Biclique Coverings, Rectifier Networks and the Cost of ε-Removal

Szabolcs Iván 1 Ádám D. Lelkes 2 Judit Nagy-György 1 Balázs Szörényi 3, 1 György Turán 4, 2
3 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
Abstract : We relate two complexity notions of bipartite graphs: the minimal weight biclique covering number Cov(G) and the minimal rec-tifier network size Rect(G) of a bipartite graph G. We show that there exist graphs with Cov(G) ≥ Rect(G) 3/2−ǫ . As a corollary, we estab-lish that there exist nondeterministic finite automata (NFAs) with ε-transitions, having n transitions total such that the smallest equivalent ε-free NFA has Ω(n 3/2−ǫ) transitions. We also formulate a version of previous bounds for the weighted set cover problem and discuss its con-nections to giving upper bounds for the possible blow-up.
Document type :
Conference papers
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal.inria.fr/hal-01079368
Contributor : Balazs Szorenyi <>
Submitted on : Saturday, November 1, 2014 - 11:39:51 AM
Last modification on : Tuesday, November 26, 2019 - 4:12:08 PM
Long-term archiving on: Monday, February 2, 2015 - 4:51:59 PM

File

1406.0017v1.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Szabolcs Iván, Ádám D. Lelkes, Judit Nagy-György, Balázs Szörényi, György Turán. Biclique Coverings, Rectifier Networks and the Cost of ε-Removal. 16th International Workshop on Descriptional Complexity of Formal Systems, Proceedings, Aug 2014, Turku, Finland. pp.174 - 185, ⟨10.1007/978-3-319-09704-6_16⟩. ⟨hal-01079368⟩

Share

Metrics

Record views

543

Files downloads

334