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Chained segment etting for ray-based solid representations

Jonas Martinez, Samuel HornusgBeric Claux, Sylvain Lefebvre
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Abstract

We present a novel approach toset solids in the context of fabrication. Our input solids can be given under
any representation: boundary meshes, voxels, indicator functions or CSG expressions. The result is a ray-based
representation of the @et soliddirectly used for visualization and fabricatiolVe never need to recover a boundary
mesh in our context.

We de ne the o set solid as a sequence of morphological operations along line segments. This is equivalent to
0 setting the surface by a solid de ned as a Minkowski sum of segments, also knowaoastape A zonotope may
be used to approximate the Euclidean ball with precise error bounds.

We propose two complementary implementations. The rst is dedicated to solids represented by boundary meshes.
It performs o setting by modifying the mesh in sequence. The result is a mesh improper for direct display, but that can
be resolved into the correct set solid through a ray representation. The major advantage of this rst approach is that
no loss of information — re-sampling — occurs during theetting sequence. However, it applies only to boundary
meshes and cannot mix sequences of dilations and erosions. Our second implementation is more general as it applies
directly to a ray-based representation of any solid and supports any sequence of erosion and dilation along segments.
We discuss its fast implementation on modern graphics hardware. Together, the two approaches result in a versatile
tool box for the e cient o setting of solids in the context of fabrication.

Keywords: morphological operations, 3D modeling, fabrication

1. Introduction dilations along line segments. It is worth noting that
the result of a sequence dilationsalong segments is
Morphological operationsl] — such as erosions and  equivalent to a Minkowski sum between the solid and an
dilations — are important operations in solid model- object known as @onotope The zonotope is de ned as
ing [2, 3]. In the context of fabrication, erosions and the Minkowski sum of the set of segments.
boolean di erences can be used for example to hollow
a solid or create a mold, while closing operations can
remove small holes in a model. Figure 1 illustrates a few
morphological operations obtained by our method.
Many approaches consider theset surfacebtained
after the dilation or erosion of the solid by the Euclidean
ball of radiusd centered at the origin. The set surface
is the set of points at distanddrom the object bound-
ary. The exterior (resp. interior) get is the subset of
the o set surface lying outside (resp. inside) the solid.
The exact computation of @et surfaces for general in-
putsis di cult. Therefore, a number of approximations
have been proposed (see Section 2). However, many of Our work is focused on obtaining ray-based solid
these approximations either restrict the type of input, per- representations/] for direct visualization and fabrica-
form aggressive re-sampling, or require computationally tion — typically through slicing and additive manufac-
heavy and relatively complex algorithms [4]. turing [8, 9]. We do not attempt to recover a boundary
In this work we consider sequences of erosions and representation of the result. Our modeler takes any solid

A zonotope is usually sucient for our target applica-
tions in manufacturing: the main dérences with a ball
are essentially aesthetic (see Figure 12), and often only
impact hidden surfaces when used for molds and hollow-
ing. Nevertheless, there are known algorithms to approx-
imate a ball with a zonotope within a prescribed error
bound b, 6]. Sequences of erosions and dilations along
line segments therefore provide a general framework
to perform complex morphological operations. This
includes closings and openings, obtained by mixing dila-
tions and erosions in sequence.
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We propose two complementary techniques. First, in
Section 4 we introduce an eient algorithm to perform
morphological operations on a ray-based representation
of a solid. The advantage of this approach is that it
applies to any solid that can be captured by a ray-based
representation. Its drawback stems from the sampling
resolution that approximates the solid at each step. We
discuss error bounds for the process in Section 4.3. In our
context, and thanks to the high computationakéncy
of the presented technique, we caroed the use of a
resolution matching that of the manufacturing process of
the nal object.

Second, we propose in Section 5 a specialized ap-
proach for boundary meshes, which postpones the con-
version to a ray-based representatioafier an entire
sequence of dilations or sequence of erosions, thereby re-
moving any re-sampling error due to intermediate steps.

The time complexity of the presented algorithms is
bounded by the complexity of the solid surface, instead
of its volume. Thus, their performance is expected to
scale better than voxelization methods. We provide an
implementation of all of our algorithms which are both
simple to implement and highly parallel.

