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Abstract

We present a novel approach to o� set solids in the context of fabrication. Our input solids can be given under
any representation: boundary meshes, voxels, indicator functions or CSG expressions. The result is a ray-based
representation of the o� set soliddirectly used for visualization and fabrication: We never need to recover a boundary
mesh in our context.

We de�ne the o� set solid as a sequence of morphological operations along line segments. This is equivalent to
o� setting the surface by a solid de�ned as a Minkowski sum of segments, also known as azonotope. A zonotope may
be used to approximate the Euclidean ball with precise error bounds.

We propose two complementary implementations. The �rst is dedicated to solids represented by boundary meshes.
It performs o� setting by modifying the mesh in sequence. The result is a mesh improper for direct display, but that can
be resolved into the correct o� set solid through a ray representation. The major advantage of this �rst approach is that
no loss of information – re-sampling – occurs during the o� setting sequence. However, it applies only to boundary
meshes and cannot mix sequences of dilations and erosions. Our second implementation is more general as it applies
directly to a ray-based representation of any solid and supports any sequence of erosion and dilation along segments.
We discuss its fast implementation on modern graphics hardware. Together, the two approaches result in a versatile
tool box for the e� cient o� setting of solids in the context of fabrication.

Keywords: morphological operations, 3D modeling, fabrication

1. Introduction

Morphological operations [1] – such as erosions and
dilations – are important operations in solid model-
ing [2, 3]. In the context of fabrication, erosions and
boolean di� erences can be used for example to hollow
a solid or create a mold, while closing operations can
remove small holes in a model. Figure 1 illustrates a few
morphological operations obtained by our method.

Many approaches consider theo� set surfaceobtained
after the dilation or erosion of the solid by the Euclidean
ball of radiusd centered at the origin. The o� set surface
is the set of points at distanced from the object bound-
ary. The exterior (resp. interior) o� set is the subset of
the o� set surface lying outside (resp. inside) the solid.
The exact computation of o� set surfaces for general in-
puts is di� cult. Therefore, a number of approximations
have been proposed (see Section 2). However, many of
these approximations either restrict the type of input, per-
form aggressive re-sampling, or require computationally
heavy and relatively complex algorithms [4].

In this work we consider sequences of erosions and

dilations along line segments. It is worth noting that
the result of a sequence ofdilationsalong segments is
equivalent to a Minkowski sum between the solid and an
object known as azonotope. The zonotope is de�ned as
the Minkowski sum of the set of segments.

A zonotope is usually su� cient for our target applica-
tions in manufacturing: the main di� erences with a ball
are essentially aesthetic (see Figure 12), and often only
impact hidden surfaces when used for molds and hollow-
ing. Nevertheless, there are known algorithms to approx-
imate a ball with a zonotope within a prescribed error
bound [5, 6]. Sequences of erosions and dilations along
line segments therefore provide a general framework
to perform complex morphological operations. This
includes closings and openings, obtained by mixing dila-
tions and erosions in sequence.

Our work is focused on obtaining ray-based solid
representations [7] for direct visualization and fabrica-
tion – typically through slicing and additive manufac-
turing [8, 9]. We do not attempt to recover a boundary
representation of the result. Our modeler takes any solid
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Input

Dilation Closing

Erosion Opening

Figure 1: Segment morphological operations with the specialized
approach for meshes (left column) and the generic algorithm (right
column). The mesh approach shows the dilation and erosion with a
truncated octahedron (zonohedra, see Section 6). Notice the small
erosion successfully applied to the raptor model. The generic approach
is used to perform a closing and an opening also with the truncated
octahedron.

representation as input – boundary meshes, voxels, CSG
expressions – and converts them into ray-based represen-
tations for visualization and fabrication. The conversion
occurs at the resolution of the screen or manufacturing
process, therefore minimizing the loss of information
due to sampling. Our modeler is based on a fast GPU
implementation, enabling the construction of ray-based
representations at high resolutions (see Section 7).

Contributions. The key observation of our work is that
the ray representation of solids is amenable to a sim-
ple and fast implementation of morphological operations
with line segments, and as a consequence, to sequences of
morphological operations with zonotopes. To the best of
our knowledge, no previous work considers morpholog-
ical operations between zonotopes and ray-based solid
representations. Unlike most of the existing methods,
our technique avoids any explicit treatment of topologi-
cal changes. Erosions and dilations can be combined in
any order to achieve complex operations.

