A. A. and T. M. Emamian-e, Fault diagnosis engineering of digital circuits can identify vulnerable molecules in complex cellular pathways, Science Signaling, vol.1, p.42, 2008.

A. T. Akutsu and K. S. Miyano-s, Inferring qualitative relations in genetic networks and metabolic pathways, Bioinformatics, vol.16, issue.8, pp.727-734, 2000.
DOI : 10.1093/bioinformatics/16.8.727

A. L. Saez-rodriguez, L. D. Cosgrove-b, and . Sorger-p, Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes, ALE Molecular & Cellular Proteomics, vol.109, issue.9, pp.1849-1865, 2010.

A. K. Emden-m, Contributions to the Theory of Logic Programming, ACM, vol.29, issue.3, pp.841-862, 1982.

. J. Banga, Optimization in computational systems biology, BMC Systems Biology, vol.2, issue.1, 2008.
DOI : 10.1186/1752-0509-2-47

B. C. , C. K. , T. N. , T. N. , and J. A. Berens-m, A knowledge based approach for representing and reasoning about signaling networks, Proceedings of the Twelfth International Conference on Intelligent Systems for Molecular Biology/Third European Conference on Computational Biology, pp.15-22, 2004.

N. N. Berestovsky, An Evaluation of Methods for Inferring Boolean Networks from Time-Series Data, PLoS ONE, vol.22, issue.6, 2013.
DOI : 10.1371/journal.pone.0066031.t002

C. L. Tournier-l, F. S. , T. D. Zhivotovsky-b, . Barillot-e, and . Zinovyev-a, Mathematical modelling of cell-fate decision in response to death receptor engagement, PLoS Computational Biology, vol.63, 2010.

C. E. Gross-b, R. I. Demir-e, . Babur-Ö, . Anwar-n, . Schultz-n et al., Pathway Commons, a web resource for biological pathway data, Nucleic Acids Research, vol.39, pp.685-690, 2011.

C. W. Schoeberl-b, J. P. , N. M. Iepel, . B. Nielsen-u, . A. Lauf-fenburger-d et al., Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data, Molecular Systems Biology, vol.5, issue.1, 2009.

C. G. , E. D. Gebser-m, P. S. Schaub-t, T. S. Siegel-a, and . P. Cabalar, Extending the Metabolic Network of Ectocarpus Siliculosus using Answer Set Programming, Proceedings of the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'13), pp.245-256, 2013.

D. M. Marwan-w, . Ostrowski-m, . Schaub-t, and . Wagler-a, Automatic Network Reconstruction using ASP, Theory and Practice of Logic Programming, pp.4-5, 2011.

F. T. Janssen-j, C. C. Vermeir-d, and C. M. , Modelling gene and protein regulatory networks with Answer Set Programming, International Journal of Data Mining and Bioinformatics, vol.5, issue.112, pp.209-229, 2011.

F. J. Henzinger-t, Executable cell biology, Nature biotechnology, vol.25, issue.11, pp.1239-1249, 2007.

. Gallo-g, . Longo-g, . Pallottino-s, and . Nguyen-s, Directed hypergraphs and applications, Discrete Applied Mathematics, vol.42, issue.2-3, pp.2-3177, 1993.
DOI : 10.1016/0166-218X(93)90045-P

G. M. Kaufmann-b, S. T. Neumann-a, . C. Baral, and . Brewka-g, clasp: A Conflict- Driven Answer Set Solver, Proceedings of the Ninth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'07), pp.260-265, 2007.

. M. Gebser, I. N. Guziolowski-c, . Schaub-t, T. S. Siegel-a, V. P. Lin et al., Repair and prediction (under inconsistency) in large biological networks with answer set programming, Proceedings of the Twelfth International Conference on Principles of Knowledge Representation and Reasoning (KR'10),AAAIPress, pp.497-507, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00538137

. M. Gebser, . Kaminski-r, and . Schaub-t, Abstract, Theory and Practice of Logic Programming, pp.821-839, 2011.
DOI : 10.1017/S1471068411000329

URL : https://hal.archives-ouvertes.fr/hal-01186999

. M. Gebser, T. S. Schaub-t, and . Veber-p, Detecting Inconsistencies in Large Biological Networks with Answer Set Programming, Theory and Practice of Logic Programming, pp.2-3323, 2011.

. M. Gebser, . Kaminski-r, . Kaufmann-b, and . Schaub-t, Answer Set Solving in Practice,S y n t h e s i sL e c t u r e so nA r t i fi c i a lI n t e l l i g e n c ea n dM a c h i n eL e a r n i n g, 2012.

. M. Gebser, . Kaufmann-b, and . Schaub-t, Abstract, Theory and Practice of Logic Programming, pp.525-545, 2012.
DOI : 10.1109/12.769433

URL : https://hal.archives-ouvertes.fr/hal-01186999

. M. Gebser, . Kaufmann-b, . Otero-r, . Romero-j, W. P. Schaub-t et al., Domain-specific Heuristics in Answer Set Programming, Proceedings of the Twenty-Seventh National Conference on Artificial Intelligence (AAAI'13),AAAIPress, pp.350-356, 2013.