Dilation

Erosion

Figure 1: Segment morphological operations with the specialized

approach for meshes (left column) and the generic algorithm (right 2. Related work

column). The mesh approach shows the dilation and erosion with a . . . L

truncated octahedron (zonohedra, see Section 6). Notice the small  This section reviews existing approaches for the com-

erosion successfully applied to the raptor model. The generic approach putation of o set surfaces in generaI, and then focuses

fctjasheeddtrcc))r?erform a closing and an opening also with the truncated on methods using ray-based representations.

Computing oset surfaces.Early approaches rely on

tai inout — bound h s CS Gconvolutions to compute et surfaces and Minkowski
representation as input —boundary Meshes, voxes, sums. These methods obtain a superset of primitives of
expressions — and converts them into ray-based represe

. L o €5€Mhe o set surface that are trimmed and Itered to form
tations for wsuahzathn and fabrication. The conversion y o boundary L0. Evans and Koppelmari ] com-
occurs at the resoluthq OT the screen or mf;mufactu.rmg pute the Minkowski sum of a polyhedral object along
process, ther.efore minimizing t_he loss of information a sequence of translational sweeps, and propose to ap-
_due to samp_lmg. Our_modeler IS base_d on a fast GPU proximate the Euclidean ball with a zonotope for surface
implementation, enabling the construction of ray-based

ati t hiah luti Section 7 0 setting. To the best of our knowledge this is the only
representations at high resolutions (see Section 7). previous approach that considers zonotopes for morpho-

logical operations, but it focuses on generating polyhe-
Contributions. The key observation of our work is that  dral results while our focus is on ray-representations.
the ray representation of solids is amenable to a sim-Kaul and Rossignaclp] presented a set of criteria to
ple and fast implementation of morphological operations Iter the primitives that do not belong to the Minkowski
with line segmentsand as a consequence, to sequences of sum. Peternell and Steinetd] presented a convolu-
morphological operations with zonotopes. To the best of tion algorithm for objects with piecewise boundaries.
our knowledge, no previous work considers morpholog- Campen and Kobbelflfd] introduced an exact approach
ical operations between zonotopes and ray-based solidfor Minkowski sums between polyhedra that also culls
representations. Unlike most of the existing methods, a superset of primitives. Convolution methods usually
our technique avoids any explicit treatment of topologi- su er from geometric robustness issues.
cal changes. Erosions and dilations can be combined in  The o set surface can also be extracted from the dis-
any order to achieve complex operations. tance eld of the object surface, as it implicitly repre-



sents oset surfaces. Friskest al. [15] presented the
adaptively sampled distance- elds, which among other
operations, is able to perform surfacesetting. Varad-
han and Manochalp] approximate the Minkowski sum
with a distance eld isosurface extraction, guaranteeing
a Hausdor distance bound on the approximation. Ravi
and Kobbelt 17] traverse an octree and split each cell
which is potentially intersected by the set surface, in
order to recover it. Leet al.[18] presented an accurate
method to compute the distance eld, which is able to
render o set surfaces by considering a union of balls.
The main drawback of distance eld methods is that
they usually require high amount of memory in order to
ensure accuracy.

O set surfaces can also be computed from point-
based representations. Chetnal. [19] generate a set
of candidate points that are used to obtain a voxeliza-
tion of the o set surface. Lieret al. [20] and Ne-
taluri and Shapiro 41] perform the Minkowski sum

pling rays in several directions. Layered depth-normal
images (LDNI) B1], are a dexel structure also storing
the surface normals, and are computed along the three
orthogonal directions to represent solids.

There exists few osetting methods that consider ray
representations. Menon and Voelck8g][ suggested
approximating the Minkowski sum betwedrandB by
computing the union of some ray-rep instancesafver
the boundary oB. In the image space solid sweeping of
Hui [33], the solid is transformed to a ray representation,
the sweeping of a solid along a trajectory is computed by
taking the union of a nite set of ray representations of
the solid. However, uniform csetting is not considered.
Chen and Wang3{] presented an csetting approach
that initially generates a superset of primitives from an
input polyhedron. Then, it constructs a LDNI and lters
the LDNI points of the superset that belong to theset
surface. Wang and Manoch3q], place spheres on the
LDI sampled points, and compute their union in the

between two point-based surfaces. The approach explic-GPU. As the o setting distance is increased, the number

itly distinguishes the interior and boundary points of the
Minkowski sum. Recently, Calderon and Boubekedd[

introduced a morphological analysis framework for point
clouds, which is able to perform morphological dilations

of intersections between spheres rapidly increases, and it
is proposed to decompose theset surface computation
into a composition of smaller sets.

and erosions. These operations remain expensive on

point sets as the interior of the solid is not explicitly
available.

