Preference-Based Rank Elicitation using Statistical Models: The Case of Mallows

Róbert Busa-Fekete 1 Eyke Hüllermeier 2 Balázs Szörényi 3, 1
3 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal, Inria Lille - Nord Europe
Abstract : We address the problem of rank elicitation as-suming that the underlying data generating pro-cess is characterized by a probability distribu-tion on the set of all rankings (total orders) of a given set of items. Instead of asking for complete rankings, however, our learner is only allowed to query pairwise preferences. Using information of that kind, the goal of the learner is to reliably predict properties of the distribution, such as the most probable top-item, the most probable rank-ing, or the distribution itself. More specifically, learning is done in an online manner, and the goal is to minimize sample complexity while guaran-teeing a certain level of confidence.
Type de document :
Communication dans un congrès
Proceedings of The 31st International Conference on Machine Learning, Jun 2014, Beijing, China. 32, JMLR Workshop and Conference Proceedings Volume 32
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01079369
Contributeur : Balazs Szorenyi <>
Soumis le : samedi 1 novembre 2014 - 11:49:18
Dernière modification le : jeudi 26 juillet 2018 - 15:20:19
Document(s) archivé(s) le : lundi 2 février 2015 - 16:52:08

Fichier

BuHuSz14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01079369, version 1

Collections

Citation

Róbert Busa-Fekete, Eyke Hüllermeier, Balázs Szörényi. Preference-Based Rank Elicitation using Statistical Models: The Case of Mallows. Proceedings of The 31st International Conference on Machine Learning, Jun 2014, Beijing, China. 32, JMLR Workshop and Conference Proceedings Volume 32. 〈hal-01079369〉

Partager

Métriques

Consultations de la notice

280

Téléchargements de fichiers

196