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Abstract

We extend a static type-and-capability system with new mechanisms
for expressing the promise that a certain abstract value evolves
monotonically with time; for enforcing this promise; and for taking
advantage of this promise to establish non-trivial properties of
programs. These mechanisms are independent of the treatment of
mutable state, but combine with it to offer a flexible account of
“monotonic state”.

We apply these mechanisms to solve two reasoning challenges
that involve mutable state. First, we show how an implementation of
thunks in terms of references can be assigned types that reflect time
complexity properties, in the style of Danielsson (2008). Second,
we show how an implementation of hash-consing can be assigned
a specification that conceals the existence of an internal state yet
guarantees that two pieces of input data receive the same code if and
only if they are equal.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Type structure

General Terms Languages, Theory

Keywords types, capabilities, specification, hidden state, mono-
tonic state, amortized complexity, type-based complexity-checking,
thunks, hash-consing

1. Introduction

This paper presents novel type-theoretic mechanisms and techniques
for exploiting monotonicity in establishing properties of programs
that manipulate mutable, heap-allocated data.

Two traditional modes of dealing with state How do the type
systems in the literature deal with mutable state? Do they allow the
type of mutable data to evolve over time? How do they keep track
of this type? How do they deal with aliasing? Although there is a
large variety of such systems, two modes seem to prevail:

1. invariable, duplicable types; uncontrolled aliasing;

In most mainstream programming languages, including Java,
Haskell, and ML, types are invariable: the type of a mutable
object is fixed at allocation time, and cannot change with time. In
return for this lack of expressiveness comes a gain in flexibility:
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type information can be duplicated, and aliasing can remain
uncontrolled, without risking unsoundness.

2. variable, linear types; controlled aliasing;

There are systems where the type of a mutable object is permitted
to vary, in an arbitrary way, during the object’s lifetime. The
price to pay for this expressiveness is that type information must
be linear, and aliasing must be controlled.

The traditional representatives of the latter mode are systems of
linear types. By requiring that there exist at most one pointer to
an object, these systems conflate the control of ownership and the
control of aliasing. Their modern descendants [3, 4, 29] offer greater
flexibility by using linear capabilities to control ownership and
regions to control aliasing. In these systems, there may exist multiple
pointers to an object. Each object, however, must belong to a region,
and access to each region is governed by a capability. A capability
can be thought of as a unique token that represents the ownership of
a region.

It is sound for the two modes to co-exist: the literature presents
numerous systems that mix them. They are most often both viewed
as primitive. More economically, the second author has argued in
earlier work [24] that the former mode (invariable, uncontrolled
objects) can be implemented in terms of the latter mode (variable,
controlled objects), with the help of a primitive mechanism for
hiding a capability within a lexical scope.

This mechanism, known as the anti-frame rule, makes it possible
to organize the implementation of a mutable object in such a way that
aliasing and ownership are controlled within the implementation, but
need not be controlled outside of it. As far as clients are concerned,
objects appear to be ordinary (stateless, duplicable) values. Our
implementations of monotonic counters (§2) and thunks (§5) are
carried out in this style.

Monotonic state The above two modes of dealing with state can
be informally summarized in the semblance of a security policy, that
is, by answering the following two questions:

Who is permitted to change the type of an object?

Who is permitted to know the type of an object?

Here, to “know” the type of an object means to record this type at
some point in time, and to later use the object at the type that was
recorded. The answers are, very roughly, as follows:

1. In the first mode, nobody is allowed to change the type of an
object; everybody is allowed to know it.

2. In the second mode, only the owner is allowed to change or
know the type of an object.

The purpose of this paper is to study a third mode, which strikes a
different compromise. It has, at its heart, a notion of monotonicity.
This mode can be described, again very roughly, as follows:



3. Only the owner of an object is allowed to change its type, and,
furthermore, only in a monotonic manner, so that types get
“better”, in a certain sense, with time. In return for this constraint,
everybody is allowed to record the type of an object, with the
understanding that, by the time this information is exploited,
the object may well have a “better” type than the one that was
recorded.

The choice of the word “better” is meant to suggest some ordering
relation. There is no connection between this ordering and the
standard subtype ordering: we do not require types to become more
precise with time. The choice of an appropriate ordering, on a case-
by-case basis, is in the hands of the programmer.

In this third mode, which we dub “monotonic state”, changing
the type of an object is a restricted operation: control of ownership
and aliasing is still required. However, recording and exploiting the
type of an object are unrestricted operations: to a certain extent, this
control is relaxed.

Contributions The existence of this interesting compromise has
been pointed out in the literature (§7), so it does not constitute, in
itself, a contribution of this paper. Our contribution is twofold:

Contribution 1. We study monotonic state in a standard
type-theoretic setting and explain it in terms of a handful of
primitive mechanisms.

The new mechanisms that we propose are simple and elegant
(so we claim, that is!), because they are concerned purely with the
essence of the interplay between monotonicity and linearity.

In order to define these mechanisms, we need, as our substrate,
a type system equipped with capabilities (both linear and non-
linear ones) and with logical assertions (which we view as a
particular species of non-linear capabilities). In order to present
meaningful applications, we need more, namely: higher kinds,
regions, mutable state, and hidden state. This list of extra features is
perhaps intimidating, but is in principle independent of the topic of
this paper.

As is evident from the verbosity of our code (§4), our calculus is
intended to serve as a kernel language, into which more palatable
surface languages equipped with some form of monotonicity can be
encoded.

Contribution 2. As a non-trivial application, we show how
Danielsson’s system [6] for analyzing the complexity of
pure, lazy programs can be programmed up as a library in
our imperative, call-by-value setting.

We show how a simple implementation of suspensions, or thunks,
can be ascribed a signature that allows a client of the “thunk”
abstraction to reason about amortized execution time. This was
a challenge because thunks must be ascribed precise types (the type
thunk carries an integer index, which represents a time bound), yet
there must be no control of ownership or aliasing over thunks.

Our result provides a foundational explanation of Danielsson’s
system: while Danielsson gives a direct proof of the soundness of
his system, we encode it into a richer, lower-level system, which
allows reasoning about the amortized complexity of imperative ML
programs.

Caveat emptor We do not, at this time, have a proof of type
soundness for the full type system exploited in this paper. We
build on two earlier papers by Charguéraud and Pottier [3] and
by Pottier [24]. In as-yet-unpublished work, the second author
has established the soundness of the combination of these papers:
this took a 20000 line Coq proof. In order to justify the ideas
presented in this paper, this proof must be extended with support for
embedding logical assertions within capabilities, support for fates
and predictions, and support for time credits. A generic treatment of

1 let mk () = ref 0 – allocates a fresh counter

2 let read r = !r – reads a counter

3 let inc r = r := !r + 1; r – increments a counter and returns it

Figure 1. An implementation of monotonic counters

1 type sc : VAL

2 val mk : unit → sc
3 val read : sc → int (0 ≤ .)
4 val inc : sc → sc

Figure 2. A signature for simple counters

1 type tc : SNG → Z → CAP

2 val mk : unit → ∃σ. ([σ] ∗ tc σ 0)
3 val read : ∀i, σ. [σ] ∗ tc σ i → int i ∗ tc σ i
4 val inc : ∀i, σ. [σ] ∗ tc σ i → [σ] ∗ tc σ (i + 1)

Figure 3. A signature for tracked counters

1 type mc : Z → VAL

2 val mk : unit → mc 0
3 val read : ∀i. mc i → int (i ≤ .)
4 val inc : ∀i. mc i → mc (i + 1)

Figure 4. A signature for monotonic counters

monotonicity is built into the current machine-checked proof, and is
exploited in order to justify singleton and group regions. It is hoped
that this machinery can also justify fates and predictions.