A last family of methods generates a voxelization of
the o set surface. Li and McMain28, 24] and Leung
et al. [25] presented GPU approaches to compute the
Minkowski sum of polyhedra by computing pairwise
Minkowski sums, and obtaining a voxelization of its
union. The memory requirements of these methods rise

rapidly as the voxelization resolution increases. In addi- «
tion, the error tends to be larger than that of a ray-based B

approach where the sampling directions can freely vary.

Surface osetting with ray-based representation$o

the best of our knowledge, ttiexel structurd7] was

the rst introduced ray representation of solids. For a
single direction and a uniform grid of rays parallel to
that direction, the dexel structure stores the intervals
of the rays lying inside the solid; these intervals are
calleddexels(depth elements). The G-bar [26] ex-
tended the dexel structure by storing the surface normal
and the identi er of the intersected object. Another ray
representation are ray-re@/[ 28], which additionally

stores the CSG half-spaces or the B-Rep faces that a ray

intersects. The triple ray representati@®][are three
ray-reps obtained by sampling rays in the three orthogo-
nal directions. Layered depth images (LD8Y], used

for image-based rendering, represent surfaces by sam-

3

3. Notations, de nitions and properties

We introduce below the required de nitions for math-
ematical morphology along line segments and zonotopes.
Below, we give the basic notations employed throughout
this paper.

dy (A; B) Hausdor distance betweeA andB

nB Setdi erenceAnB=fp2 Ajp<Bg
Complement oA. A= R"nA
r Closed ball of radius centered at the origin
@ Boundary of the sef
3.1. Morphology operators

LetA R"andb 2 R". The translation oA by bis:

AP =fa+bja2Ag

The morphological dilationor Minkowski sunmbe-
tween two set®;, B R"is:
[ "
b2B

A B

Analogously, thenorphological erosioris de ned as:

\ _
AP=A ( B)
b2B

A B



where B=f bjb2 Bg Themorphological opening line segment®(L ;0). Each line segmentiR(L ;O)
of AbyBis (A B) B, and themorphological closing is also called @lexel[7]. Each grid cell contains the list
of AbyBis (A B) B. Inthe following, the dilation of dexels coming from the corresponding linelinand
or erosion betweer and B is denoted in general as sorted along the increasirglirection. When the context

A B. If one expression contains more than onét is clear, we shorten the notation and wiRenly, instead
refers exclusively to either dilation or erosion. of R(L ;0O).
We will often need to rasterize the volume represented
3.2. Zonotope osetting by a dexel structur® To do so, we de ne thelexel
A zonotopes a Minkowski sum ok line segments ~ volumeP(R) as the Minkowski sum oR with a square
SIS s 2 R, denoted a¥ : r centered at the origin, orthogonaltpof side length
, with sides aligned with the grid structure [&f
Z=5 S I
For R3, Z is referred to as @onohedron In n- PR=R &
dimensions, a zonotope withsegment generators has _ )
combinatorial complexit k" * [6]. _More p_reC|ser, the squarer is de ned as the
As morphological operations are associative, And Minkowski sum of two half-open segments as fol-
(B C)=(A B) C,we have: lows. Let f&;w) be the orthonormal basis of the grid
structure ofR in the plane orthogonal t&. Then
0Z=((0 s) %) 1) R= xtd+yw] =2 xy< =2. Inthis way, the

_ _ . Minkowski sums of two dexels dRwith g are always
Thanks to this property the set solidO Z isob-  disjoint. Note that the closure &f(R) (the union ofP(R)

tained by a sequence kimorphological operations with  with its boundary) is an orthogonal polyhedron.
a line segment (see Figure 2), either all dilations or all

erosions.
3.4. Segment morphological operations

Consider the segmesstwith unit vector directionv
(the samey as above) and lengthd2> 0, centered at the
origin:

n 3. o
s= p2R7jp= ~ 2[ d;d]
Figure 2: lllustration of a morphological dilation between a disk and

a square. The square is a two dimensional zonotope de ned by the Thus O  sis a segment morphological operation. Ob-
Minkowski sum of two perpendicular segments of equal length. Incre- serve' thaBl 2 L we have that:

mental dilations with these segments lead to the nal result.