We propose two complementary techniques. First, in
Section 4 we introduce an e� cient algorithm to perform
morphological operations on a ray-based representation
of a solid. The advantage of this approach is that it
applies to any solid that can be captured by a ray-based
representation. Its drawback stems from the sampling
resolution that approximates the solid at each step. We
discuss error bounds for the process in Section 4.3. In our
context, and thanks to the high computational e� ciency
of the presented technique, we can a� ord the use of a
resolution matching that of the manufacturing process of
the �nal object.

Second, we propose in Section 5 a specialized ap-
proach for boundary meshes, which postpones the con-
version to a ray-based representation toafter an entire
sequence of dilations or sequence of erosions, thereby re-
moving any re-sampling error due to intermediate steps.

The time complexity of the presented algorithms is
bounded by the complexity of the solid surface, instead
of its volume. Thus, their performance is expected to
scale better than voxelization methods. We provide an
implementation of all of our algorithms which are both
simple to implement and highly parallel.

2. Related work

This section reviews existing approaches for the com-
putation of o� set surfaces in general, and then focuses
on methods using ray-based representations.

Computing o� set surfaces.Early approaches rely on
convolutions to compute o� set surfaces and Minkowski
sums. These methods obtain a superset of primitives of
the o� set surface that are trimmed and �ltered to form
the �nal boundary [10]. Evans and Koppelman [11] com-
pute the Minkowski sum of a polyhedral object along
a sequence of translational sweeps, and propose to ap-
proximate the Euclidean ball with a zonotope for surface
o� setting. To the best of our knowledge this is the only
previous approach that considers zonotopes for morpho-
logical operations, but it focuses on generating polyhe-
dral results while our focus is on ray-representations.
Kaul and Rossignac [12] presented a set of criteria to
�lter the primitives that do not belong to the Minkowski
sum. Peternell and Steiner [13] presented a convolu-
tion algorithm for objects with piecewise boundaries.
Campen and Kobbelt [14] introduced an exact approach
for Minkowski sums between polyhedra that also culls
a superset of primitives. Convolution methods usually
su� er from geometric robustness issues.

The o� set surface can also be extracted from the dis-
tance �eld of the object surface, as it implicitly repre-

2



sents o� set surfaces. Friskenet al. [15] presented the
adaptively sampled distance-�elds, which among other
operations, is able to perform surface o� setting. Varad-
han and Manocha [16] approximate the Minkowski sum
with a distance �eld isosurface extraction, guaranteeing
a Hausdor� distance bound on the approximation. Pavić
and Kobbelt [17] traverse an octree and split each cell
which is potentially intersected by the o� set surface, in
order to recover it. Leeet al. [18] presented an accurate
method to compute the distance �eld, which is able to
render o� set surfaces by considering a union of balls.
The main drawback of distance �eld methods is that
they usually require high amount of memory in order to
ensure accuracy.

O� set surfaces can also be computed from point-
based representations. Chenet al. [19] generate a set
of candidate points that are used to obtain a voxeliza-
tion of the o� set surface. Lienet al. [20] and Ne-
taluri and Shapiro [21] perform the Minkowski sum
between two point-based surfaces. The approach explic-
itly distinguishes the interior and boundary points of the
Minkowski sum. Recently, Calderon and Boubekeur [22]
introduced a morphological analysis framework for point
clouds, which is able to perform morphological dilations
and erosions. These operations remain expensive on
point sets as the interior of the solid is not explicitly
available.

A last family of methods generates a voxelization of
the o� set surface. Li and McMains [23, 24] and Leung
et al. [25] presented GPU approaches to compute the
Minkowski sum of polyhedra by computing pairwise
Minkowski sums, and obtaining a voxelization of its
union. The memory requirements of these methods rise
rapidly as the voxelization resolution increases. In addi-
tion, the error tends to be larger than that of a ray-based
approach where the sampling directions can freely vary.

Surface o� setting with ray-based representations.To
the best of our knowledge, thedexel structure[7] was
the �rst introduced ray representation of solids. For a
single direction and a uniform grid of rays parallel to
that direction, the dexel structure stores the intervals
of the rays lying inside the solid; these intervals are
calleddexels(depth elements). The G-bu� er [26] ex-
tended the dexel structure by storing the surface normal
and the identi�er of the intersected object. Another ray
representation are ray-reps [27, 28], which additionally
stores the CSG half-spaces or the B-Rep faces that a ray
intersects. The triple ray representation [29] are three
ray-reps obtained by sampling rays in the three orthogo-
nal directions. Layered depth images (LDI) [30], used
for image-based rendering, represent surfaces by sam-

pling rays in several directions. Layered depth-normal
images (LDNI) [31], are a dexel structure also storing
the surface normals, and are computed along the three
orthogonal directions to represent solids.