Road map The paper begins with a challenge (§2). After present-
ing a 3-line implementation of monotonic counters (Figure 1) as
well as a plausible signature for them (Figure 4), we ask: in which
known type systems can it be checked that this code satisfies this
signature? We argue that the answer appears to be: none. In order to
address this challenge, we suggest introducing new type-theoretic
mechanisms, called fates and predictions. After informally present-
ing these mechanisms (§3), we explain how, in combination with a
number of orthogonal, pre-existing features, they allow monotonic
counters to be type-checked (§4). As a more striking application, we
show that they allow transporting Danielsson’s analysis of thunks [6]
from a purely functional, call-by-need language to an imperative,
call-by-value setting (§5). We also present an application to hash-
consing (§6). We conclude with a discussion of related work (§7).
A summary of the core of our system (§A) appears in an appendix.

2. A challenge: monotonic counters

A monotonic counter is an integer counter that offers two operations:
read, which returns the current value of a counter, and inc, which
increments a counter, and returns its argument. (The reason for this
design choice becomes apparent later on.) A constructor function,
mk, allows creating fresh counters. An untyped implementation of
monotonic counters appears in Figure 1. It is trivial: a counter is just
an integer reference.

Monotonic counters pose a simple, yet challenging problem.
In the following, we present three natural signatures for them,
which correspond to the three modes of dealing with state that
were reviewed in the introduction (§1). While the implementation of
monotonic counters satisfies the first two signatures, it is not clear
how to argue that it also satisfies the last one.

Parenthesis: indexed types In order for the three signatures to
differ in interesting ways, we need precise types: that is, we need a



type to be able to express an assertion about the integer value of a
counter. To this end, we allow types to be parameterized with integer
indices, in the style of Xi’s Dependent ML [32].

Let us briefly review what this means. We write Z for the kind
of integer indices. We use a singleton type, int i, whose unique
inhabitant is the integer value i. The addition operator has type
∀ij.int i → int j → int (i + j). The traditional, unparameterized
type int can be viewed as sugar for ∃i.int i.

We also use the type int (i ≤ .), whose inhabitants are the
integer values greater than or equal to i. This type can be defined
as ∃j.(int j ∗ 〈i ≤ j〉), where we use existential quantification
over an integer index j and a conjunction of a type, int j, and a
proposition about indices, 〈i ≤ j〉. We note that, if i ≤ j holds, then
int (j ≤ .) is a subtype of int (i ≤ .). This fact intuitively reflects
the set-theoretic inclusion [j,∞) ⊆ [i,∞). Here, it can be derived
from the definition of int (i ≤ .).

A signature for simple counters In the first signature (Figure 2),
the operations read and inc have simple types. The type sc of simple
counters is abstract: it is internally defined as ref (int (0 ≤ .)),
where ref is ML’s reference type constructor. (We write VAL for
the kind of ordinary types, that is, types that classify values. Other
kinds appear later on.) This definition encodes the invariant that the
value of a counter is a nonnegative integer. This allows read to have
codomain int (0 ≤ .) rather than just int.

Because sc is an abstract type, the reference r is accessible only
through read and inc. This guarantees that counters are monotonic,
that is, their value can only grow with time. However, this is only
an informal guarantee. The type-checker is unaware of this property,
which it can neither check nor exploit.

This signature is imprecise: it does not reflect the fact that inc
increments its argument. In the setting of an ML-like type system,
despite the availability of indexed types, this seems to be the best
signature that one can express and implement.

A signature for tracked counters In a type-and-capability sys-
tem [3, 4, 29], access to a reference is governed by a linear capa-
bility, so that type-varying updates (also known as strong updates)
are sound. In Charguéraud and Pottier’s notation [3], for instance,
a counter inhabits a singleton region σ. The type of the reference r
is written [σ], read “at σ”, and means that r is the single inhab-
itant of the region σ. Access to r is governed by a capability of
the form {σ : ref (int i)}, where the integer index i represents
the current state of the counter. This capability must be presented
when the reference is read or written. A read operation returns an
identical capability. An inc operation returns an updated capability,
{σ : ref (int (i + 1))}. This is a strong update.

In such a system, a signature for tracked counters can be defined
and implemented (Figure 3). There, tc σ i is an abstract capability,
analogous to an abstract predicate in separation logic, which hides
the fact that the implementation of a counter is an integer reference.
It is internally defined as {σ : ref (int i)}. (We write SNG for the
kind of singleton regions and CAP for the kind of capabilities.)

The function mk has codomain ∃σ.([σ] ∗ tc σ 0). This means that
mk returns: (i) a region σ; (ii) a value, of which nothing is known,
except it inhabits σ; and (iii) a capability tc σ 0. This capability
guarantees that the inhabitant of σ is a counter in state 0. At the
same time, it represents the ownership of this counter, that is, the
right to pass this counter as an argument to read and inc.

Accordingly, the functions read and inc require not only a value
of type [σ], but also a capability tc σ i, which serves as a proof of
ownership and indicates that the counter is initially in state i. Out
of this, read produces a pair of the integer i and an unmodified
capability, while inc produces a pair of an unmodified value and an
updated capability tc σ (i + 1).

This interface is strong: thanks to capabilities, the state of a
counter is tracked in a precise manner. Unfortunately, there is a
price to pay: this interface imposes restrictions on aliasing and
ownership. The fact that tc σ i is a linear capability means that every
counter must have a unique owner. This effectively restricts the use
of tracked counters to linear data structures, that is, data structures
without sharing.

A signature for monotonic counters Is it intuitively sound to
make an assertion about the value of a counter without imposing
any restriction on aliasing or ownership? Yes. Because the value of
a counter increases with time, it is possible for a client to maintain a
sound under-approximation of it. This is permitted by the signature
in Figure 4, where the type mc of monotonic counters is now integer-
indexed.

What is the intuitive meaning of the type mc i? Certainly, the
index i cannot reflect the exact internal state of the counter, but must
represent a lower bound. Indeed, if x has type mc i, then, after an
application of inc to x, the variable x still has type mc i, even though
the internal state of the counter x has just changed. More deeply,
if some variable y also has type mc i, then, after this application, y
still has type mc i. Yet, because x and y may be aliases, the state
of the counter y could have just changed as well. So, the intuitive
interpretation of mc i is:

mc i is a type of monotonic counters whose internal state is
at least i.

It is straightforward, although not quite trivial, to informally con-
vince oneself that this signature is sound. Consider a counter x,
of type mc i, where i represents a lower bound on x’s internal
state j, that is, i ≤ j holds. Invoking read returns j, which has
type int (i ≤ .), as advertised. Invoking inc updates the internal
state to j + 1, of which i + 1 is a lower bound, so it is sound for inc
to advertise a return type of mc (i + 1). Furthermore, i remains a
lower bound of j + 1, so it is sound to continue using x at type mc i.

An unusual feature of this signature is that, even though inc
returns its argument, it ascribes a more precise type to its result than
to its argument! (To permit such a type refinement is the reason
why we decided that inc should return its argument.) This allows
keeping track of a lower bound on the internal state of a counter.
For example, read (inc (mk ())) has type int (1 ≤ .). This may seem
a tiny achievement; yet, such a feature is essential in our encoding
of Danielsson’s analysis of thunks. There (§5), the function pay is
analogous to inc, in that it also returns its argument at a better type.

The signature of monotonic counters is stronger than the simple
signature of Figure 2. (Indeed, the latter can be implemented in
terms of the former, by defining sc as ∃i.(mc i ∗ 〈0 ≤ i〉).) On
the other hand, it is incomparable with the signature of tracked
counters (Figure 3). The latter allows keeping exact track of the
state of a counter, while the former only allows keeping track of a
lower bound. On the other hand, the latter comes with restrictions
on aliasing and ownership, while the former does not.

