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ABSTRACT

Motivation: Insertions play an important role in genome evolution.

However, such variants are difficult to detect from short read

sequencing data, especially when they exceed the paired-end insert

size. Many approaches have been proposed to call short insertion

variants based on paired-end mapping. However, there remains a

lack of practical methods to detect and assemble long variants.

Results: We propose here an original method, called MINDTHEGAP,

for the integrated detection and assembly of insertion variants from

re-sequencing data. Importantly, it is designed to call insertions

of any size, whether they are novel or duplicated, homozygous

or heterozygous in the donor genome. MINDTHEGAP uses an

efficient k-mer based method to detect insertion sites in a reference

genome, and subsequently assemble them from the donor reads.

MINDTHEGAP showed high recall and precision on simulated

datasets of various genome complexities. When applied to real C.

elegans and human NA12878 datasets, MINDTHEGAP detected and

correctly assembled insertions longer than 1 kb, using at most 14 GB

of memory.

Availability: http://mindthegap.genouest.org

Contact: guillaume.rizk@inria.fr, claire.lemaitre@inria.fr

1 INTRODUCTION

Structural variants (SVs) are large-scale structural changes in the

genome. They have been typically defined in opposition to point

mutations, which are single nucleotide polymorphisms (SNPs)

and short insertions or deletions (indels). SVs therefore include

insertions, deletions and inversions of genomic sequences. Recent

research has shown that they play an important role in evolution and

diseases [1, 22]. However, SVs are challenging to discover using

present-day sequencing approaches, as they generally span genomic

regions that are longer than the reads. Computational methods have

been designed to extract evidence of SVs from sequencing data

using two types of analyses: paired-end mapping of reads to a

reference genome and copy-number estimation using read depth

[16, 3].

∗to whom correspondence should be addressed

1.1 Definition of insertion variants

In this work we will focus on insertion variants: sequences that

are present at one site (position) in the donor genome but are

absent from the reference genome at this site. We divide insertions

into three mutually exclusive types: (i) novel insertions in the

donor genome that have no match in the reference, (ii) duplicated

insertions, that are found at two or more sites in the donor and

a strict subset of those in the reference, and (iii) transpositions,

that are sequences in the reference that moved to a different site in

the donor. Duplicated insertions include mobile element insertions

(MEI), for which databases of known sequences have been created

to facilitate discovery [22].

All three types of insertions are difficult to detect using short

reads. Different techniques are used to detect insertions that are

short (shorter than the reads), medium (of size between read length

and insert size) or long (of size exceeding insert size). In the next

two sections, we review techniques used to identify insertion sites,

and techniques used to reconstruct insertion sequences.

1.2 Identification of insertion sites

As short insertions are likely to be fully contained in several reads,

mapping donor reads to a reference genome enables simultaneous

discovery of the sites and contents of insertions [7, 14, 23, 2].

In this context, results are sensitive to mapping parameters and

may be degraded in low-coverage or low-complexity regions of

the reference. Although the discovery of short indels has been

an extensively studied problem, a recent article has observed

considerable differences between the results of popular tools [18].

Sites of medium-sized insertions can be detected by analyzing

mapping positions of paired reads. General SV calling tools call

insertions sites by clustering neighboring read pairs that have a

shorter insert size than expected, e.g. BreakDancer and GASV [5,

21]. NovelSeq [9] and SOAPindel [15] detect sites of long,

novel insertions by clustering paired reads for which one mate is

unmapped.

Alternatively, tools based on read coverage can detect duplicated

insertions of any length by finding reference segments that have

higher read depth than expected. While insertion sites cannot

be determined by this method alone, the Reprever [13] software

identifies low-copy duplicated insertions by combining paired-end

c© Oxford University Press 2014. 1
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mapping with read depth analysis. Finally, several methods detect

sites of mobile element insertions using collections of known

transposable element sequences, by searching for read pairs where

one mate is mapped to a known element and the other to a unique

part of the reference genome [10, 8, 22].

1.3 Reconstruction of inserted sequences

While short insertions are easy to reconstruct (as seen in

Section 1.2), to the best of our knowledge, only a few methods

are capable of handling medium or long insertions. They are based

on global or local de novo assembly of reads that are potentially

involved in an insertion.

SOAPindel [15], Scalpel [17] and TIGRA [4] select paired reads

for which one of the mates maps nearby an insertion site. The

other mates are used to assemble separately each inserted sequence.