There exists few o� setting methods that consider ray
representations. Menon and Voelcker [32] suggested
approximating the Minkowski sum betweenA andB by
computing the union of some ray-rep instances ofA over
the boundary ofB. In the image space solid sweeping of
Hui [33], the solid is transformed to a ray representation,
the sweeping of a solid along a trajectory is computed by
taking the union of a �nite set of ray representations of
the solid. However, uniform o� setting is not considered.
Chen and Wang [34] presented an o� setting approach
that initially generates a superset of primitives from an
input polyhedron. Then, it constructs a LDNI and �lters
the LDNI points of the superset that belong to the o� set
surface. Wang and Manocha [35], place spheres on the
LDI sampled points, and compute their union in the
GPU. As the o� setting distance is increased, the number
of intersections between spheres rapidly increases, and it
is proposed to decompose the o� set surface computation
into a composition of smaller o� sets.

3. Notations, de�nitions and properties

We introduce below the required de�nitions for math-
ematical morphology along line segments and zonotopes.
Below, we give the basic notations employed throughout
this paper.

dH (A; B) Hausdor� distance betweenA andB
A n B Set di� erence.A n B = fp 2 A j p < Bg
A Complement ofA. A = Rn nA
Br Closed ball of radiusr centered at the origin
@A Boundary of the setA

3.1. Morphology operators

Let A � Rn andb 2 Rn. The translation ofA by b is:

Ab = fa + b j a 2 Ag

The morphological dilationor Minkowski sumbe-
tween two setsA; B � Rn is:

A � B =
[

b2B

Ab

Analogously, themorphological erosionis de�ned as:

A 	 B =
\

b2B

A� b = A � (� B)
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where� B = f� b j b 2 Bg. Themorphological opening
of A by B is (A 	 B) � B, and themorphological closing
of A by B is (A � B) 	 B. In the following, the dilation
or erosion betweenA and B is denoted in general as
A � B. If one expression contains more than one� , it
refers exclusively to either dilation or erosion.

3.2. Zonotope o� setting

A zonotopeis a Minkowski sum ofk line segments
s1; s2; : : : ;sk 2 Rn, denoted asZ :

Z = s1 � s2 � : : : � sk

For R3, Z is referred to as azonohedron. In n-
dimensions, a zonotope withk segment generators has
combinatorial complexityO

�
kn� 1

�
[6].

As morphological operations are associative, andA 	
(B � C) = (A 	 B) 	 C, we have:

O � Z = (((O � s1) � s2) � : : :) � sk

Thanks to this property the o� set solidO � Z is ob-
tained by a sequence ofk morphological operations with
a line segment (see Figure 2), either all dilations or all
erosions.

Figure 2: Illustration of a morphological dilation between a disk and
a square. The square is a two dimensional zonotope de�ned by the
Minkowski sum of two perpendicular segments of equal length. Incre-
mental dilations with these segments lead to the �nal result.

3.3. Ray representations

Let O be a compact subset ofR3, ~v a unit direction
vector inR3, andL be a set of lines parallel to~v. We
de�ne

R(L;O) =
[

l2L

O \ l

and viewR(L;O) as an organized collection of pairwise
disjoint and closed line segments in space.

A dexel structure[7] is a three dimensionaldiscrete
ray representation. Consider a regular grid of squares
of side length� , lying on a plane with normal~v. Let
L� be the set of lines parallel to~v passing trough the
center of the squares. The dexel structure is the set of

line segmentsR(L� ;O). Each line segment inR(L� ;O)
is also called adexel[7]. Each grid cell contains the list
of dexels coming from the corresponding line inL� and
sorted along the increasing~v direction. When the context
is clear, we shorten the notation and writeRonly, instead
of R(L� ;O).

We will often need to rasterize the volume represented
by a dexel structureR. To do so, we de�ne thedexel
volumeP(R) as the Minkowski sum ofRwith a square
� R centered at the origin, orthogonal to~v, of side length
� , with sides aligned with the grid structure ofR:

P(R) = R� � R:

More precisely, the square� R is de�ned as the
Minkowski sum of two half-open segments as fol-
lows. Let (~u; ~w) be the orthonormal basis of the grid
structure ofR in the plane orthogonal to~v. Then
� R =

�
x~u + y~w j � � =2 � x; y < � =2

	
. In this way, the

Minkowski sums of two dexels ofR with � R are always
disjoint. Note that the closure ofP(R) (the union ofP(R)
with its boundary) is an orthogonal polyhedron.