G. M. , L. V. Kowalski-r, and . Bowen-k, The Stable Model Semantics for Logic Programming, Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP'88),MITPress, pp.1070-1080, 1988.

K. C. Guziolowski, . Dittmann-f, and . Grabe-n, Automatic generation of causal networks linking growth factor stimuli to functional cell state changes, FEBS Journal, vol.84, issue.Database issue, pp.3462-3474, 2012.
DOI : 10.1111/j.1742-4658.2012.08616.x

URL : https://hal.archives-ouvertes.fr/hal-00915016

. C. Guziolowski, . Videla-s, T. S. Eduati-f, C. T. Siegel-a, and . J. Saez-rodriguez, Exhaustively characterizing feasible logic models of a signaling network using Answer Set Programming, Bioinformatics, vol.29, pp.182320-2326, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853704

T. E. Ideker, K. Thorsson-v, . M. Arp-r, D. B. Altman-r, and H. L. Klein-t, DISCOVERY OF REGULATORY INTERACTIONS THROUGH PERTURBATION: INFERENCE AND EXPERIMENTAL DESIGN, Biocomputing 2000, pp.305-316, 2000.
DOI : 10.1142/9789814447331_0029

T. Ideker, . Galitski-t, and . Hood-l, : Systems Biology, Annual Review of Genomics and Human Genetics, vol.2, issue.1, pp.343-372, 2001.
DOI : 10.1146/annurev.genom.2.1.343

I. K. Walsh and . Ed, Logic Programming for Boolean Networks, Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence (IJ- CAI'11),IJCAI/AAAI, pp.924-930, 2011.

. Kam, . Kaminski-r, . Schaub-t, . Siegel-a, and . Videla-s, Minimal Intervention Strategies in Logical Signaling Networks with Answer Set Programming, Theory and Practice of Logic Programming, pp.4-5675, 2013.

. M. Kan-10-]-kanehisa, . Goto-s, . Furumichi-m, M. Tanabe-m, and . Hirakawa-m, KEGG for representation and analysis of molecular networks involving diseases and drugs, Nucleic Acids Research, vol.38, issue.Database, 2010.
DOI : 10.1093/nar/gkp896

. S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, vol.22, issue.3, pp.437-467, 1969.
DOI : 10.1016/0022-5193(69)90015-0

. S. Klamt, Generalized concept of minimal cut sets in biochemical networks, Biosystems, vol.83, issue.2-3, pp.233-247, 2006.
DOI : 10.1016/j.biosystems.2005.04.009

. S. Klamt, . J. Saez-rodriguez, . Lindquist-j, and G. E. Simeoni-l, A methodology for the structural and functional analysis of signaling and regulatory networks, BMC Bioinformatics, vol.7, issue.1, 2006.

C. Kohl-p, Q. J. Rampin-e, and N. D. , Systems Biology: An Approach, Clinical Pharmacology & Therapeutics, vol.87, issue.1, pp.25-33, 2010.
DOI : 10.1016/j.pbiomolbio.2004.06.006

. C. Kreutz and . Timmer-j, Systems biology: experimental design, FEBS Journal, vol.16, issue.Suppl., pp.923-942, 2009.
DOI : 10.1111/j.1742-4658.2008.06843.x

L. Kuepfer, P. M. Sauer-u, and S. J. , Ensemble modeling for analysis of cell signaling dynamics, Nature Biotechnology, vol.23, issue.9, 2007.
DOI : 10.1038/nbt1330

H. Lähdesmäki, . Shmulevich-i, and . O. Yli-harja, On learning gene regulatory networks under the Boolean network model, Machine learning, vol.52, pp.1-2147, 2003.

L. R. Dat, T. A. Bittner-m, and . R. Dougherty-e, Cancer therapy design based on pathway logic, pp.548-555, 2011.

. S. Liang, S. R. Fuhrman-s, D. B. Altman-r, and H. L. Klein-t, REVEAL, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures, Pacific Symposium on Biocomputing, pp.18-29, 1998.

M. A. Terfve-c, H. D. Bernabé-b, and . J. Saez-rodriguez, State-time spectrum of signal transduction logic models, Physical biology, vol.9, issue.4, 2012.

R. T. Marler and S. J. Arora, Survey of multi-objective optimization methods for engineering " , Structural and Multidisciplinary Optimization,v ol, pp.369-395, 2004.

M. D. Costello-j, . Küffner-r, . Vega-n, . Prill-r, A. K. Camacho-d et al., Wisdom of crowds for robust gene network inference, Nature Methods, vol.9, issue.8, pp.796-804, 2012.