This approach can only reconstruct insertions that are shorter than

twice the insert size. NovelSeq [9] reconstructs novel insertions

(of any size) by assembling all unmapped reads, then aligning

the extremities of assembled sequences to all predicted insertion

sites. Parrish et al proposed to extend this approach to duplicated

insertions by performing a global assembly of all reads that are

either unmapped, discordantly paired or mapped to high-coverage

regions [19].

Cortex var [11] builds a colored de Bruijn graph from the

reference genome and all donor reads. Insertions appear in the

graph as bubbles (sets of paths between two nodes), where one

short path corresponds to the reference genome, and longer paths

correspond to inserted sequences. Theoretically, this approach

enables the discovery of insertions regardless of their size and

type. However, due to practical limitations, Cortex var only finds

a restricted class of bubbles: those that (i) contain exactly two paths

and (ii) all intermediate nodes have exactly one in-neighbor and one

out-neighbor.

To summarize, available tools are highly specialized and lack the

versatility to detect and assemble insertions of any size and any type.

SOAPindel, Scalpel and Cortex var are practically limited to short

insertions, Reprever is limited to low-copy duplicated sequences and

Novelseq is limited to novel insertions.

1.4 Our contribution

We propose a new tool, MINDTHEGAP, for detecting and

assembling insertions. MINDTHEGAP has several novel features

that are not found in other tools. First, an mapping-free site

detection algorithm has been designed to detect insertions of any

size. Second, an improved method for insertion assembly enables

the reconstruction of long insertions of all three types. Third, a

memory-efficient data structure enables high scalability.

We evaluated MINDTHEGAP on simulated and real Illumina

sequencing data. Among 1 kbp simulated homozygous insertions,

a large fraction were found and correctly assembled (recall values

between 65-98.4% precision over 97%). Simulated heterozygous

1 kbp insertions proved to be more challenging to assemble (60%

recall for C. elegans, 35% for human chromosome 22), however

precision remained high (resp. 93% and 89%). We assembled long

insertions using MINDTHEGAP on an actual whole-genome human

dataset, which required only 14 GB of memory.

2 METHODS

The input of MINDTHEGAP is a set of reads and a reference genome. The

software performs three steps: (1) construction of the de Bruijn graph of the

reads, (2) detection of insertion breakpoints on the reference genome (find

module) and (3) local assembly of inserted sequences (fill module). Both the

detection step and the assembly step rely solely on the constructed graph.

The output of the second step is a set of putative insertion positions on the

reference genome, whereas the output of the last step is, for each insertion

site, one or several assembled sequences.

2.1 de Bruijn graph construction

The de Bruijn graph is a directed graph over all distinct k-mers in the

reads. An edge is present when two k-mers share an exact (k − 1)-overlap.

The graph is constructed using the algorithms implemented in the Minia

assembler [6, 20]. Minia encodes the graph using a Bloom filter and an

additional hash table to suppress false positives. The data structure supports

two operations: (i) membership queries for k-mers that are neighbors of

existing k-mers in the graph, and (ii) traversal of the graph from an existing

k-mer. These operations are respectively used in Section 2.2 (insertion site

detection) and Section 2.3 (local assembly).

2.2 Find module : detection of insertion sites

MINDTHEGAP detects insertion sites by scanning the reference genome and

testing membership of reference k-mers in the de Bruijn graph. Homozygous

and heterozygous insertions are handled using two different methods.

2.2.1 Homozygous insertions The general case for detecting homozygous

insertions can be modeled as follows. Let Sr be a sequence (the reference).

For a position j in the reference, the k-mer at position (j − k + 1) (resp.

j + 1) is called the left (resp. right) flanking k-mer. Let Sd (the donor) be a

copy of Sr where a sequence I has been inserted between the nucleotides at

position i and i+1 (the insertion site, see Figure 1). For each position in the

reference genome, a binary character records whether the k-mer starting at

this position is present (’1’) or absent (’0’) in the donor reads. Depending on

the context, the reference genome will correspond to the string of nucleotides

or to the string of binary characters. Let a gap be a substring in the reference

genome equal to 0n (formed by repeating ’0’ n times), for n > 0, that

is immediately flanked by ’1’ characters. In most cases, a homozygous

insertion site at position i has a gap of size k−1 starting at position i−k+2
(all k − 1 k-mers overlapping the insertion site are absent in Sd). We refer

to this situation as a canonical insertion site (see Figure 1-A).