The challenge ML, extended with indexed types, allows writing
down the signature in Figure 4, and allows clients of this signature
to be written and type-checked. However, it does not allow checking
that the code in Figure 1, augmented with a suitable definition of mc,
satisfies this signature. Neither do the type-and-capability systems
that we are aware of. In the following, we extend such a system with
new mechanisms (§3) that address this challenge (§4).

3. Fates and predictions

Perhaps the most obvious approach to addressing the challenge
would be to build monotonicity directly into references, by making
monotonic references a primitive notion. We quickly abandoned this
approach, however, for several reasons.



First, monotonicity is sometimes not a property of a single
reference cell, but of a composite data structure. For example,
in our application to hash-consing (§6), a hash table encodes a
mathematical function whose graph grows with time (with respect
to set-theoretic inclusion, ⊆). A primitive notion of a monotonic
reference would not support these non-trivial applications.

Second, requiring monotonicity to hold between any two points
in time would be too inflexible. It is desirable to allow monotonicity
to be temporarily violated, as long as this remains in some sense
unobservable from the outside. This is again evident in advanced
applications (§6): because updates to a complex data structure are
not atomic, monotonicity does not make sense while an update is in
progress. Again, perhaps one could build this flexibility into a set of
ad hoc typing rules for monotonic references; here, however, it is
obtained via the anti-frame rule.

Fates Instead of monotonic references, we introduce monotonic
ghost variables, or fates, for short. A fate can be thought of as a
mutable memory location that does not exist at runtime and whose
value can only grow with time. A fate is controlled by a linear
capability, just as if it did exist in the runtime heap.

Fates are not tied to references or objects. Furthermore, as we
will see, there is no need for fates to temporarily disobey monoto-
nicity. For these reasons, the rules that govern fates are simple and
lightweight. In a sense, fates distill the essence of monotonicity:
they describe the interplay between linearity and monotonicity, and
nothing else.

In order to express the fact that the value of a certain fate reflects
the state of a certain reference, or of an entire data structure, one sets
up an explicit invariant. The anti-frame rule [24] offers a mechanism
for this purpose. The invariant, a capability, is invisible (and must
hold) outside of a certain lexical scope, and is visible (and can be
temporarily violated) within that scope. This approach, it turns out,
addresses all three previously mentioned issues.

Types and laws Because a fate does not exist at runtime, it does
not contain a programming language value (e.g., a machine integer,
a λ-abstraction, a memory location, etc.), but a mathematical value
(e.g., an integer, a set of integers, a function of integers to sets
of integers, etc.). In other words, the type T of a fate is a type
of the ambient logic. Any sound logic that is powerful enough
for the intended application can serve as the ambient logic. For
instance, in the case of monotonic counters, Presburger arithmetic
would be sufficiently expressive and would permit decidable type-
checking. For more advanced examples, the ambient logic could be
the Calculus of Inductive Constructions, so that our type-checker
ships proof obligations to the Coq proof assistant. (In this paper, for
the sake of uniformity, we place ourselves in this case.) A soundness
proof for our system should in principle be independent of the choice
of an ambient logic.

A fate of type T must be equipped with a law R, that is, a
preorder over T. The law defines what it means for the value of a
fate to grow. Each fate can have its own type T and law R, which
are fixed when it is created. A law need not be a total order: some
applications of fates involve partial orders (§6).

In our running example, a fate is used to reflect the value of
a monotonic counter. Its type is Z, the type of the mathematical
integers; its law is the ordering ≤ over Z. For simplicity, we fix this
special case in the following explanations.

Creating a fate Since fates do not exist at runtime, none of
the primitive operations over fates has a runtime effect. These
operations can be thought of as type annotations, and are erased
before the program is executed. More precisely, we will view them
as subsumption axioms. For instance, the creation of a fresh fate is

permitted by the following axiom:

∅ <: ∃ϕ.{ϕ : i}

Such an axiom means that the capability on the left-hand side can
be transformed into the capability on the right-hand side. Here, out
of nothing, one obtains a fresh fate ϕ, together with a capability,
written {ϕ : i}, which represents both the ownership of the fate ϕ
and the knowledge that the current value of the fate is i. (Here, i, the
initial value of the fate, can be any element of Z.) This capability is
linear: a fate has at most one owner.

This axiom can be compared with the type of the primitive
operation for allocating a fresh reference [3]:

ref : τ → ∃σ.([σ] ∗ {σ : ref τ})

When provided with an initial value of type τ , this operation
allocates a fresh reference cell in the heap, and returns: (i) a singleton
region σ; (ii) a memory location, of type [σ], the single inhabitant
of this region; (iii) a capability {σ : ref τ}, which represents both
the ownership of the region and the knowledge of its type. Creating
a fate is analogous to allocating a reference, in that it creates a fresh
name and produces a capability. It differs in that no runtime values
are involved, and the heap is unaffected.

Updating a fate The owner of a fate is free to update it at any time,
provided the new value is provably related to the current value. This
is expressed as follows:

{ϕ : i} ∗ 〈i ≤ j〉 <: {ϕ : j}

That is, the value of the fate can be changed from i to j, provided
the proposition i ≤ j holds. If P is a proposition of the ambient
logic, then 〈P〉 is a duplicable capability, a witness for P. This
axiom is analogous to the strong update of a reference [3], in
that a capability is consumed and a potentially different capability
is produced. It differs in that no runtime values are involved and
updates are required to be monotonic. The capability 〈i ≤ j〉 on the
left-hand side can be thought of as a proof obligation.

Tying a fate to a piece of runtime state The internal state of a
monotonic counter consists of an integer reference, which inhabits a
region σ, and of a fate ϕ. How do we express the fact that the value
of the fate is kept synchronized with the content of the reference?
The answer is simple: the capabilities that respectively govern the
reference and the fate must share an integer index. The composite
capability:

∃i.({σ : ref int i} ∗ {ϕ : i})

not only represents the ownership of both the reference and the fate,
but also indicates that they share a common value i. By existentially
abstracting over i, we make this capability suitable for use as an
invariant that remains true even as the counter is incremented. In
the following (§4), this invariant is hidden, so that it is invisible
to a client of the monotonic counter abstraction. It is visible only
within the implementation of monotonic counters, where it can be
temporarily broken, provided it is restored before control is returned
to the client. One cannot forever escape one’s fate!

Making predictions We are still missing a piece of the puzzle. A
capability {ϕ : i} represents, at the same time, the ownership of a
fate and an assertion about its value. In other words, so far, only the
owner of a fate can assert a proposition about its value. However,
in our planned application to monotonic counters, a client must be
allowed to assert that the state of a counter is at least i, for a certain
integer i, even though the client does not own the counter. How
could we solve this difficulty?

This is where monotonicity comes into play. Because a fate is
constrained to evolve in a monotonic manner, its current value serves
as a prediction of its future values: if the current value is i, it is safe



to assert that any future value j satisfies i ≤ j. Making such a
prediction requires knowledge of the current value i, which in turn
requires ownership of the fate. However, once such a prediction is
made, it can never be contradicted by updating the fate, so it remains
valid forever. For this reason, a prediction can be considered a
duplicable capability, separate of the linear capability that governs
of the fate. A prediction is created as follows:

{ϕ : i} <: {ϕ : i} ∗ 〈ϕ : i〉

We write 〈ϕ : i〉 for the prediction that the value of ϕ will always be
at least i. It can also be understood as an observation of some state
of ϕ that is sufficient to guarantee that the value of ϕ will always
be at least i. Both points of view are useful, so, in the following,
we make use of both of the words “prediction” and “observation”.
The above axiom states that the owner of a fate can, at any time,
produce an observation of the fate’s current state or, equivalently, a
prediction of its future states.