. J. Mccluskey-e, Minimization of Boolean Functions*, Bell System Technical Journal, vol.35, issue.6, 1956.
DOI : 10.1002/j.1538-7305.1956.tb03835.x

M. A. Melas-i, C. Siminelakis-p, . A. Hairakaki, and A. J. Saez-rodriguez, Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data, PLoS Computational Biology, vol.5, p.12, 2009.

M. M. Saez-rodriguez, L. Sorger-p, and . A. Auffenburger-d, Logic-based models for the analysis of cell signaling networks, Biochemistry, vol.4, issue.9, pp.15-3216, 2010.

P. J. , H. T. Palsson-b, and . Subramaniam-s, Reconstruction of cellular signalling networks and analysis of their properties, Nature Reviews Molecular Cell Biology, vol.6, issue.2, pp.99-111, 2005.

P. I. Ziehm-m, W. D. , A. N. Partridge-l, and . J. Thorn-ton, Using Answer Set Programming to Integrate RNA Expression with Signalling Pathway Information to Infer How Mutations Affect Ageing, PLoS ONE, vol.7, p.12, 2012.

P. R. Saez-rodriguez, A. L. Sorger-p, and . Stolovitzky-g, Crowdsourcing network inference: the DREAM predictive signaling network challenge, Sci Signal, vol.4, pp.189-196, 2011.

R. O. Whelan-k, K. R. Barolli, . Xhafa-f, . Vitabile-s, and . Hsu-h, Logic-Based Steady-State Analysis and Revision of Metabolic Networks with Inhibition, Proceedings of the Fourth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS'10),IEEEComputerSociety, pp.661-666, 2010.

R. O. Soh-t, . Inoue-k, and N. K. Horimoto, Analyzing Pathways Using ASP-Based Approaches, Proceedings of the Fourth International Conference on Algebraic and Numeric Biology (ANB'10),v o l . 6 4 7 9o fLecture Notes in Computer Science, pp.167-183, 2012.

R. E. , R. P. , and T. D. Hieffry, Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework, Advances in Applied Mathematics, vol.41, issue.3, pp.335-350, 2008.

S. Simeoni-l, . Lindquist-j, . Hemenway-r, . Bommhardt-u, . Arndt-b et al., A Logical Model Provides Insights into T Cell Receptor Signaling, PLOS Computational Biology, vol.3, issue.8, 2007.

S. , A. L. , E. J. Samaga-r, K. A. Lauf-fenburger-d, and . Sorger-p, Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction, Molecular Systems Biology, vol.5, p.331, 2009.

S. , A. L. Zhang-m, M. M. Lauffen-burger-d, and . Sorger-p, Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical Models, Cancer Research, p.7116, 2011.

. Sam, . R. Samaga, A. J. Saez-rodriguez, K. Sorger-p, and . S. Lamt, The logic of EGFR/ErbB signaling: theoretical properties and analysis of highthroughput data, PLoS Computational Biology, vol.5, issue.8, 2009.

. Sam, K. R. Samaga, and K. S. , Computing combinatorial intervention strategies and failure modes in signaling networks, Journal of Computational Biology, vol.17, issue.1, pp.39-53, 2010.

A. F. Schaefer-c, K. S. Buchoff, . Day-m, . Hannay-t, and . H. Buetow-k, PID: the Pathway Interaction Database, Database issue, pp.674-679, 2009.
DOI : 10.1093/nar/gkn653

T. T. Schaub, . P. Hill, and . Warren-d, Metabolic Network Expansion with ASP, Proceedings of the Twenty-fifth International Conference on Logic Programming (ICLP'09),v o l . 5 6 4 9o fLecture Notes in Computer Science,S p r i n g e r -V e r l a g, pp.312-326, 2009.
DOI : 10.1007/978-3-642-02846-5_27

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.148.2771

S. R. Karp-r, Reconstructing Boolean Models of Signaling ,S p r i n g e r -V e r l a g, Research in Computational Molecular Biology, issue.2, 1927.

S. A. , A. W. Byrne-e, C. A. Khan-m, . Liakata-m, R. J. Markham-m et al., Towards Robot Scientists for autonomous scientific discovery, Automated Experimentation, vol.2, pp.1-1, 2010.

. J. Stelling, . Sauer-u, D. F. Szallasi-z, and D. J. , Robustness of Cellular Functions, Cell, vol.118, issue.6, pp.675-685, 2004.
DOI : 10.1016/j.cell.2004.09.008

M. G. Stolovitzky and . Califano-a, Dialogue on Reverse-Engineering Assessment and Methods: The DREAM of High-Throughput Pathway Inference, Annals of the New York Academy of Sciences, vol.1115, issue.2, pp.1-22, 2007.
DOI : 10.1038/ng881

T. C. , C. T. , H. D. , M. A. Gonçalves-e, M. M. Va-n-iersel et al., CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms, BMC systems biology, vol.6, issue.1, 2012.

W. R. Saadatpour-a and A. R. , Boolean modeling in systems biology: an overview of methodology and applications, 2012.