3.4. Segment morphological operations

Consider the segments with unit vector direction~v
(the same~v as above) and length 2d > 0, centered at the
origin:

s =
n
p 2 R3 j p = � ~v; � 2 [� d; d]

o

Thus,O � s is a segment morphological operation. Ob-
serve that8l 2 L we have that:

(O \ l ) � s � l

This implies that segment morphological operations can
be performed independently for each linel 2 L. Given
a dexel volumeP(R) of the formP(R) = R� � R where
R is a dexel structure of direction~v (hence parallel tos),
we have that

P(R) � s = (R� � R) � s

=

0
BBBBBB@

G

l2L�

(l \ R) � � R

1
CCCCCCA� s

=
[

l2L�

((l \ R) � � R) � s
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wheret denotes a disjoint union. Then, since� R is
orthogonal to~v we can permute the operators:

P(R) � s =

0
BBBBBB@

[

l2L�

(l \ R) � s

1
CCCCCCA� � R

= R0 � � R

= P(R0)

whereR0 is also a dexel structure. Therefore, we can
erode or dilateP(R) with a segments parallel to~v by
simply eroding or dilating its dexel structure.

4. General algorithm for dexel structures

This section describes our general algorithm for per-
forming segmentmorphological operations on dexel
structures. In Section 4.1 we discuss how to o� set the
dexel structure along a segmentaligned with the ray di-
rectionof the structure. We explain in Section 4.2 how
this process can be performed in sequence, each time
re-sampling the previous result in a new dexel structure
having a di� erent direction. We analyze the error due
to this process in Section 4.3. Finally, in Section 4.4 we
provide details on our parallel GPU implementation, as
there are non trivial considerations in terms of fragment
complexity and surface cracks avoidance.

4.1. Morphological operations along the ray direction
In this section we are given a dexel structureRoriented

along some direction~v and sampled from an input solid
O. We give an algorithm to construct the dexel structure
R� s wheres is a line segment parallel to~v of length 2d,
centered at the origin, as de�ned above.

The algorithm considers each linel in L� and pro-
cesses the ordered set of dexels inl \ R. For erosion,
we shrink each dexel by displacing their endpoints and
�lter out those with length shorter than 2d. For dilation,
we similarly enlarge each dexel, which corresponds to
“shrinking the empty space” between them. The pseudo-
code for these operations is shown in Algorithm 1 and
assumes that the dexels inl \ Rare stored as the ordered
list of the dexel endpoints:p0; p1; : : : ;p2n� 1 (see Algo-
rithm 1). We writezi for the depth (ordinate in direction
~v) of endpointpi so that we havez0 < z1 < : : : < z2n� 1.

The resulting dexel structureR0 = R� s is implicitly
given by the sequence of reported dexel endpoints in
Algorithm 1. Also note that this new dexel structure has
at most as many dexels asR.

The time complexity of the algorithm is linear with
respect to the number of dexelsR. It is also highly
parallelizable, as each list of dexels can be processed
independently.

Algorithm 1 Morphological operations along a ray. The
reported points belong to@(O � s).

p0 p1 p2 p3 p4 p5

~v
O s

procedureDilation
Report point (p0 � d~v)
for i = 1 ton � 1 dodo

if z2i � z2i� 1 > 2d then
Report points (p2i� 1 + d~v) and (p2i � d~v)

end if
end for
Report point (p2n� 1 + d~v)

end procedure

procedureErosion
for i = 0 ton � 1 dodo

if z2i+1 � z2i > 2d then
Report points (p2i + d~v) and (p2i+1 � d~v)

end if
end for

end procedure

4.2. Sequences of segment morphological operations
Given a dexel structureR of a three dimensional input

solid O, we want to compute (approximately) a dexel
structure ofO � Z , whereZ = s1 � s2 � : : : � sk. To
do so we iteratively apply the segment morphological
operations:

Ri = R(L� i ; P(Ri� 1)) � si for i = 1 tok

with R0 = R (see Section 4.1). At each iteration we
generate a surface representation of (the closure of) the
current dexel volumeP(Ri� 1) and rasterize it in order
to build the next dexel structure (details are given in
Section 4.4). The overall process introduces an approx-
imation error which is analyzed in Section 4.3. At the
end of the process,P(Rk) is our approximation ofO � Z .