Oo\1) s |
3.3. Ray representations
Let O be a compact subset 8%, ¥ a unit direction

vector inR3, andL be a set of lines parallel ta We
de ne

This implies that segment morphological operations can
be performed independently for each lin2 L. Given
a dexel volumé(R) of the formP(R) = R rwhere
Ris a dexel structure of direction(hence parallel t@),

[
R(L;O) = O\ | we have that

12L
and viewR(L; O) as an organized collection of pairwise
disjoint and closed line segments in space.

A dexel structurd?] is a three dimensionaliscrete _ G E
ray representation. Consider a regular grid of squares (VR rE S
of side length , lying on a plane with normat. Let
L be the set of lines parallel to passing trough the = (VR R s
center of the squares. The dexel structure is the set of 12L

4

P(R) s=(R R) S

12L



wheret denotes a disjoint union. Then, sincg is Algorithm 1 Morphological operations along a ray. The

orthogonal tos we can permute the operators: reported points belong t@O ).
P(R) & I\ R é © >
S= R L'
D ,m,k_%,,,,w,,
=R i Po Pr P2 P3 P4 Ps
O——O o0—oO Oo——0
= P(R) procedure Dilation

Report point pp  dv)
fori=1ton 1dodo
if zi zy 1> 2dthen
Report points oy 1 + dv) and (py  dv)

whereRC is also a dexel structure. Therefore, we can
erode or dilateP(R) with a segmens parallel tov by
simply eroding or dilating its dexel structure.

end if
4. General algorithm for dexel structures end for
This section describes our general algorithm for per- Report point fzq 1 + dv)
forming segmentmorphological operations on dexel o 9o o ° o °
structures. In Section 4.1 we discuss how tset the ° ©
dexel structure along a segmetigned with the ray di- end procedure
rectionof the structure. We explain in Section 4.2 how  Procedure Erosion
this process can be performed in sequence, each time fori=0ton 1dodo
re-sampling the previous result in a new dexel structure if Zi+1 2z > 2dthen
having a di erent direction. We analyze the error due Report points Pz + dv) and (zi+1  dv)
to this process in Section 4.3. Finally, in Section 4.4 we end if
provide details on our parallel GPU implementation, as end for
there are non trivial considerations in terms of fragment o o © ©
o—-o0O Oo———O

complexity and surface cracks avoidance.
end procedure

4.1. Morphological operations along the ray direction
In this section we are given a dexel structReriented
along some directios and sampled from an input solid ] ) ] )
0. We give an algorithm to construct the dexel structure ~ Given a dexel structurB of a three dimensional input
R swheresis a line segment parallel toof length 21, solid O, we want to compute (approximately) a dexel
centered at the origin, as de ned above. structure of0 Z , whereZ =5, 5 1 s To
The algorithm considers each lién L and pro- do so we iteratively apply the segment morphological
cesses the ordered set of dexel$ inR. For erosion, ~ OPerations:
we shrink each Qexel by displacing their endpoints and R=RL ;PR 1) s fori=1tok
Iter out those with length shorter thard2 For dilation,
we similarly enlarge each dexel, which corresponds to with Ry = R (see Section 4.1). At each iteration we
“shrinking the empty space” between them. The pseudo-generate a surface representation of (the closure of) the
code for these operations is shown in Algorithm 1 and current dexel volumé@ (R, 1) and rasterize it in order
assumes that the dexelslin Rare stored as the ordered to build the next dexel structure (details are given in
list of the dexel endpointspg; p1;:::;p2n 1 (See Algo- Section 4.4). The overall process introduces an approx-
rithm 1). We writez for the depth (ordinate in direction  imation error which is analyzed in Section 4.3. At the
) of endpointp; so that we havey <z <::: < 2z 1. end of the proces®(Ry) is our approximation 0® Z .
The resulting dexel structui® = R sis implicitly
given by the sequence of reported dexel endpoints in 4.3. Approximation error
Algorithm 1. Also note that this new dexel structure has  In this section, we indentify a dexel volume with its
at most as many dexels Rs closure, which is a compact orthogonal polyhedron. In
The time complexity of the algorithm is linear with  this context, we bound the Hausdadistance between
respect to the number of dexdls It is also highly two orthogonal polyhedra, one being obtained by con-
parallelizable, as each list of dexels can be processedverting the other into a dexel structure oriented along
independently. another arbitrary direction (see Section 4.4).