A gap may be shorter than k − 1, for instance when the prefix of the

inserted sequence I exactly matches the prefix of the sequence to the right

of the insertion site (see Figure 1-B). More generally, if the longest common

prefix of I and Sr [i+ 1 . . .] is of size r1 and the longest common suffix of

I and Sr [. . . i] is of size r2, then the size of the gap is k− r1 − r2 − 1. It is

important to note that when r1 or r2 are greater than 0, with only sequences

Sd and Sr at hand, it is not possible to localize precisely the insertion site,

as it can be at any location in [i − r2 . . . i + r1]. We refer to such sites as

fuzzy sites. Homozygous insertion sites are called when gaps of size in the

range [k− 1− r, k− 1] are detected, with r being a user-defined parameter

indicating the largest allowed repeat at the insertion.

The size of the gap is an important criterion to detect homozygous

insertion sites, since other types of variants also yield gaps. SNPs create

gaps of size exactly k, deletions of length d yield gaps of size k + d − 1.

Variants that are separated by less than k nucleotides yield longer gaps.

In fact, only new junctions between existing sequences can yield gaps of

size < k, which is the case for insertion events, but also for inversion or

translocation sites. Finally, gaps of various sizes may also appear due to

insufficient read coverage or non-uniqueness of k-mers inside the reference

genome. These effects are controlled by the value of k, which is a parameter

of our method.

2.2.2 Heterozygous insertions While heterozygous insertions sites do

not yield gaps, flanking k-mers at these sites still exhibit features that can
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GTATTACTATGCTATCTATTATTTA

GTATTACTATG.insertion..TGCTATCTATTATTTA

1111110001111111111111111

k-1-2 = 3 missing 6-mers
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GTATTACTATG...insertion..CTATCTATTATTTA

1111110000011111111111111
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Fig. 1. A. Canonical insertion site. The site is detected by its specific

signature: the (k-1) k-mers spanning the insertion site are missing in

the sequence with the insertion (here k=6), these k-mers are represented

as red segments. B. fuzzy insertion site. Insertion ends with the same

nucleotides (TG) present on the left of the site. In dashed lines, an alternative

insertion site. C. Heterozygous insertion site. Flanking k-mers (in black)

surrounding an heterozygous site respectively have two right branching k-

mers (for the k-mer on the left of the site) and two left-branching k-mers

(for the right k-mer).

be detected. The left flanking k-mer of a heterozygous insertion site has at

least two out-neighbors in the de Bruijn graph: one neighbor in the reference

sequence and at least one other neighbor that is a prefix of the inserted

sequence. Similarly, the right flanking k-mer has at least two in-neighbors

with similar properties (see Figure 1-C). As in the homozygous case, small

repetitions at the extremities of inserted sequences slightly alter the pattern.

The left flanking k-mer may overlap the right flanking k-mer in the reference

genome. MINDTHEGAP detects heterozygous insertion sites by scanning

the reference genome and testing neighborhoods of putative left and right

flanking k-mers whose distance from one another is comprised between

k − r and k, r being the same user-defined parameter as for homozygous

insertions, indicating the largest allowed repeat at the insertion.

Note that heterozygous SNPs and deletions yield similar patterns, but the

left and right flanking k-mers are further separated from each other (k + 1
nucleotides apart for SNPs and 1-bp deletions, k+d−1 nucleotides apart for

deletions of size d). However, heterozygous inversions and translocations do

exhibit identical patterns. Also, inexact repetitions in the reference genome

create branching k-mers, that may yield by chance the same pattern as a

heterozygous insertion. To reduce this effect, we apply an additional filter:

L .R.

.R.

Fig. 2. Fill module. A graph of contig is constructed from the left flanking

kmer L, in a breadth first search order. Construction stops when a maximum

number of nodes is reached, or when a branch becomes too deep.The right

flanking kmer R is searched within all nodes, finally all paths (in blue)

between L and R are outputted as putative insertions.

the k − 1 suffix (resp. prefix) of the right (resp. left) flanking kmer must

have less than h occurrences in the reference genome. When h is set to 1,

this prevents the detection of patterns that may be generated by repetitions

in the reference genome alone, in absence of any sequence variants.