4.3. Approximation error
In this section, we indentify a dexel volume with its

closure, which is a compact orthogonal polyhedron. In
this context, we bound the Hausdor� distance between
two orthogonal polyhedra, one being obtained by con-
verting the other into a dexel structure oriented along
another arbitrary direction (see Section 4.4).
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The Hausdor� distance is transitive,i.e. dH(A;C) �
dH(A; B) + dH(B;C). Thus, by summing the Hausdor�
errors in a sequence of segment-o� setting, we obtain
a bound on the error betweenP andP � Z for a given
zonohedronZ . The theoretical bound is rather crude and
therefore would require the sampling rate to increase byp

2 for each resampling (see the lemma below). A �ner
analysis is likely to bring the constant

p
2 closer to 1

and in practice we work at the constant screen resolution
for viewing or constant manufacturing resolution for the
actual manufacturing.

Let P1 be a dexel volume de�ned by a dexel structure
with direction~v1 and regular grid cell size� 1: P1 =
R1 � � 1 where� 1 is a square of side length� 1, orthogonal
to ~v1 and aligned with the dexel grid axes. LetP2 be
de�ned similarly, whereR2 is the intersection of the
lines generated by a regular gridG2 of cell size� 2 along
direction~v2 with P1: R2 = G2 \ P 1. In other words,R2

is a sampling ofP1 with a dexel structure in direction~v2

(see Figure 3 for a two-dimensional illustration).
We say thatP1 is � 2-fat whenP1 can be expressed

as the union of congruent cubes of side length
p

2� 2

with sides parallel to the sides ofP1. In particular, ifp
2� 2 � � 1 and no dexel ofR1 has length shorter thanp
2� 2 thenP1 is � 2-fat. When

p
2� 2 � � 1 but P1 is not

� 2-fat, we can enlarge the small dexels ofR1 to makeP1

� 2-fat before computingR2.

Lemma 1. If P1 is � 2-fat then dH(P1;P2) � 1:44� 2.

Proof. If no dexel ofR1 has been enlarged, thenR2 � P 1,
thusP2 = R2 � � 2 � P 1 � � 2 � P 1 � B� 2=

p
2:

P2 � P 1 � B� 2=
p

2 (1=
p

2 � 0:71):

If a dexel ofR1 has been stretched to length
p

2� 2 we
should account for it. In that case,R2 � P 1 � Bp

2� 2=2,
which implies

P2 � P 1 � Bp
2� 2

(
p

2 � 1:42):

In the other direction, letp be a point ofP1. SinceP1

is � 2-fat, there exists a cubeC of side length� 2
p

2 such
that p 2 C � P 1. The cubeC contains a ballB of radius
� 2

p
2=2 = � 2=

p
2. When viewed orthographically in

the direction~v2, the ballB is a disk of the same radius.
This disk contains a square of side length� 2 aligned
with the axes of the gridG2. Therefore, there is at least
one line from the sampling patternG2 that projects on
this disk, which implies the existence of a pointr 2 C
such thatr 2 R2 = G2 \ P 1.

Let � =
p

3p
2

+ 1p
2

so that� � 2 is the sum of the half-
diagonal ofC and the radius ofB. It holds thatC �

r � B� � 2. But r � B� 2=2 � P 2, sop 2 C � P 2 � B(� � 1=2)� 2:

P1 � P 2 � B(� � 1=2)� 2 (� � 1=2 � 1:44):

Figure 3: Conversion of a two-dimensional dexel volume(left) into an-
other dexel structure along a di� erent direction(middle). The resulting
dexel volume(right) approximates the initial one.

4.4. GPU implementation
We implement our algorithm entirely on the GPU:

from a solid representation, we build a �rst dexel struc-
ture capturing its geometry, a process that we calldex-
elization. We then apply the sequence of line segment
morphological operations on the dexel structure. The
result of this process is a �nal dexel structure that can be
used for display, direct fabrication, or can be fed back
into a CSG engine for further modeling operations.

4.4.1. Dexelization of an objectO
Our dexel structure is based on modern implementa-

tions [36] of an A-bu� er [37]. Given a view direction
~v, the objectO is rasterized by the GPU using an ortho-
graphic projection along~v. Each generated fragment is
recorded as anin or out event, depending on whether
it originated from a front facing or back facing triangle
with respect to~v. The events are stored in a separate list
for each screen pixel. Given a two-manifold (watertight)
boundary representation under the form of an indexed
face set, the OpenGL rasterization rules [38] ensure that
consistent in/out events are generated in every pixel.