How does this solve the difficulty with which we were faced? A
prediction 〈ϕ : i〉 is non-linear. It does not represent the ownership
of the fate ϕ, yet it does represent an assertion about its state. So,
it is now possible to make an assertion about a piece of state that
one does not own. Our implementation of monotonic counters (§4)
retains ownership of the fate, but creates predictions that it passes to
its clients.

Exploiting predictions Predictions—at least in our system!—are
true and remain so forever. As a result, comparing an old prediction
with the present state allows knowledge to be gained: one learns that
the present state conforms to what was predicted. This is stated as
follows:

〈ϕ : i〉 ∗ {ϕ : j} <: 〈i ≤ j〉 ∗ {ϕ : j}

If it was once predicted that the state would always be at least i,
and if the present state is j, then i ≤ j must hold. In other words,
exploiting a prediction produces a new logical fact, which can later
be used in a proof.

As explained earlier, our implementation of monotonic counters
(§4) uses the internal invariant: ∃i.({σ : ref int i} ∗ {ϕ : i}). Once
unpacked, this becomes: {σ : ref int j} ∗ {ϕ : j}, where a fresh
integer index j represents the current state of the reference and the
fate. Now, imagine that a client presents us with an old prediction,
of the form 〈ϕ : i〉. This prediction must have been created earlier
within the implementation of monotonic counters, handed to a client,
carried around for a while by the client, and is now being presented
back to us. By exploiting it, we learn i ≤ j, that is, we learn that the
current state is as good as or superior to what the client expects. In
its absence, nothing would be known about the current state, since j
is just an abstract integer index.

Since the reference has type ref int j, reading it yields a value of
type int j, which, thanks to the proposition i ≤ j, is a subtype of
int (i ≤ .). In other words, the read operation produces a value of
type int (i ≤ .), provided the client hands it the prediction 〈ϕ : i〉.

Weakening predictions A prediction can be weakened to one that
permits more numerous potential futures:

〈i ≤ j〉 ∗ 〈ϕ : j〉 <: 〈ϕ : i〉

This is used in the implementation of monotonic counters (§4). In
the inc operation, after the reference and the fate have been updated
from j to j + 1, the following capability is available:

{σ : ref int (j + 1)} ∗ {ϕ : j + 1}

At this point, we wish to create a new prediction, based on the new
state, and return it to the client. So, we construct the prediction
〈ϕ : j + 1〉. This prediction is valid; however, it cannot be returned
to the client, because it mentions j, a variable that was introduced by
unpacking our existentially quantified invariant. The client knows

nothing about j, the true current state of the counter; it only knows
about i, the value that it has observed in the past. Thus, we weaken
the prediction 〈ϕ : j + 1〉 by changing it into 〈ϕ : i + 1〉. This
is valid, because we know i ≤ j, which implies i + 1 ≤ j + 1.
The weakened prediction can now be handed back to the client. In
summary, inc produces the prediction 〈ϕ : i + 1〉, provided the
client hands it the prediction 〈ϕ : i〉.

Joining predictions If it has been predicted that the value of ϕ
will remain above i and above j, then its (unknown) current value
must be a common upper bound of i and j. Thus, it is safe to
produce a new prediction of some common upper bound k of i
and j. Ownership of the fate is not required.

〈ϕ : i〉 ∗ 〈ϕ : j〉 <: ∃k.(〈i R k〉 ∗ 〈j R k〉 ∗ 〈ϕ : k〉)

The need for this axiom arises when R is not a total order. For
instance, it plays a key role in our application to hash-consing (§6).
There, it is not even the case that every two elements i and j admit
a common upper bound with respect to R. Even in this case, the
axiom is sound, and all the more useful.

4. Application: monotonic counters

We now put everything together and explain how to typecheck
monotonic counters. The code, which appears in Figure 5, consists
of four definitions, for mc, mk, read, and inc.

Surface syntax Whereas this paper is concerned only with type
checking in a core calculus, our illustrative examples are expressed
in a plausible but informal sugared syntax, with some degree of
inference of types and capabilities. In particular, the keywords let
fate, set fate, make, and exploit are used to create (and name) a
fate, update a fate, make (and weaken) a prediction, and exploit a
prediction, respectively. We use let cap to define an abbreviation
for a capability. We use pack cap and unpack cap to introduce and
eliminate existentially quantified capabilities. We use got cap to
assert that a certain capability is held: this is a machine-checkable
comment. The construct “hide I = C outside of t” , proposed by
the second author in earlier work [24], has the double effect of
introducing I as an abbreviation for the capability C within the term
t, and of making the capability I invisible outside of the term t.
None of these constructs has a runtime effect: they are used by the
type-checker only. In addition, we use ordinary pack and unpack
constructs to introduce and eliminate existential types.

Definition What is, really, a monotonic counter with index k?
According to the definition of mc (lines 1–5), it is:

for some abstract notion of an observation of an integer
(line 2),

a pair of two functions, or methods, where the read method
(line 3) accepts an observation of any integer i and produces
an integer value that is no less than i, and the inc method
(line 4) expects an observation of any integer i and produces
an observation of i + 1,

packaged together with an observation of k (line 5).

The parameter k occurs only in the last component. It does not
occur in the type of the methods! In other words, over the lifetime
of a monotonic counter, observations of the counter in various states
are created, but the vector of methods remains unchanged.

Because obs is a non-linear capability, mc k is a non-linear type,
as desired. (We write DCAP for the kind of non-linear, or duplicable,
capabilities. It is a sub-kind of CAP.) This is a key point.

Construction How does one construct a monotonic counter? Let
us now review the definition of mk (lines 7–47).



1 type mc k = – the type of monotonic counters

2 ∃obs : Z → DCAP.
3 ((∀i. unit ∗ obs i → int (i ≤ .)) ×
4 (∀i. unit ∗ obs i → unit ∗ obs (i + 1))) ∗
5 obs k
6

7 let mk : unit → mc 0 =
8 λ().
9 let fate ϕ : FATE Z (≤) = 0 in

10 got cap { ϕ : 0 }; – we own the fate, in state 0

11 let cap obs i = 〈 ϕ : i 〉 in – a notation for observations

12 make obs 0; – make an initial observation

13 let σ, (r : [σ]) = ref 0 in – allocate a fresh reference

14 got cap { σ: ref int 0 }; – we own the reference, in state 0

15

16 let methods : – build a vector of methods

17 (∀i. unit ∗ obs i → int (i ≤ .)) ×
18 (∀i. unit ∗ obs i → unit ∗ obs (i + 1)) =
19

20 hide I = – I is visible only to the methods

21 ∃j. ({σ : ref int j} ∗ {ϕ : j})
22 outside of
23 pack cap I; – this establishes the invariant

24

25 let read : ∀i. unit ∗ obs i ∗ I → int (i ≤ .) ∗ I =
26 λ().
27 let j = unpack cap I in
28 got cap obs i ∗ {σ : ref int j} ∗ {ϕ : j};
29 exploit obs i; – this yields i ≤ j

30 let c : int j = !r in
31 let c : int(i ≤ .) = c in – a subsumption step

32 pack cap I;
33 c
34 and inc : ∀i. unit ∗ obs i ∗ I → unit ∗ obs (i + 1) ∗ I =
35 λ().
36 let j = unpack cap I in
37 got cap obs i ∗ {σ : ref int j} ∗ {ϕ : j};
38 exploit obs i; – this yields i ≤ j

39 r := !r + 1;
40 set fate ϕ := j + 1; – a monotonic update

41 got cap obs i ∗ {σ : ref int (j + 1)} ∗ {ϕ : j + 1};
42 make obs (i + 1); – permitted, since i + 1 ≤ j + 1

43 pack cap I – the witness is j + 1

44 in
45 (read, inc) – this is the vector of methods

46 in got cap obs 0; – still got that initial observation

47 pack methods as mc 0
48

49 let read : ∀k. mc k → int (k ≤ .) =
50 λ(c : mc k).
51 let obs, methods = unpack c in
52 let (read, _) = methods in
53 got cap obs k;
54 read ()
55

56 let inc : ∀k. mc k → mc (k + 1) =
57 λ(c : mc k).
58 let obs, methods = unpack c in
59 let (_, inc) = methods in
60 got cap obs k;
61 inc ();
62 got cap obs (k + 1);
63 pack methods as mc (k + 1)

Figure 5. Monotonic counters

In the prologue (lines 9–14), a fresh fate ϕ and reference r are
created. The notation obs i is introduced for an observation of the
fate ϕ in state i, and an initial observation obs 0 is made.