2.3 Fill module : assembly of inserted sequences

The third step of MINDTHEGAP is called the fill module. Starting from

a known insertion site represented by flanking kmers (L,R), the module

performs de novo assembly to attempt to reconstruct the inserted sequence

between L and R. In a nutshell, a graph of contigs is constructed by

performing breadth-first traversal of k-mers, starting from L. The traversal is

halted when graph becomes too complex. Then, all the contigs in the graph

are searched for the presence of R. All paths between L and the contigs

containing R are enumerated, and one or more putative insertion sequences

are returned.

More specifically, insertions are assembled using the algorithm of

Minia [6, 20]. Assembly is performed by traversing the graph from a given

starting k-mer in a breadth-first fashion. A consensus sequence (contig) is

generated by skipping over certain motifs, such as bubbles (putative short

variants) and tips (putative errors). This Minia assembly procedure stops

whenever a contig cannot be unambiguously extended.

A graph of contigs is constructed for each insertion site (L,R), as

follows. First, an initial contig cL is constructed by calling the Minia

assembly procedure from the L k-mer. Given a contig c (initially c = cL),

the four putative neighbors of the last k-mer of c are examined. If no

neighbor is present, indicating that c could not be extended, then no further

action is performed for this contig. Otherwise, if two or more neighbors are

present in the data structure, new contigs will be constructed starting from

each of these neighbors. Directed edges will be inserted from c to these

new contigs. This process goes on to construct the contig graph in breadth-

first order until a maximum number of contigs (parameter n, usually set to

100) is reached, or a maximal depth (parameter i, usually set to 10 kbp and

computed by counting nucleotides in contigs) is reached.

An exhaustive search is performed to find occurrences of R within all

contigs in graph, as an exact match (default behavior) or up to a constant

number of mismatches. All possible paths between L and R are exhaustively

enumerated (i.e. putative insertions). If all paths spell pair-wise identical

sequences (minimum identity of 80%), then one of them is returned.

Otherwise, the insertion site is considered to be unsuccessfully assembled

and all paths are returned. The fill module is performed bi-directionally,

i.e. should the (L,R) insertion site yield no path, then the module attemps

to assemble the (rc(R), rc(L)) insertion, where rc() denotes the reverse-

complement operation.
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2.4 Evaluation protocol

2.4.1 Simulated datasets To evaluate MINDTHEGAP, we generated

artificial read datasets and reference genomes based on real genomes.

First, we simulated sequencing reads for a real genome (the donor). Then,

another genome (the reference) was obtained by simulating non-overlapping

deletions from a copy of the donor genome. Deletion locations were sampled

uniformly along the sequence. These deletions correspond to homozygous

insertions in the donor. To simulate heterozygous insertions, reads were

sampled in equal numbers from the donor and the reference genomes.

Sequencing was simulated with Wgsim from the Samtools package [14]

using the following parameters: paired-end mode with 2 × 100 bp reads,

an insert size of 300 bp (std=50) and a base error rate of 0.01. Coverage was

set to 40x for homozygous datasets and 60x for heterozygous datasets.

Three different genomes were used: Escherichia coli K12 (4.6 Mbp),

Caenorhabditis elegans (100.3 Mbp) and the human chromosome 22 (35

Mbp without N bases). For each of them, simulated datasets were generated

with homozygous or heterozygous deletions of varying sizes.

2.4.2 Assessment of results Positions of found breakpoints are

compared to positions of introduced deletions in the genome. A breakpoint

is considered as true positive (TP) if its location is at most 10 bp from a

generated deletion position. This margin is meant to take into account fuzzy

sites, for which breakpoints are not necessarily found at the exact position of

the corresponding deletions (see Methods). For each TP breakpoint, a global

alignment between the assembled inserted sequence and the real sequence

of the deletion is then performed with needle from the EMBOSS tool suite.

We consider the filled sequence as TP if the alignment shows more than 90%

of identity. Finally, the recall is the number of TP filled sequences over the

number of simulated insertions, and the precision is the number of TP filled

sequences over the number of filled insertions.

2.4.3 Real sequencing data Paired-end sequencing data from C.

elegans strain N2 were downloaded from SRA (accession SRX026594). This

dataset is composed of 33.8 M Illumina 2x100 bp read pairs (insert size of

350 bp), representing roughly 70x of coverage on the 100.3 Mb reference

sequence of C. elegans (downloaded from NCBI version WBcel235). Since

we did not find any validated dataset of known large insertions for this

genome, we simulated insertion variants following the protocol of simulated

data: 1000 regions of a given size (here 1-100 bp or 1 kb) were deleted in the

reference genome, corresponding to homozygous insertion variants in the

N2 donor genome.