After construction each sampling ray of the dexel
structure is associated with a sorted list of in/out events.
We determine solid intervals by counting the in/out
events along the ray. A counter is initialized to zero,
decremented when the ray passes anout event, and incre-
mented when the ray passes anin event. Intervals along
the ray that have a positive counter value are considered
to be part of the solid and become a dexel.

This counting process elegantly deals with intersecting
(closed) meshes, as well as meshes having inner voids.
Most importantly, it enables the approach for o� setting
polyhedrons described in Section 5.

4.4.2. (Re)dexelization of a dexel volume
As described in Section 4.2, when o� setting along

di� erent directions, a new dexel structure has to
be constructed by re-sampling the previous dexel
volume. In principle, this requires to extract the
boundary facets of the �rst dexel volume, and then
to rasterize them into the next dexel structure.
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Figure 4: Seg-
ments x1x2 and
x1x3 may leave
cracks when their
incident facets
are rasterized.

The boundary facets extraction can be
implemented very e� ciently on the
GPU. Unfortunately this approach does
not work in practice: the generated
mesh contains many T-junctions that
produce an artifact known ascracksdur-
ing the rasterization (see Figure 4).

This is due to numerical imprecisions
preventing the rasterizer from properly
joining the drawn triangles along the
T-junction edges. This has dramatic
consequences on the dexel structure as
intervals are not properly closed and
matter leaks out of the volume. Splitting facets along
T-junctions would result in a signi�cantly more complex
algorithm, and may not resolve all artifacts.

Figure 5: Hierarchical dexel structure. The dexels of the coarser levels
are shown in green.

We propose a di� erent implementation that com-
pletely eliminates these issues. The idea is to render the
dexel structure as a union of box primitives, where each
dexel is transformed into a separate, six-sided box. The
boxes are slightly enlarged to ensure that no cracks can
exist. Applied directly this approach would be impracti-
cal, as it would generate a very large amount of fragments
in the next dexel structure – exceeding memory require-
ments and penalizing visualization. We instead produce
a hierarchical version of the dexel structure, replacing
the common part of four neighboring high resolution dex-
els by a single lower resolution dexel. Repeated several
times, this process quickly groups the inner volumes into
large boxes, thereby signi�cantly reducing the number
of fragments that have to be rasterized, as illustrated Fig-
ure 5. This is implemented in parallel on the GPU, with
an algorithm walking four rays at a time and detecting
common, coarser intervals.

5. Morphological operations between a zonotope
and a polyhedra

In the previous section we discussed a general algo-
rithm applied on dexel structures. While very versatile,
its drawback is to impose a re-sampling between each
o� set direction. As we now discuss, this can be entirely
avoided for the special case of polyhedra – the most com-
mon representation of solids in CAD/CAM applications.

The salient property of the technique described in this
section, is that it avoids any loss of geometric preci-
sion until the very �nal conversion into a dexel structure
(a process we calldexelization, seex4.4.1). The latter
conversion is necessary for visualization, fabrication or
further processing. For example the technique a� ords
for interactive pixel-precisevisualizationof the result
of dilations or erosions via a perspective dexelization
aligned with the virtual camera.

The limitation of the technique is that it cannot mix
dilations and erosions in a same sequence. In particular,
it cannot be used for computing an exact representation
of a morphological closing or opening. If this is desired,
then the general dexel algorithm ofx4 should be used
for the second morphological operation.

5.1. Principle

Let M be a polyhedron andZ a zonohedron. This
section details a technique to directly compute the dexel
structure of theexactdilation or erosion ofM by Z ,
O = M � Z , without having to compute the polyhedral
boundary ofO. To do so, we transform the polyhedral
boundary ofM into a polyhedral surfaceS in such a
way that the result of the dexelization ofS, as described
in x4.4.1, is identical to the dexelization ofO.

S is a proper manifold without boundary, but it con-
tains a large number of self-intersections and cannot be
used to visualizeO without dexelization (see Figure 11).

The core of the idea is to exploit the integer counter
of in/out events along the rays. Our algorithm generates
S so that additional facets produce pockets of positive
or negative matter corresponding to the e� ect of dilation
or erosion along a line segment. The regions where
the counter value is positive coincide exactly with the
desired dilated or eroded polyhedron.