Next, the methods that read and increment the counter are defined
(lines 16–45). There are two views of these methods: an internal
view, where an invariant I occurs in the type of the methods, and an
external view, where I no longer appears. The invariant I, defined
on line 20, requires ϕ and r to share a common (but unspecified)
value j. It is immediately established (line 23).

The methods read and inc are first defined within the scope of the
hide construct. As a result, they have access to I, and must preserve
it: the capability I appears in their argument and result types (line 25

and line 34). This is the internal view of the methods.
Next, a pair of read and inc is constructed (line 45) and returned

outside of the hide construct. It is bound, there, to the name methods
(line 16). The effect of hide [24] is to consume the capability I and
to remove the four occurrences of I in the types of read and inc, so
that I does not appear in the type of methods (line 16). This is the
external view of the methods.

The body of read is polymorphic in the integer index i, which
appears in a client-provided observation obs i (line 25), and in the
integer index j, which is obtained by unpacking the existentially
quantified invariant I (line 27). In short, i represents some past state
of the counter, which was observed by the client, while j represents
its current state. As explained earlier, exploiting these facts yields the
proposition i ≤ j. This proposition is used to justify a subsumption
step that converts the type of c, the current value of the counter, from
int j to int (i ≤ .) (line 31).

Similarly, the body of inc is polymorphic in i and j, and exploits
a client-provided observation to establish i ≤ j. The reference r
and the fate ϕ are incremented. Between these updates, r is in state
j + 1, while ϕ is still in state j. This is fine: we are free to break
the invariant I, provided it is restored before control is returned
to the client. This is done on line 43. There, the use of pack cap
causes us to forget that the current state is j + 1. Before forgetting
this precious information, we make an observation of j + 1, and
immediately weaken it to an observation of i + 1 (line 42). This
weakening step is valid because i + 1 ≤ j + 1 provably holds. In
the end, the observation obs (i + 1) is returned to the client. This is
made explicit in the type of inc (line 34).

Because read and inc are polymorphic in i, they adapt to the
level of knowledge that the client has acquired, and is able to exhibit.
A greater value of i means a stronger observation is provided by the
client, and, accordingly, a stronger result is returned by read and inc.
The current state j does not (and cannot) occur in the types of read
and inc, since it is existentially quantified within I.

In the epilogue (lines 46–47), we package up the methods vector
together with the initial observation obs 0 and abstract away the
definition of obs. In so doing, we not only obtain a value of type mc
0, as desired, but also ensure that ϕ does not escape its scope: recall
that obs i is just a notation for 〈ϕ : i〉.

Access This concludes our explanation of mk. The rest is boiler-
plate: there remains to define read and inc functions that satisfy
the desired signature (Figure 4). Let us comment on inc (lines 56–

63); read is analogous. Unpacking a monotonic counter object of
type mc k (line 58) yields an abstract observation constructor obs,
a methods vector, and an observation obs k (line 60). We extract
the inc method (line 59) and invoke it (line 61). This invocation is
legal, because we hold obs k, and produces a new observation obs
(k + 1) (line 62). By packing the methods vector together with
this improved observation, we construct a new monotonic counter
object, which, this time, has type mc (k + 1). Yet, in a type-erasure
interpretation, this new object is the unchanged argument!

Our definition of mc k as an existential type, as well as our
implementations of read and inc, follow the pattern of Pierce and



Turner’s encoding of objects [23]. One difference is that Pierce
and Turner’s purpose was to avoid hidden mutable state (which,
following Reynolds, they call procedural abstraction), in favor
of purely functional objects and type abstraction: so, they used
existential quantification over the state. Our purpose, on the contrary,
is to explain procedural abstraction in the presence of monotonicity:
so, we use existential quantification over an observation of the state.

Broadly speaking, we met the challenge that we set for ourselves:
the code in Figure 5 satisfies the signature of Figure 4 and has the
desired semantics. We did fail in one aspect, though: we modified
the original code. In Figure 1, a counter was just an integer reference.
In Figure 5, a counter is a pair of methods, which encapsulate an
integer reference. At present, we do not know how to type-check
the code in the absence of this encapsulation layer.

5. Application: thunks

We now explain why we are interested in thunks and how their study
leads to a problem that is solved by our treatment of monotonic
state. One of our long-term interests is to develop a type system that
allows time complexity assertions to be expressed and checked. We
would like it to be as close to a standard type system as possible, and
we would like it to be able to encode the classic notions of credits
and debits, which we now recall.

Credits Tarjan [31] introduced the banker’s method for deriving
amortized time complexity bounds. The approach relies on the
notion of a credit. One posits that, in order to perform just one step
of computation, the machine requires, and consumes, one credit.
At the beginning of its execution, the program is supplied with a
number of credits, say n. Credits can serve as function arguments,
as function results, and can be stored within data structures. Because
there is no way to duplicate a credit or to create a credit out of
nothing, the number of steps that the program can take must be
bounded by n. Because credits can be stored and only later retrieved
for consumption, this method leads to amortized complexity bounds.

One of the simplest examples of amortization is the reversal of a
singly-linked list. The actual time complexity of reversal is linear in
the length of the list. However, one can “pre-pay” for one reversal
by artificially increasing the cost of the cons operation and storing
one excess credit in each cell. Then, reversing an entire list requires
just one credit, because the credit found in each cell pays for the
next recursive call. In short, reversal has constant amortized time
complexity: its cost has been amortized over the calls to cons.

A serious limitation of this method is that, because credits must
not be duplicated, any data structure that contains credits must itself
be “single-threaded”, that is, linear. For instance, the above “pre-paid
lists” must be linear: if such a list were carelessly shared, one could
reverse it several times and incorrectly pretend that each reversal
operation has constant amortized cost.

Debits To address this limitation, Okasaki [22] proposed a modi-
fied version of the banker’s method that allows data structures to be
shared. The idea is to replace credits with debits: because it is sound
for a debit to be duplicated, a debit-based analysis does not come
with linearity restrictions.

Okasaki’s approach is based on primitive suspensions, also
known as thunks. When one wishes to execute a certain computation,
instead of providing up front enough credits to run this computation,
one creates a suspension, at a constant immediate cost. The cost
of the computation must then be paid for, possibly in several
increments, before the suspension can be forced.

In this approach, suspensions can be freely shared. This can
cause a thunk to be paid for more than once: this is a waste, but
leads to a sound approximation. This can also cause a thunk to be
forced more than once, which is sound as well, because, thanks

1 type thunk: N → VAL → VAL

2 val mk: ∀n, α. (unit ∗ n$ → α) ∗ 1$ → thunk n α
3 val pay: ∀n, p, α. thunk n α ∗ p$ ∗ 1$ → thunk (n - p) α
4 val force: ∀α. thunk 0 α ∗ 1$ → α

Figure 6. A signature for thunks

to memoization, the computation is performed just once, and the
credits that have been accumulated are spent just once.