4.2. Sequences of segment morphological operations



The Hausdor distance is transitiva,e. dy(A;C)
du(A; B) + dy(B; C). Thus, by summing the Hausdor
errors in a sequence of segmentsetting, we obtain
a bound on the error betwe®nandP Z for a given

r B ,.Butr
P1 P2

82:2 Pz,SOpZC P2 B( 1:2)22

B 12, ( 1= 144y O

zonohedrorZ . The theoretical bound is rather crude and T——5—1—5 %H Ww

Bmerefore would require the sampling rate to increase by

2 for each resampling (see the lemma below). A ner Figure 3: Conversion of a two-dimensional dexel volufiet) into an-

analysis is likely to bring the constant2 closer to 1

and in practice we work at the constant screen resolution
for viewing or constant manufacturing resolution for the

actual manufacturing.

Let P; be a dexel volume de ned by a dexel structure

with directionw; and regular grid cell size;: Py =
Ry 1where ;isasquare of side length, orthogonal
to», and aligned with the dexel grid axes. LR} be
de ned similarly, whereR; is the intersection of the
lines generated by a regular gf@} of cell size , along
directionv, with P1: R, = G, \ P ;. In other wordsR,
is a sampling oP; with a dexel structure in direction
(see Figure 3 for a two-dimensional illustration).

We say thaP, is ,-fat whenP, can be exqggssed

as the union of congruent cubes of side length ,
Wi_th sides parallel to the sides &f;. In particular, if

2 1 and no dexel oRlphas length shorter than

2 >thenPiis »-fat. When 2 » 1 butPq is not
o-fat, we can enlarge the small dexelsRafto makeP,
o-fat before computingg,.

Lemma l. If Ppis ,-fatthen q;(P1;P2) 1:44 ».

Proof. If no dexel ofR; has been enlarged, th& P 1,
thusP, = R, 2 P21 2 P1 B zzpi:
p_
P, P1 B .P; (1= 2 0O71)
If a dexel ofR; has been stretched to Ieng?h_z 2 we
should account for it. Inthatcas; P 1 BP3
which implies

272!

p_
P, Py BPy, ( 2 142y

In the other direction, lep be a point ofP;. $inceP;
is -fat, there exists a cub@ of side length , 2 such
th%EZ C P 1,The cubeC contains a balB of radius

other dexel structure along a @irent directior(middle) The resulting
dexel volumg(right) approximates the initial one.

4.4. GPU implementation

We implement our algorithm entirely on the GPU:
from a solid representation, we build a rst dexel struc-
ture capturing its geometry, a process that we deX-
elization We then apply the sequence of line segment
morphological operations on the dexel structure. The
result of this process is a nal dexel structure that can be
used for display, direct fabrication, or can be fed back
into a CSG engine for further modeling operations.

4.4.1. Dexelization of an obje&

Our dexel structure is based on modern implementa-
tions [36] of an A-bu er [37]. Given a view direction
¥, the objecO is rasterized by the GPU using an ortho-
graphic projection along. Each generated fragment is
recorded as aim or out event, depending on whether
it originated from a front facing or back facing triangle
with respect tor. The events are stored in a separate list
for each screen pixel. Given a two-manifold (watertight)
boundary representation under the form of an indexed
face set, the OpenGL rasterization ruld8][ensure that
consistent ifout events are generated in every pixel.

After construction each sampling ray of the dexel
structure is associated with a sorted list gbit events.
We determine solid intervals by counting theout
events along the ray. A counter is initialized to zero,
decremented when the ray passesatevent, and incre-
mented when the ray passesiaevent. Intervals along
the ray that have a positive counter value are considered
to be part of the solid and become a dexel.

