+2B1(Tk,t) Γ̄ (1/αk, 2B1(Tk,t)) ,

since Γ is decreasing on [0, 1].

Note that by Theorem 1 we know that (Ckn)
1/αkΓ

(
1− 1

αk

)
is a proxy for the expected maximum

of the arm distribution with tail index αk. Factoring our (Ckn)
1/αk we get:

((Ck + 2B2 (Tk,t))n)
1/αk+2B1(Tk,t) Γ̄ (1/αk, 2B1(Tk,t))

≤ (Ckn)
2B1(Tk,t)Γ̄ (1/αk, 2B1 (Tk,t)) (Ckn)

1
αk

(
1 +

2B2 (Tk,t)

Ck

)1/αk+2B1(Tk,t)

(17)

As we pull each arm at least N times (by the assumptions) we have that Tk,t ≥ N which implies
max(2B1(N), 2B2(N)/Ck) ≤ 1. Since αk > 1:

(
1 +

2B2(Tk,t)

Ck

)1/αk+2B1(Tk,t)

≤
(
1 +

2E

Ck

√
log(Tk,t/δ) log(Tk,t)T

−b/(2b+1)
k,t

)2

≤ 1 +
6E

Ck

√
log(n/δ) log(n)T

−b/(2b+1)
k,t . (18)

Using again Tk,t ≥ N and log(Ckn)D
√
log(1/δ)N−b/(2b+1) ≤ 1/2 for all k, we have:

(Ckn)
2B1(Tk,t) = exp(log(Ckn)2D

√
log(1/δ)T−b/(2b+1))

≤ 1+2 log(Ckn)D
√
log(1/δ)T−b/(2b+1). (19)

Now, let c be the maximum of the absolute value of the derivative of Γ on the segment:
[
1−max

k

1
αk
−D

√
log(1/δ)N−b/(2b+1), 1−min

k

1
αk

+D
√

log(1/δ)N−b/(2b+1)

]

Since by the assumption on N :

N >

(
2D
√

log(1/δ)

1−maxk 1/αk

)(2b+1)/b

,
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we know that c is smaller than the maximum of the absolute value of the derivative of Γ function
in

[
1
2 (1−maxk 1/αk),

3
2 (1−mink 1/αk)

]
, since Γ is a convex and decreasing function on [0, 1].

When ξ happens, this implies:

Γ̄ (1/αk, 2B1(Tk,t)) ≤ Γ
(
1− 1

αk

)
+ 2cB1(Tk,t)

≤ Γ
(
1− 1

αk

)
+ 2cD

√
log(1/δ)T

−b/(2b+1)
k,t (20)

Finally, combining (17) and (20), we get:

((Ck + 2B2(Tk,t))n)
1/αk+2B1(Tk,t) Γ̄ (1/αk, 2B1(Tk,t))

≤ (Ckn)
1/αkΓ

(
1− 1

αk

)(
1 + F log(n)

√
log(n/δ)T

−b/(2b+1)
k,t

)
,

where F depends on (αk, Ck)k, C
′, D, and E.

This implies that for Tk,t ≥ N , we can bound Bk,t as:

(Ckn)
1/αk Γ

(
1− 1

αk

)
≤ Bk,t ≤(Ckn)

1/αkΓ
(
1− 1

αk

)(
1+F log(n)

√
log(n/δ)T

−b/(2b+1)
k,t

)

D Proof of Lemma 2

Lemma 2. Let X1, . . . , XT be i.i.d. samples from an (α, β, C,C ′)-second order Pareto distribution

F . Let ξ′ be an event of probability larger than 1 − δ. Then for δ < 1/2 and for T ≥ Q large

enough so that cmax
(
1/T, 1/T β

)
≤ 1/4 for a given constant c > 0, that depends only on C,C ′

and β, and also for T ≥ log(2)max
(
C (2C ′)

1/β
, 8 log (2)

)
:

E

[
max
t≤T

Xt1{ξ}
]
≥ (TC)

1/α
Γ
(
1− 1

α

)
−
(
4 + 8

α−1

)
(TC)

1/α
δ1−1/α

− 2
(

4D2

T (TC)
1/α

+
2C′D1+β

C1+βTβ (TC)
1/α

+B
)
.

Proof. Since the probability of ξ′ is larger than 1− δ:

E

[
max
t≤T

Xt1{ξ′}
]
= E

[
max
t≤T

Xt

]
− E

[(
max
t≤T

Xt

)
1{ξ′C}

]

= E

[
max
t≤T

Xt

]
−
∫ ∞

0

P

[(
max
t≤T

Xt

)
1{ξ′C} > x

]
dx

≥ E

[
max
t≤T

Xt

]
−
∫ ∞

xδ

P

[(
max
t≤T

Xt

)
> x

]
dx− δxδ,

where xδ is such that P (maxt≤T Xt ≤ xδ) = 1− δ.

Since we have T ≥ log(2)max
(
C (2C ′)

1/β
, 8 log (2)

)
, and δ < 1/2, we get by Lemma 3:

∣∣∣P
(
max

i
Xi ≤ (TC/ log (1/(1− δ)))

1/α
)
− (1− δ)

∣∣∣

≤ (1− δ)

(
4
T

(
log 1

1−δ

)2

+ 2C′

C1+β

(
log 1

1−δ

)1+β
)

≤ 4
T (2δ)

2 + 2C′

C1+β (2δ)
1+β

≤ cδmax
(

δ
T ,

δβ

Tβ

)

≤ cδmax
(
1
T ,

1
Tβ

)
,
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where c > 0 is a constant that depends only on C,C ′ and β. This implies that for T large enough so

that cmax(1/T, 1/T β) ≤ 1/4:

x̄ = (TC/ log (1/(1− δ/2)))
1/α ≥ xδ ≥ (TC/ log (1/(1− 2δ)))

1/α
= x.

By Theorem 1 we can now deduce that:

E

[
max
t≤T

Xt1{ξ′}
]
≥ E

[
max
t≤T

Xt

]
−
∫ ∞

x

P

[(
max
t≤T

Xt

)
> x

]
dx− δx̄

≥ E

[
max
t≤T

Xt

]
−
∫ ∞

x

(
1− exp

(
−TCx−α

))
dx

−
(

4D2

T (TC)
1/α

+
2C′D1+β

C1+βTβ (TC)
1/α

+B
)
− δx̄.

By the method of substitution, the Taylor expansion and for δ small enough:

∫ ∞

x

(
1− exp

(
−TCx−α

))
dt =

(TC)
1/α

α

∫ log(1/(1−2δ))

0

(1− exp(−t)) t−1−1/αdt

≤ 2 (TC)
1/α

α

∫ log(1/(1−2δ))

0

exp(−t)t−1/αdt

≤ 2 (TC)
1/α

α

∫ log(1/(1−2δ))

0

t−1/αdt

≤ 2 (TC)
1/α

α
log (1/(1− 2δ))

1−1/α

≤ 8

α− 1
(TC)

1/α
δ1−1/α.

Next, notice that for small enough δ:

δx̄ ≤ 4 (TC)
1/α

δ1−1/α

We get the final lower-bound on E [maxt≤T Xt1{ξ′}] by combining all the above with Theorem 1:

(TC)
1/α

Γ
(
1− 1

α

)
−
(
4+ 8

α−1

)
(TC)

1/α
δ1−1/α−2

(
4D2

T (TC)
1/α

+
2C′D1+β

C1+βTβ (TC)
1/α

+B
)
.
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