Sequencing data of human individual NA12878 from DePristo et al [7],

consisting of 2.8 G Illumina 2x101 bp read pairs, was downloaded

from EBI1. The human genome reference assembly (NCBI36hg18) was

downloaded from UCSC Genome Browser. A set of predicted or validated

large insertions were obtained from supplementary material of Kim et al

[13]. This set contained 30 validated insertions from the study of Kidd

et al [12] and 44 which were predicted by Kim et al [13] based on the

alignments of 40 kb sequenced fosmids from this individual to the hg18

reference genome. These are long insertions (median size of 5 kb), 68 are

longer than 1 kb, 4 are longer than 10kb. Among these, 61 are predicted as

novel insertions, 7 as duplicated and the remaining ones have an unknown

status.

3 RESULTS

3.1 Results on simulated datasets

MINDTHEGAP was applied on several simulated datasets to

precisely estimate its recall and precision. This enabled to

quantify the impact of different levels of genome complexity, to

1 ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/

technical/working/20101201_cg_NA12878/NA12878.

hiseq.wgs.bwa.raw.bam

independently evaluate each module and modes (detection versus

assembly, homozygous versus heterozygous) and to analyze the

range of insertion sizes MINDTHEGAP is able to detect and

assemble.

3.1.1 High recall and precision in homozygous mode For

insertions of 1 kb, MINDTHEGAP recovered between 65% and

98.4% of the simulated insertions, depending mainly on the

complexity of the studied genome (Table 1). Almost all predicted

homozygous insertions are true positives, resulting in high precision

(consistently above 97%). Table 1 shows that almost all insertion

sites were detected by the find module in homozygous mode.

However, 19-35% of detected insertions could not be assembled by

the fill module.

3.1.2 Varying insertion lengths Figure 3 shows that MINDTHEGAP

can detect and assemble insertions of any size. We observed that

the performance of the find module is independent of the size of

the insertions: recall of the find module never fell below 98.5%

(data not shown), without any false positive, even for the human

chromosome 22 dataset. However, lower recalls are due to the fill

module failing to assemble longer insertions. For small insertions

(<100 bp), MINDTHEGAP obtained high recall and precision for

all simulated datasets.

Only 650 over 1000 insertions of 1 kb could be assembled in

the chromosome 22, and among these, 646 showed more than 90%

identity with the original deleted sequences. This was likely due

to the high repeat content of this chromosome. We observed that

the insertions MINDTHEGAP fails to assemble generally correspond

to complex graph of contigs, containing many exact repeats longer

than (k − 1).

3.1.3 Heterozygous mode To evaluate the heterozygous mode

of MINDTHEGAP, we simulated datasets with only heterozygous

insertions (see Section 2.4). Our analysis in Methods showed that

heterozygous insertion sites were likely to be more difficult to

detect and distinguish from genomic repetitions than heterozygous

insertions sites. Table 2 shows that for the human and C. elegans

simulated datasets, both recall and precision are significantly below

those in homozygous mode. Further investigation showed that the

low recall is due to poor performance of the find module. We

found that the results in this module were sensitive to the values of

parameters k, r (maximal repeat size at fuzzy sites) and h (maximal

number of occurrences of flanking kmers in the reference genome).

Setting k to a higher value and r and h to smaller values (here:

k = 51, r = 2, h = 1) enabled to reach a precision around 97%,

at the cost of a noticeably lower recall. However, using a high k is

detrimental to the fill module, due to read coverage being halved in

heterozygous insertions. Table 2 shows that on these datasets, the

fill module assembles significantly more insertions with k = 31.

3.1.4 Comparison with SOAPindel On insertions of size 1-100

bp, SOAPindel shows similar recall and precision to MINDTHEGAP

(Figure 3). However, SOAPindel is limited in the size of detectable

insertions, depending on the insert size of the reads: given

our simulation parameters, we observed that SOAPindel recall

decreased for insertions larger than 175 bp, and the largest insertion

detected was of length 189 bp. Noticeably, the performance of

SOAPindel was independent of the genotype of insertions.
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Table 1. Precision and recall results for MINDTHEGAP in homozygous mode on simulated and real datasets. Simulated insertions of size 1000 (homozygous).