Okasaki’s approach has been formalized and proved correct by
Danielsson [6], in the setting of a purely functional, lazy program-
ming language.

Credits as capabilities We equip an imperative, call-by-value
programming language with a type-and-capability system that
directly supports Tarjan’s approach to complexity analysis, and
that, via an encoding of thunks as references, also supports Okasaki
and Danielsson’s approach.

Credits are static entities, which do not exist at runtime. In
other words, credits are capabilities. We introduce a new primitive
capability: if n has kind N, then n$ has kind CAP: it is a linear
capability and represents n credits. Capabilities can serve as function
arguments, as function results, can be stored within data structures,
and can form hidden invariants: as a result, so can credits.

We posit the subtyping axiom (n + p)$ ≡ n$ ∗ p$, where n
and p are in N. (If they were in Z, this axiom would be unsound,
as it would allow creating credits out of thin air.) (We write ≡ for
subtyping, both ways.)

To ensure that credits represent an actual measure of the com-
putation cost, the type system must be modified in one other way:
the typing rule for function applications must be amended so that
every call consumes one credit. This is standard: in Hehner’s ap-
proach [12], every recursive function call steps the clock; in Crary
and Weirich’s system [5], every function call steps the clock; in
Danielsson’s system [6], every function definition must be “ticked”.

In a functional programming language, without primitive loop
forms, function calls are the only non-trivial source of time com-
plexity. Furthermore, time credits cannot be manufactured. As a
result, one can prove that, up to a constant factor, the number of
reduction steps that can be taken by the program is limited by the
number of credits that are initially made available to it. For instance,
one can prove the following statement: “if p is a program such that
⊢ p : ∀n, int n ∗ n$ → unit holds, then p has worst-case linear
time complexity: that is, there exists a constant k such that, for every
integer n, running the program p n takes at most kn steps.” This
theorem shows that the system derives correct complexity claims
about complete programs. There follows that the claims that are
derived about program components (open terms) must be correct as
well, in some sense. The latter are “amortized” complexity claims in
the sense that they eventually lead to a correct worst-case complexity
assessment for all complete programs.

A type-and-capability system, equipped with credits-as-capabili-
ties and with the rule that function calls consume one credit, is able
to encode amortized time complexity analyses in the style of Tarjan.
Such a system, however, has the limitation that data structures that
contain credits must be linear. Thunks, in particular, do contain
credits: as partial payments are made, more credits are stored; when
the thunk is forced, the stored amount drops to zero. Thus, it seems
that thunks must be linear. This is a problem: in order to reproduce
Okasaki and Danielsson’s analyses, it is essential to allow thunks to
be freely shared.

This is where our treatment of monotonic state comes in: using
the “monotonic counters” coding pattern, a call-by-value version of
Danielsson’s thunks can be implemented as a library.



1 type thunk n α = – the type of thunks

2 ∃obs : N → DCAP.
3 ((∀n, p. unit ∗ obs n ∗ p$ → unit ∗ obs (n - p)) ×
4 (unit ∗ obs 0 → α)) ∗
5 obs n
6

7 type state n α = – internal state of a thunk:

8 | White ((unit ∗ n$ → α) ∗ 1$) – not yet evaluated

9 | Gray (unit) – being evaluated

10 | Black (α) – evaluated

Figure 7. Thunks: internal type definitions

A signature for thunks A signature for thunks appears in Figure 6.
A thunk is parameterized with its cost n (a “debit”) and with its
result type α (line 1). The type thunk n α has kind VAL: a thunk is an
ordinary value, and can be duplicated without restriction. A thunk
of cost n is created out of a computation of cost n, that is, a function
of unit to α that consumes n credits (line 2). At any time, a thunk
of cost n can be partially paid for (line 3). This consumes p credits,
and produces a thunk of cost n − p. (This is subtraction in N.) At
runtime, pay is a no-op and returns its argument. Finally, a thunk
can be forced when it has been paid for, that is, when its cost is zero
(line 4).

Each of mk, pay, and force require (and consume) one credit.
This effectively means that a call to one of these functions costs two
credits, one of which pays for the call, the other of which is passed
to the function. This does not have deep significance: the point is
that these operations have (amortized) constant time cost.

Implementation The definition of the type thunk closely follows
the pattern that was introduced for monotonic counters. According
to Figure 7, a thunk of cost n is:

for some abstract notion of an observation of a natural integer
(line 2),

a pair of a pay method (line 3), which accepts an observation
of any integer n, as well as a number of credits p, and returns
an observation of n − p; and a force method (line 4), which
expects an observation of 0 and produces a value of type α;

packaged together with an observation of n (line 5).

Under the hood, a thunk is implemented as a hidden reference to
a state, which is one of White, Gray, or Black (lines 7–10). We build
on an earlier encoding of thunks by the second author [24], which
explained how to exploit a hidden reference but did not include a
time complexity aspect. Here, we introduce a hidden “piggy bank”,
where credits are inserted by pay, and that is broken by the first call
to force.

The implementation of thunks appears in Figure 8. In the
prologue (lines 3–8), we introduce a fate ϕ over the natural integers.
Its value decreases with time and represents the number of credits
that remain to be paid. It is initially set to the cost of the suspended
computation. We also allocate a reference r, which initially holds
the color White, the suspended computation userfun, and one credit,
which we later use to pay for the call to userfun.

The invariant I (line 14) is a conjunction of three capabilities,
which respectively govern the reference, the piggy bank, and the
fate. These capabilities share two integer indices. The index nc,
for necessary credits, is the number of credits required to force
the thunk. Its value is initially n (line 17), and drops to zero when
the thunk is first forced. The index ac, for available credits, is the
number of credits in the piggy bank. The index ac is increased
when a payment is made, and diminished by n when the thunk is
first forced. It is worth noting that ac does not, by itself, exhibit

1 let mk : ∀n, α. (unit ∗ n$ → α) ∗ 1$ → thunk n α =
2 λ(userfun : unit ∗ n$ → α).
3 let fate ϕ : FATE N (≥) = n in – a decreasing fate

4 got cap {ϕ : n};
5 let cap obs i = 〈ϕ : i〉 in
6 make obs n;
7 let σ, (r: [σ]) = ref (White userfun) in
8 got cap {σ: ref (state n α)}; – this uses up our 1$

9

10 let methods :
11 (∀n, p. unit ∗ obs n ∗ p$ → unit ∗ obs (n - p)) ×
12 (unit ∗ obs 0 → α) =
13

14 hide I = ∃nc, ac.
15 {σ : ref ((state nc α) ⊗ I) } ∗ ac$ ∗ {ϕ : nc - ac}
16 outside of
17 pack cap I; – the witnesses are n and 0

18

19 let pay : ∀n, p. unit ∗ obs n ∗ p$ ∗ I
20 → unit ∗ obs (n - p) ∗ I =
21 λ().
22 let nc, ac = unpack cap I in
23 got cap
24 obs n ∗
25 {σ : ref ((state nc α) ⊗ I)} ∗
26 (ac + p)$ ∗ – our new, combined credit

27 {ϕ : nc - ac};
28 exploit obs n; – this yields n ≥ nc - ac

29 set fate ϕ := nc - (ac + p); – a monotonic update

30 make obs (n - p); – uses n - p ≥ nc - (ac + p)