This counting process elegantly deals with intersecting
(closed) meshes, as well as meshes having inner voids.
Most importantly, it enables the approach forsetting

5 22 = ,= 2. When viewed orthographically in
the directionw,, the ballB is a disk of the same radius.
This disk contains a square of side lengthaligned
with the axes of the grit,. Therefore, there is at least

polyhedrons described in Section 5.

4.4.2. (Re)dexelization of a dexel volume
As described in Section 4.2, when getting along

one line from the sampling patte@y that projects on
this disk, which implies the existence of a poin2 C
such thar %Bg =Gy\P 1.

Let = 9—2 + pl—é sothat , is the sum of the half-
diagonal ofC and the radius oB. It holds thatC

di erent directions, a new dexel structure has to
be constructed by re-sampling the previous dexel
volume. In principle, this requires to extract the
boundary facets of the rst dexel volume, and then
to rasterize them into the next dexel structure.



The boundary facets extraction can be
implemented very eciently on the ‘
GPU. Unfortunately this approach does
not work in practice: the generated
mesh contains many T-junctions tha
produce an artifact known asacksdur-
ing the rasterization (see Figure 4).

T3

This is due to numerical imprecisions_.
. . Figure 4. Seg-
preventing the rasterizer from properly,enis x,x, and
joining the drawn triangles along thex;x; may leave
T-junction edges. This has dramatigracks when their
conse ggldent facets
quences on the dexel structure .

. re rasterized.
intervals are not properly closed and
matter leaks out of the volume. Splitting facets along
T-junctions would result in a signi cantly more complex

algorithm, and may not resolve all artifacts.

Figure 5: Hierarchical dexel structure. The dexels of the coarser levels
are shown in green.

We propose a dierent implementation that com-

pletely eliminates these issues. The idea is to render the

dexel structure as a union of box primitives, where each

dexel is transformed into a separate, six-sided box. The
boxes are slightly enlarged to ensure that no cracks can

exist. Applied directly this approach would be impracti-

cal, as it would generate a very large amount of fragments
in the next dexel structure — exceeding memory require-
ments and penalizing visualization. We instead produce

a hierarchical version of the dexel structure, replacing
the common part of four neighboring high resolution dex-

els by a single lower resolution dexel. Repeated several

times, this process quickly groups the inner volumes into
large boxes, thereby signi cantly reducing the number

5. Morphological operations between a zonotope
and a polyhedra

In the previous section we discussed a general algo-
rithm applied on dexel structures. While very versatile,
its drawback is to impose a re-sampling between each
0 set direction. As we now discuss, this can be entirely
avoided for the special case of polyhedra — the most com-
mon representation of solids in CADAM applications.

The salient property of the technique described in this
section, is that it avoids any loss of geometric preci-
sion until the very nal conversion into a dexel structure
(a process we catlexelization seex4.4.1). The latter
conversion is necessary for visualization, fabrication or
further processing. For example the techniquerds
for interactive pixel-precisgisualizationof the result
of dilations or erosions via a perspective dexelization
aligned with the virtual camera.

The limitation of the technique is that it cannot mix
dilations and erosions in a same sequence. In particular,
it cannot be used for computing an exact representation
of a morphological closing or opening. If this is desired,
then the general dexel algorithm x4 should be used
for the second morphological operation.

5.1. Principle

Let M be a polyhedron and a zonohedron. This
section details a technique to directly compute the dexel
structure of theexactdilation or erosion oM by Z,
O=M Z ,without having to compute the polyhedral
boundary ofO. To do so, we transform the polyhedral
boundary ofM into a polyhedral surfacg in such a
way that the result of the dexelization 8f as described
in x4.4.1, is identical to the dexelization ©f

S is a proper manifold without boundary, but it con-
tains a large number of self-intersections and cannot be
used to visualiz®© without dexelization (see Figure 11).

The core of the idea is to exploit the integer counter
of infout events along the rays. Our algorithm generates
S so that additional facets produce pockets of positive
or negative matter corresponding to theeet of dilation
or erosion along a line segment. The regions where
the counter value is positive coincide exactly with the
desired dilated or eroded polyhedron.