The number of deletions simulated in the reference genome appears in the column ’N sim.’.

Find module Fill module

Recall (%) Precision (%) N sim. TP FP TP FP

E. Coli simulated dataset 98.4 99.8 500 499 0 492 1

C. elegans simulated dataset 79.5 97.3 1000 992 0 795 22

C. elegans real reads, simulated insertions 81.1 – 1000 980 – 811 –

Human chromosme 22 simulated dataset 64.6 99.4 1000 1000 0 646 4

Fig. 3. Results of MINDTHEGAP and SOAPindel for several insertion sizes and several genome complexities. SOAPindel results are shown only for insertions

of 1-100 bp (first two shaded bars in of each genome section), since it could only detect insertions smaller than 189 bp. Best results of SOAPindel were obtained

with k parameter set to 31 (shown here) rather than 51. MINDTHEGAP best results were obtained with k set to 31 for E. coli datasets and 51 for C. elegans

and human chromosome 22.

3.2 Evaluation on a real sequencing dataset of C.

elegans

To evaluate the impact of real reads and a real donor genome

with some degree of polymorphism in the reference genome,

MINDTHEGAP was run on a C. elegans strain N2 read dataset

against the reference genome containing simulated deletions. This

is to simulate homozygous insertion variants in the donor genome.

Note that additional insertions variants are likely to exist C. elegans

strain. Thus, the number of FP could not be evaluated, as the true

set of insertions present in these reads is unknown.

For 1 kb insertion variants, 81.1% were correctly predicted

and assembled by MINDTHEGAP (Table 1). Compared to the

fully simulated dataset on the same simulated insertions, the find

module missed more insertion sites, whereas the fill module had

a better recall of inserted sequences. The first observation could

be explained by small polymorphism near the insertion breakpoints

that generated longer gaps (see Methods), whereas the second by a

higher read coverage in this dataset.

Additionally, we compared MINDTHEGAP and SOAPindel on

this dataset with 1-100 bp simulated insertions. Recall values were

similar for both tools, respectively of 89% and 91%.

3.3 Application on real insertions of human individual

NA12878

To evaluate the ability of MINDTHEGAP to recover real insertions

in real data, we executed it on a human individual NA12878 dataset

containing 2.8 G 100 bp reads. As the coverage was high, parameter

k was empirically set to 63 and t to 5 (kmers with less than

5 occurrences were discarded). Predictions were then compared

to a set of 74 large insertions predicted by alignment of fosmid

sequences to the reference hg18 genome (see Section 2.4).

20 insertion sites were recovered by the find module. No

heterozygous insertions were predicted. We set r = 15, which

enabled to find twice more sites than with r = 5. This

suggests that real insertions contain longer repeated sequences

at their breakpoints than expected in a random simulation. By

analyzing paired-end reads that mapped near each fosmid-predicted

breakpoint, we could infer the genotypes: only 23 breakpoints

could be confidently assigned to a homozygous genotype (i.e. with

less than 5 read pairs spanning the breakpoint). The find module

recovered 11 of them. Of the remaining 12 likely homozygous sites,

the breakpoints of 8 of them were included in a large gap (≥ k)

in the reference binary string. This suggests that these sites were

close to other form of polymorphism, which would explain why

MINDTHEGAP did not detect them.

Among the 20 detected insertions by the find module, the fill

module succeeded in reconstructing correctly 2 inserted sequences

of sizes 4137 bp and 6729 bp, with respectively 99.9% and 99.8%

identity to the fosmid sequences. This corresponds to a recall of

18%, when comparing to the 11 true homozygous insertions that

were detected by the find module. This recall value is similar to one

obtained on simulated insertions of 5 kb with the same read dataset

(22 %, data not shown).

5



Rizk et al

Table 2. Precision and recall results for MINDTHEGAP in heterozygous mode on simulated datasets, containing each 1000 simulated heterozygous insertions

of size 1000 bp. Parameter r was set to 2, and assembled insertions smaller than 5 bp were filtered out.