We focus only on dilation in the rest of this section.
Erosion can be computed using complement and dilation:

M	Z = M � Z . The boundary of the complement of a
polyhedron is easily obtained by �ipping the orientation
of its facets.
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Figure 6:(a–d)A 2D example of a polygon undergoing two successive
dilations by a segment.(a) A polygon and a generator segment.(b)
A prism is glued (conceptually) to each edge.(c) The polygon is
simpli�ed. (The numbers indicate the value of the dexelization counter
in each region.)(d) After dilation by a second, vertical segment.(e–
f) A 3D illustration of the combinatorics of a piece of a polyhedral
surface.(e) Dark triangles are back facets. Light triangles are front
facets.(f) The purple quads are the extrusions of the silhouette edges.
Most silhouette vertices are simply duplicated, but colored ones require
more copies (see text), so that each connected component of back facets
is surrounded by a “collar” of purple quads.(g) A 2D counter example:
composing our technique on erosion then dilation may give a wrong
result (the correct result is shaded green).

5.2. Dilation of a mesh by a segment

We assume that segments (a generator of zonohedron
Z ) has its center at the origin and decompose it ass =
s+ [ s� where both subsegments share the origin as an
endpoint. Our task is to build a surface representationS
for M � s. We partition the boundary@M of M into its
sets of back facetsB and front facetsF with respect to
the direction~s+ from the origin to the other endpoint of
s+ . Then, we use the equality

M � s = M [

0
BBBBBB@

[

f 2F

f � s�

1
CCCCCCA [

0
BBBBB@

[

b2B

b � s+

1
CCCCCA:

Conceptually, we simply add toS the polyhedral bound-
ary of the Minkowski sum of each facet of@M with s+

or s� (Figure 6(a–b)). These sums are simple prisms
extruded in a direction parallel to segments. Their facets
should be oriented so that their normal vector points out-
side of the prisms: in this way the dexelization counter
shall be properly updated and we are guaranteed that
the dexelization ofS is equal to that ofM � s. This
is su� cient to compute the correct dexel structure of
M � s. However, in order to continue to dilateM � s

with the other generator segments ofZ , while keeping
the complexity of the surfaceS low, we must ensure that
only the necessary surface elements are kept inS and
thatS remains an oriented manifold. We describe these
improvements next.

5.3. Dilation of a mesh by a zonohedron
In the polyhedral surface that we obtained above, sev-

eral pairs of facets do cancel each other: they are geo-
metrically identical but have opposite orientation. These
pairs have no e� ect on the dexelization result and it is
preferable to not create them in the �rst place. They are

� the extrusions of edges of@M that arenotsilhouette
edges with respect to~s+ so that their adjacent facets
are either both front facets or both back facets. (An
edge is silhouette w.r.t. to a direction~d if it has
one adjacent front facet and one adjacent back facet
w.r.t. ~d.)

� the original facets of@M ; they are “canceled” by a
facet of their corresponding prism.

We avoid the creation of these pairs of facets by ex-
truding only silhouette edges and displacing the original
facets of@M by ~s� or ~s+ depending on their front or
back status (Figure 6(c–d)). In order to prepare the sur-
face for further dilations with other generator edges, we
should make the resulting surfaceS a manifold as well,
so that silhouette edges for other directions can be found
correctly. The only problem to obtain a manifold comes
from vertices on the silhouette ofM whose adjacent
back facets form more than one connected component.
A separate copy of such a vertex must be created for each
component in order to guarantee thatS is manifold. Fig-
ure 6(e–f) illustrates how the connectivity of the surface
is modi�ed.

Limitations. The technique described above works
only as long as we accumulate only dilations or only
erosions. In general, applying both operations onS (as
would be necessary to compute openings or closings)
leads to erroneous results (Figure 6(g)). When a dilated
or eroded polyhedron requires further processing, our
system dexelizesS and continues the job on as detailed
in x4. Another drawback stems from the larger number
of fragments generated during dexelization (see Table 2)
which might require bu� ers larger than what the device
drivers can allocate.