We focus only on dilation in the rest of this section.

of fragments that have to be rasterized, as illustrated Fig-E70Sion can be computed using complement and dilation:
ure 5. This is implemented in parallel on the GPU, with M Z =M Z . The boundary of the complement of a
an algorithm walking four rays at a time and detecting polyhedron is easily obtained by ipping the orientation
common, coarser intervals. of its facets.



1 /N with the othgr generator segmentsZofwhile keeping
— the complexity of the surfac® low, we must ensure that
ﬁ 2 only the necessary surface elements are keftamd

'SS thatS remains an oriented manifold. We describe these
2D (3 (b) (© (d improvements next.

5.3. Dilation of a mesh by a zonohedron

In the polyhedral surface that we obtained above, sev-
eral pairs of facets do cancel each other: they are geo-
metrically identical but have opposite orientation. These
pairs have no eect on the dexelization result and it is
preferable to not create them in the rst place. They are

2D —
the extrusions of edges @ that arenotsilhouette

) edges with respect t& so that their adjacent facets
v are either both front facets or both back facets. (An

edge is silhouette w.r.t. to a directi@hif it has

one adjacent front facet and one adjacent back facet

Figure 6:(a—d) A 2D example of a polygon undergoing two successive
dilations by a segmen{a) A polygon and a generator segmeit)

A prism is glued (conceptually) to each edgg) The polygon is w.r.t. d.)

simpli ed. (The numbers indicate the value of the dexelization counter .

in each region.)d) After dilation by a second, vertical segme(e- the original facets o@M ; they are “canceled” by a
f) A 3D illustration of the combinatorics of a piece of a polyhedral facet of their corresponding prism.

surface.(e) Dark triangles are back facets. Light triangles are front . . )
facets.(f) The purple quads are the extrusions of the silhouette edges. We avoid the creation of these pairs of facets by ex-

Most silhouette vertices are simply duplicated, but colored ones require truding only silhouette edges and displacing the original

more copies (see text), so that each connected component of back facet ; ;
is surrounded by a “collar” of purple quadg) A 2D counter example: Tacets of@ by s or s* depending on their front or

composing our technique on erosion then dilation may give a wrong Pack status (Figl_”e_ G(C_d_))- In order to prepare the sur-
result (the correct result is shaded green). face for further dilations with other generator edges, we

should make the resulting surfaea manifold as well,
so that silhouette edges for other directions can be found
5.2. Dilation of a mesh by a segment correctly. The only problem to obtain a manifold comes
We assume that segmesita generator of zonohedron from vertices on the silhouette & whose adjacent
Z) has its center at the origin and decompose & as back facets form more than one connected component.
s'[ s where both subsegments share the origin as anA separate copy of such a vertex must be created for each
endpoint. Our task is to build a surface representafion ~component in order to guarantee tiais manifold. Fig-
forM s. We partition the boundarg@! of M into its ure 6(e—f) illustrates how the connectivity of the surface
sets of back facetB and front facet$ with respectto  is modi ed.
the directions* from the origin to the other endpointof | imitations. The technique described above works
s". Then, we use the equality only as long as we accumulate only dilations or only
[ [ erosions. In general, applying both operationsSqas
M [ é fos é[ i b s"é would be necessary to compute openings or closings)
toF boB leads to erroneous results (Figure 6(g)). When a dilated
or eroded polyhedron requires further processing, our
Conceptually, we simply add 16 the polyhedral bound-  system dexelizeS and continues the job on as detailed
ary of the Minkowski sum of each facet @ with s* in x4. Another drawback stems from the larger number
or s (Figure 6(a—b)). These sums are simple prisms of fragments generated during dexelization (see Table 2)
extruded in a direction parallel to segment heir facets which might require buers larger than what the device
should be oriented so that their normal vector points out- drivers can allocate.
side of the prisms: in this way the dexelization counter
shall be properly up_dated and we are guarantegd that6_ Approximating the ball with zonohedra
the dexelization of5 is equal to that oM s. This
is su cient to compute the correct dexel structure of  Some applications seek to erode or dilate a solid by a
M s. However, in order to continue to dilai s ball of radiusd. Since our scheme is based on operations

M s =



du(O Z ;O Bg) 2d . However, the erosions
are close to each other with respect to a kind of “reverse”
Hausdor distance. Namely, the erosion of one By

is included in the other:@ By) B O 7z and
(©z) B O By

(a) Cube (b) Truncated (c) Truncated
octahedron cuboctahedron 7. Results
Figure 7: Zonohedra approximaieg thepEEHdean pall of radisk In this section we evaluate the performance of the pre-
Their Hausdor distance tBq is (a) 1 13 d 042A, (b) = : .