Find module Fill module k = 51 Fill module k = 31
Recall (%) Precision (%) N sim. TP FP TP FP TP FP

C. elegans dataset 59.9 93.4 1000 807 11 310 80 599 42

Human chromosome 22 dataset 35.5 89.0 1000 816 28 226 8 355 44

BWA : 330

SOAPindel : 232

Index :52
Find : 8
Fill : 9

Time (minutes)

Total 69

Total 562

RAM (GB)

MindTheGap SOAPindelSOAPindelMindTheGap

0.7GB

4.2GB

Fig. 4. Time (real time in minutes reported by the unix command time)

and peak of memory used by MINDTHEGAP (with k = 51) and

SOAPindel (parameter k = 51) on the C. Elegans real sequencing dataset

(SRX026594). Peak of memory of SOAPindel approach was reached by the

SOAPindel software itself (not bwa).

3.4 Time and memory performance

Figure 4 shows the total runtime and maximal memory used by

MINDTHEGAP and SOAPindel on the real C. elegans dataset. The

machine used for all tests is a 12-core Intel E5-2640 @ 2.50GHz

with 192 GB of memory. For MINDTHEGAP, the breakdown of the

3 steps index, find, and fill shows that the major part of running time

is spent on the index step. For SOAPindel, the time required to map

the reads to the reference with bwa is included in the total time,

however SOAPindel alone remains slower than MINDTHEGAP as a

whole. SOAPindel used 8 threads and MINDTHEGAP only one.

Importantly, even though MINDTHEGAP stores in memory the

whole de Bruijn graph of the C. elegans read dataset, its memory

peak (0.7 GB) is 6 times lower than SOAPindel. On the NA12878

dataset with 2.8 billion reads, MINDTHEGAP also proved to scale

efficiently: the index / find / fill steps respectively took 32 / 6 / 7

hours, with peak memory usage of 6 / 14 / 6 GB.

4 DISCUSSION

MINDTHEGAP is the first integrated method to detect and assemble

insertion variants of any size and any type, using modest computing

resources. The find module of MINDTHEGAP differs from most

other existing methods by not relying on read mapping. Instead, the

de Bruijn graph of reads is compared against the reference sequence,

which enables fast and low-memory analysis. However, one current

limitation of the find module is that it fails to detect insertions when

other polymorphism occurs near the insertion site. Improvements

to waive this limitation are under development, based on a more

detailed analysis of gaps longer than k. Furthermore, the method

could also be used to output SNPs and other types of structural

variants.

Long insertion variants are challenging to detect and assemble;

thus there is a shortage of tools to compare MINDTHEGAP with.

We compared our results with SOAPindel, which is a popular

indel detection software limited to short insertions. The NovelSeq

software [9] is designed to find and assemble large insertions,

and therefore would have been another candidate for comparison.

However, despite several attempts and reaching out to the author, we

were unable to run the software successfully on any of our datasets

(the novelseq cluster step ran indefinitely). NovelSeq relies

on a complex pipeline, and we conjecture that it may be tailored to

specific data types. While most other insertion detection methods

require to run external software, MINDTHEGAP is stand-alone

and is therefore easy to use. If needed, the modular organization

of MINDTHEGAP allows users to replace the find module with

the results of a classical insertion detection based on paired-end

mapping. The fill module could also be used as a de novo assembly

finishing step, i.e. gap-filling between adjacent contigs in scaffolds,

although we did not evaluate its performance for this task.

One important design choice for the fill module is to perform

assembly with all the k-mers in the read dataset. This enables to

assemble not only novel insertions, but also duplicated insertions

and transposition events. Classification of assembled insertions into

the different event types is not done by MINDTHEGAP, but can

be done by re-mapping insertions to the reference genome. One

drawback of considering all reads during insertion assembly is

that the de Bruijn graph becomes more complex to analyze. An

important future work will be to improve the recall of the fill module

by using paired-end reads information to guide traversal of contig

graphs. As repeated regions are notoriously difficult to assemble,

we anticipate that our approach might not be effective for mobile

element insertions. However, there exists methods tailored to the

assembly of MEI, based on local assembly with recruitment of mate

reads.

Our tests on the NA12878 dataset showed there is room for

improvement: only 2 long homozygous insertions were successfully

assembled out of 23 predicted ones. We postulate that (i)

polymorphism or repetitions near the insertion sites hinder detection

by the find module, and (ii) the complexity of the human genome

makes de novo assembly of large contigs difficult. As no other

tool was able to assemble long insertions, we could not assess

whether our results were due to weaknesses in our method, or to
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specificities of this particular dataset (complex insertion sequences

or mis-predicted insertions).
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