6. Approximating the ball with zonohedra

Some applications seek to erode or dilate a solid by a
ball of radiusd. Since our scheme is based on operations
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(a) Cube (b) Truncated
octahedron

(c) Truncated
cuboctahedron

Figure 7: Zonohedra approximatingBd, the Euclidean ball of radiusd.
Their Hausdor� distance toBd is (a)

�
1 �

p
1=3

�
d � 0:422d, (b) � =

�
1 �

p
3=5

�
d � 0:225d and (c)� =

�
1 �

�
1 + 2

p
2
�
=

p
13+ 23=23

�
d �

0:174d. The number of generating segments of these zonohedra are
respectively 3, 6 and 9.

along line segments, the ball has to be approximated.
The approximation of the Euclidean ball with zono-

hedra has been extensively studied. Bourgainet al. [5]
have shown that anyn-dimensional zonotopeZ approx-
imating the ballBd, with a Hausdor� distance error� ,
has at leastc� � 2+6=(n+2) segment generators, wherec is a
constant depending on the dimensionn. Guibaset al.[6],
introduced an algorithm to �nd a zonotope enclosingm
points withk segment generators and minimizing the
sum of the generator lengths, in timeO

�
mkn� 1 + kO(n)

�
.

In general, we enforce that the radius ofZ is d. For
some applications, it is desirable that the approximate
dilation (resp. erosion) is a subset (resp. superset) of
the exact one. In this case, we impose thatZ � Bd,
implying:

O � Z � O � Bd; O 	 Z � O 	 Bd

Figure 7 shows some well known zonohedra, and their
Hausdor� distance bounds whenZ has radiusd. The
ball is approximated by a set of generating segments with
some length lower thand. For example, in the case of the
cube (see Figure 7a), the three generating segments are�
d=

p
3;0;0

�
,

�
0; d=

p
3;0

�
, and

�
0;0;d=

p
3
�
. Observe

that in general it is not trivial to derive these line segment
lengths for an arbitrary zonotope.

The approximated o� set is also bounded by these
Hausdor� distances:

Lemma 2. dH(Z ;Bd) = � =) dH(O � Z ;O � Bd) � �

Proof. Since O, Z and Bd are compact sets,
dH(Z ;Bd) = � implies thatBd � Z � B� and Z �
Bd � B� . Since dilation is an increasing operator, it
comesO � Bd � O � Z � B� andO � Z � O � Bd � B� ,
which implies the claimed distance bound.

The lemma does not hold for erosion as one can �nd
instances ofZ and O such thatdH(Z ;Bd) � � and

dH(O 	 Z ;O 	 Bd) � 2d � � . However, the erosions
are close to each other with respect to a kind of “reverse”
Hausdor� distance. Namely, the erosion of one byB�

is included in the other: (O 	 Bd) 	 B� � O 	 Z and
(O 	 Z ) 	 B� � O 	 Bd.

7. Results

In this section we evaluate the performance of the pre-
sented algorithms, and the quality of the results. Table 1
displays some statistics on the input models used in our
experiments.

Our method allows for arbitrary zonohedra to be used
(see Figure 8). Beyond the approximation of the Eu-
clidean ball for regular o� setting, it can be used in NC-
machining applications to simulate the tool milling [39]
with a shape matching a zonohedron.

The integration of the presented techniques in our
ray-based CSG modeler enables complex shapes to be
de�ned. Figure 13 shows a di� erence between two com-
plex models subsequently undergoing a morphological
operation. In Figure 9 we show a more elaborate result
de�ned with several CSG and morphological operations.
We are able to combine morphological operations with
both methods as long as the mesh-based method operates
�rst (see the �ligree model in Figure 1).

7.1. Fabrication quality

Our software typically uses a XY resolution of 50� m
(0.05 mm) for fabrication. The mesh-based o� setting
approach results in lossless printout quality. For the
GPU-based approach, the precision loss following the
successive dexelizations is marginal, as dexelization is
always done at printing resolution. Figure 14 shows sev-
eral results printed on a ZPrinter 450. Observe that the
quality of the approximation with respect to o� setting
with a ball increases with the number of generating seg-
ments for the zonohedra, since the Hausdor� distance
decreases (see Figure 12).

7.2. Performance

We carry out our performance tests on an Intel Core i7
4770k with 16GB of memory, and a GeForce Titan Black
with 6GB of memory. Performance results are shown in
Table 2 and Figure 10. The models and morphological
operations used match the �gures presented throughout
this document.

The performance of the mesh-based approach mainly
depends on the radius of the zonohedron and the number
of mesh vertices. Its complexity increases as the number
of segments for the zonohedron increases, and generates
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Input Cube Truncated octahedron Truncated cuboctahedron

Figure 12: Morphological operations between a zonohedron that approximates the Euclidean ball and polyhedra. The �rst column shows the input
models. The next columns show the dilation/erosion with three di� erent zonohedrons. The odd rows correspond to the mesh-based approach, and the
even rows to the GPU-based approach. The dilation/erosion sizes match the ones in Table 2.
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