31 pack cap I – witnesses: nc and ac + p

32

33 and force : unit ∗ obs 0 ∗ I → (α ⊗ I) ∗ I =
34 λ().
35 let nc, ac = unpack cap I in
36 got cap
37 obs 0 ∗
38 {σ : ref ((state nc α) ⊗ I)} ∗
39 ac$ ∗
40 {ϕ : nc - ac};
41 exploit obs 0; – this yields nc - ac = 0

42 match !r with – whence ac ≥ nc

43 | White (userfun : unit ∗ nc$ ∗ I → (α ⊗ I) ∗ I) →
44 r := Gray ();
45 got cap
46 {σ : ref ((state 0 α) ⊗ I)} ∗
47 (nc + 1)$ ∗ – the necessary credit

48 (ac - nc)$ ∗ – any leftover credit

49 {ϕ : 0};
50 pack cap I; – witnesses: 0 and ac - nc

51 got cap (nc + 1)$ ∗ I;
52 let v : α ⊗ I = userfun () in
53 let _, _ = unpack cap I in
54 r := Black v;
55 pack cap I; – witnesses: 0 and 0

56 v
57 | Gray () → fail
58 | Black v → pack cap I; v – witnesses: nc and ac

59 in (pay, force)
60 in
61 got cap obs n;
62 pack methods as thunk n α

Figure 8. Thunks



monotonic behavior. The difference nc − ac, which represents the
amount that remains to be paid, does: it decreases with time.

For lack of space, the reason why I is recursively defined, as
well as the meaning of the tensor · ⊗ I, are not explained. As far as
this paper is concerned, these aspects can be ignored. The reader is
referred to the second author’s earlier paper on hidden state [24].

The pay method (lines 19–31) stores the p credits that it receives
as an argument in the piggy bank (line 26), updates the fate so as to
reflect a decrease in the amount that remains to be paid (line 29), and
publishes a new observation (line 30). This method has absolutely no
runtime effect: its type erasure is λ().(). If the type system supported
user-defined coercions (a feature that we have not included!), the
pay method, as well as the external pay function (Figure 6, line 3),
could be declared as coercions. This would have several benefits: (i)
an application of pay would be considered a coercion application, as
opposed to a function call, so it would cost zero credits, as opposed
to two; (ii) an application of pay would generate no code whatsoever;
(iii) more importantly, this would allow pay to be used under a linear,
covariant context, a feature that is present in Danielsson’s system [6,
§11]. Coercions, if included in the system, could also serve to expose
the fact that the type thunk n α is covariant in n and in α.

The force method exploits the observation obs 0 (line 37)
to determine that the available credit ac exceeds the necessary
credit nc (line 41). This allows nc credits to be taken out of the
piggy bank. Furthermore, in the first branch of the match construct,
deconstructing White makes one extra credit is available. Thus, in
total, we have nc + 1 credits (line 47). These credits are required to
call userfun (lines 51–52): one credit is consumed by the call itself,
while the other nc credits are passed to userfun, which consumes
them. Note that, prior to invoking userfun, the invariant I must be
re-established (line 50). This is possible, in spite of the fact that nc
credits have just been taken out of the piggy bank, because the thunk
is now colored gray.

The instruction r := Black v (line 54) requires unpacking I before
the update (line 53) and re-packing it afterwards (line 55).

The implementation of the external functions pay and force
(whose types appear in Figure 6, lines 3–4) is omitted. As before,
they are just wrappers in the style of Pierce and Turner [23]. Because
this wrapping involves a function call, the external versions of pay
and force require one credit, whereas the internal methods do not.

6. Application: hash-consing

We now present an application to the specification of hash-consing.

A challenge Let us fix a type data. A hash-consing facility usually
takes the form of a function of type data → data, with the informal
specification that the images of d1 and d2 are physically equal if and
only if d1 and d2 are equal. Here, however, in order to avoid dealing
with physical equality, we consider a slightly more basic interface,
with equivalent expressive power. We view a hash-consing function
as a function of type data → int, with the informal specification
that the integer hashes associated with d1 and d2 are equal if and
only if d1 and d2 are equal.

Hash-consing is typically implemented using a mutable data
structure (say, a hash table) that maps data to integers. When some
datum d is presented, one checks whether d already is in the domain
of the table: if not, the table is extended with a binding of d to some
fresh integer. At this point, a binding of d to some integer i must
exist in the table, and i is returned.

The challenge is to check that this implementation is correct with
respect to a signature that does not reveal the existence of an internal
state, does not impose any linearity restrictions, yet is strong enough
to encode the above informal specification.

An ideal signature What is an ideal signature for hash-consing?
We wish to claim that hash implements an injective mathematical

1 logic val h: data → Z

2 logic property: injective h
3 val hash: ∀d. data d → int (h d)

Figure 9. An ideal (unattainable?) signature for hash-consing

1 type ϕ: FATE ifmap ⊆
2 val hash: ∀d. data d → ∃i. int i ∗ 〈ϕ : [d 7→ i]〉

Figure 10. A novel, pragmatic signature for hash-consing

function from data to integers. This is done by the signature in
Figure 9, where h is declared to be such a function (lines 1–2), and
hash is declared to implement h (line 3). There, h is a function in
the ambient logic, while hash is a programming language function.
We write data both for the (unparameterized) type of data in the
ambient logic and for the (indexed) type of data in the programming
language. We stick with the indexed-type approach that we have
used throughout this paper, although a notation in the style of Hoare,
without indexed types and with pre- and post-conditions, would
arguably be more palatable.

It is very likely that this ideal signature is sound: as far as clients
are concerned, everything is consistent with the illusion that hash
has no side effect and implements some fixed injective mathematical
function h.

Unfortunately, it is unclear how to argue that an imperative
implementation satisfies this signature. The mutable table is initially
empty and is populated only as the program is executed. As a
result, it seems impossible to statically provide a definition of the
mathematical function h. In fact, in two distinct program runs, the
mutable table might hold distinct contents!

A solution An informal explanation why hash-consing works is
that the hash table holds a map of data to integer codes that remains
injective at all times and can only grow with time, so that whatever
facts the client observes about this map remain true forever. Of
course, it is straightforward to model this situation using fates and
observations.

We write ifmap for the (ambient logic) type of injective finite
maps of data to integers. We write [d 7→ i] for the singleton map
that maps d to i. We write ⊆ for map inclusion.

In the implementation of hash-consing that follows, we create a
fate, say ϕ, of kind FATE ifmap (⊆), and set up a hidden invariant
that relates the content of the mutable table with this fate. By doing
so, we state (and we must prove) that the table holds an injective
map and grows with time.

An additional key idea is that, contrary to our earlier examples
(§4, §5), the existence of ϕ is not hidden. Instead, it is exposed in
the signature (Figure 10, line 1). This allows hash to be specified as
follows: when passed a datum d, hash produces an integer i, together
with a prediction of the singleton map [d 7→ i] (Figure 10, line 2).
This can be understood as a guarantee that the binding of d to i is in
the map, now and forever.

This signature does not involve any linear entities, so hash can
be used as if it were side-effect-free. In particular, it can be invoked
by multiple clients without requiring them to cooperate with one
another, as would be the case if the use of hash was governed by a
linear capability.

Before showing how a typical imperative implementation can
satisfy this new signature, let us first find out how expressive it
is. Does it express the property that the integer hashes associated
with d1 and d2 are equal if and only if d1 and d2 are equal? Yes—
here is how. Imagine that a client invokes hash, at two arbitrary
points in time, with respective arguments d1 and d2. She receives,
in exchange, two predictions 〈ϕ : [d1 7→ i1]〉 and 〈ϕ : [d2 7→ i2]〉.



1 type htbl: SNG → VAL – type of a hash table

2 type cht: SNG → fmap → CAP – capability over a hash table

3

4 val create:
5 unit → ∃ρ. (htbl ρ ∗ cht ρ ∅)
6 val add: ∀d i ρ m.
7 data d × int i × htbl ρ ∗ cht ρ m →
8 unit ∗ cht ρ (m[d 7→ i])
9 val find: ∀d ρ m.