1 P3m 4 o0225dand © =1 1+2°2 "33 ¢ s«_anted algorlthms,_and the qual_|ty of the results. Ta_\ble 1
0:174d. The number of generating segments of these zonohedra areC“Spla_yS some statistics on the input models used in our
respectively 3, 6 and 9. experiments.

Our method allows for arbitrary zonohedra to be used
. ] (see Figure 8). Beyond the approximation of the Eu-
along line segments, the ball has to be approximated.  cjigean ball for regular osetting, it can be used in NC-

The approximation of the Euclidean ball with zono- machining applications to simulate the tool millir@g]

hedra has been extensively studied. Bourgsial. [5] with a shape matching a zonohedron.

have shown that any-dimensional zonotopg approx- The integration of the presented techniques in our
imating the b";‘l'?d;;’v'th a Hausdor distance error, ray-based CSG modeler enables complex shapes to be
has atleast 2**"*2 segment generators, wharé&s a e ned. Figure 13 shows a derence between two com-
constant depending on the dimensforGuibaset al.[6], plex models subsequently undergoing a morphological

introduced an algorithm to nd a zonotope enclosmg  gperation. In Figure 9 we show a more elaborate result
points withk segment generators and m|1n|m|§|ng the  de ned with several CSG and morphological operations.
sum of the generator lengths, in tirf@emk' * + ko . We are able to combine morphological operations with

In general, we enforce that the radiuszofis d. For both methods as long as the mesh-based method operates
some applications, it is desirable that the approximate (st (see the ligree model in Figure 1).

dilation (resp. erosion) is a subset (resp. superset) of
the exact one. In this case, we impose that By, 7.1. Fabrication quality

implying: Our software typically uses a XY resolution of 5t

(0.05 mm) for fabrication. The mesh-basedsetting
approach results in lossless printout quality. For the
Figure 7 shows some well known zonohedra, and their GPU-based approach, the precision loss following the
Hausdor distance bounds when has radiugl. The successive dexelizations is marginal, as dexelization is
ball is approximated by a set of generating segments with always done at printing resolution. Figure 14 shows sev-
some length lower thash. For example, in the case of the ~ eral results printed on a ZPrinter 450. Observe that the
cubﬁ_(see Figure z)a_) the three genetiﬂing segments arqgality of the approximation with respect to sett_ing
d= 3,00, 0;d= 3;0, and 0;0;d= 3. Observe with a ball increases with the number of generating seg-
that in general it is not trivial to derive these line segment ments for the zonohedra, since the Hausddistance

0Oz O By O Z O By

lengths for an arbitrary zonotope. decreases (see Figure 12).
The approximated cset is also bounded by these
Hausdor distances: 7.2. Performance

We carry out our performance tests on an Intel Core i7
4770k with 16GB of memory, and a GeForce Titan Black
Proof. Since O, Z and By are compact sets, With 6GB of memory. Performance results are shown in

Lemmaz2.dy(Z;Bg)= =) dy(O Z ;0 By)

du(Z:Bg) = implies thatBy Z B andZz Table 2 and Figure 10. The models and morphological
Bs B . Since dilation is an increasing operator, it operations used match the gures presented throughout
comesO Bg O Z BandO Z O By B, thisdocument .

which implies the claimed distance bound. O The performance of the mesh-based approach mainly

depends on the radius of the zonohedron and the number
The lemma does not hold for erosion as one can nd of mesh vertices. Its complexity increases as the number
instances oZ and O such thatdy(Z ; Bg) and of segments for the zonohedron increases, and generates












Input Cube Truncated octahedron Truncated cuboctahedron

Figure 12: Morphological operations between a zonohedron that approximates the Euclidean ball and polyhedra. The rst column shows the input
models. The next columns show the dilafierosion with three dierent zonohedrons. The odd rows correspond to the mesh-based approach, and the
even rows to the GPU-based approach. The dil&imsion sizes match the ones in Table 2.
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