10 data d × htbl ρ ∗ cht ρ m →
11 ((∃i. int i ∗ 〈[d 7→ i] ⊆ m〉) + (unit ∗ 〈d /∈ dom(m)〉))
12 ∗ cht ρ m

Figure 11. A strong specification of hash tables

1 type lock : CAP → VAL – locks are duplicable

2 val newlock: ∀γ. unit → lock γ – initially in a locked state

3 val lock: ∀γ. lock γ → unit ∗ γ – locking yields γ
4 val unlock: ∀γ. lock γ ∗ γ → unit – unlocking consumes γ

Figure 12. A signature for locks

By joining these predictions (§3), she obtains the existence of an
injective finite map m such that [d1 7→ i1] ⊆ m and [d2 7→ i2] ⊆ m
both hold. The fact that m is a map allows her to show that d1 = d2

implies i1 = i2, while the fact that m is injective allows her to prove
that i1 = i2 implies d1 = d2. Thus, she has d1 = d2 ⇐⇒ i1 = i2,
as desired.

In summary, whereas the ideal signature of Figure 9 claims
that hash implements a fixed injective mathematical function, the
pragmatic signature of Figure 10 claims that it implements an
injective mathematical function whose graph may be constructed
at runtime, and may grow with time. The latter signature is more
general than the former. It represents a relaxed definition of the
concept of a pure function. It is, to the best of our knowledge, a
contribution of this paper.

Implementation Let us now see how this signature can be imple-
mented in our setting. Before we look at the code, we need a couple
of building blocks.

The first building block is an implementation of hash tables. An
arbitrary implementation will do, as long as it satisfies the signature
in Figure 11. This is a completely standard specification of hash
tables: it is in no way specific to our application to hash-consing. It
relies on a logic type fmap of finite (but not necessarily injective)
maps of data to integers. It publishes an abstract type and an abstract
capabillity: htbl ρ (line 1) is the type of a pointer to a hash table in
region ρ, while cht ρ m is a capability over such a hash table. The
capability cht ρ m plays a dual role: it represents the ownership of
the hash table and encodes the assertion that the contents of the table
corresponds to the finite map m. This is analogous to an abstract
predicate in separation logic [20]. The function create creates a fresh
region ρ containing an empty hash table (line 5). It returns a pair
of a pointer to the table and a capability for the table. A call to add
(d, i, h) (lines 7–8) updates the table h with a binding of d to i. It
requires a capability cht ρ m and produces an updated capability cht
ρ (m[d 7→ i]), so as to reflect the update at the logical level. A call
to find (d, h) (lines 10–12) either returns an integer i together with
a proof that d is associated with i in the table, or produces a proof
that d is not in the domain of the table. In either case, find returns
the capability over the unchanged hash table (line 12).

The second building block is an implementation of locks. In
contrast with our earlier examples, here, we will not use the anti-
frame rule directly. The anti-frame rule is too restrictive [26] in that
it would require us to restore the hidden invariant before calling

1 logic type ifmap = {m : fmap | injective m}
2

3 let mkhash : unit → ∃ϕ : FATE ifmap ⊆.
4 ∀d. data d → ∃i. int i ∗ 〈ϕ : (d 7→ i)〉 =
5 λ().
6 let fate ϕ : FATE ifmap ⊆ = ∅ in
7 let ρ, (h : htbl ρ) = create () in
8 let σ, (r : [σ]) = ref 0 in
9 got cap {ϕ: ∅} ∗ cht ρ ∅ ∗ {σ: ref int 0};

10 let cap I = ∃c : int. ∃m : ifmap.
11 {ϕ: m} ∗ cht ρ m ∗
12 {σ: ref int c} ∗
13 〈∀i, i ∈ codom(m) → i < c〉 in
14 pack cap I; – witnesses: 0 and ∅
15 let l : lock I = newlock () in
16 unlock l; – this consumes I

17

18 let hash : ∀d. data d → ∃i. int i ∗ 〈ϕ : (d 7→ i)〉 =
19 λd.
20 let () = lock l in – this yields I

21 let c, m = unpack cap I in – open it up

22 match find (d, h) with
23 | Left i → – we have 〈[d 7→ i] ⊆ m〉
24 make 〈ϕ: [d 7→ i]〉; – permitted: we have {ϕ : m}

25 pack cap I; – witnesses: c and m

26 unlock l; – this consumes I again

27 pack i
28 | Right () → – we have 〈d /∈ dom(m)〉
29 let c = !r in
30 add (d, c, h); – we have cht ρ (m[d 7→ c])

31 r := c +1; – we have {σ: ref int (c + 1)}

32 set fate ϕ := m[d 7→ c];
33 got cap 〈∀i, i ∈ codom(m[d 7→ c]) → i < c + 1〉;
34 make 〈ϕ: [d 7→ c]〉;
35 pack cap I; – witnesses: (c+1)

36 unlock l; – and m[d 7→ c]

37 pack c
38 in
39 pack hash – witness: ϕ

Figure 13. Implementation of hash-consing

the hash table functions add and find. However, by restoring the
invariant, we would lose the capabillity over the hash table, so we
would no longer be able to call add or find! A solution to this
problem is to introduce a dynamic check, and the most elegant way
of doing so is to rely on an implementation of locks. A signature for
locks appears in Figure 12. Our locks are analogous to dynamically
allocated locks in separation logic [11, 13, 21]. Unlocking consumes
a capability γ (line 4), which can later be recovered by locking
(line 3). The capability γ is fixed at lock creation time (line 2). The
type lock γ is duplicable. Yet, the capability is never duplicated,
because the lock operation can fail (in a sequential setting) or
block (in a concurrent setting). In a sequential setting, locks can be
implemented in terms of the anti-frame rule: all it takes is a hidden
reference to a Boolean flag. In a concurrent setting, locks can be
viewed as primitive.

Let us now turn towards the actual implementation of hash-
consing (Figure 13).

We first define the type ifmap of injective finite maps on top of
the type fmap of finite maps (line 1). We use Coq’s subset notation.
An injective map is a pair of a map m and a proof that m is injective.
In the following, we adopt the informal convention that an ifmap
object can be used where an fmap object is expected, and vice-versa;
in the latter case, a proof obligation is generated.



The function mkhash (lines 3–39) is in charge of creating a new
instance of the hash-consing facility. Its result type corresponds
to the signature of Figure 10. Its code starts by creating a new
initially empty increasing fate ϕ over injective finite maps (line 6),
an empty hash table h (line 7) and an integer reference r (line 8). The
internal invariant is defined immediately thereafter (lines 10–13).
The invariant states that the fate and the table are in a common state
m, an injective finite map. It further states that the integer value c
stored in the reference r is an upper bound for the codomain of h: that
is, c is the next available integer code. The invariant initially holds
(line 14). (This generates the proof obligation ∀i, i ∈ codom(∅) →
i < 0.) The invariant is hidden using a fresh lock l. The lock l is
captured in the closure of the function hash, which is permitted
because l has duplicable type lock I.

Lines 18–39 show the actual hash-consing function, hash. We
retrieve the invariant I out of the lock and unpack it (Lines 20–

21). Then, we check whether d is already in the domain of h. If so
(lines 23–27), we produce the observation 〈ϕ : [d 7→ i]〉. This is
permitted because we have the logical proposition 〈[d 7→ i] ⊆ m〉
as well as the capability {ϕ : m}. Otherwise (lines 28–37), we
update h so that the datum d is now mapped to c, the current value
of the reference r. The reference r is then incremented so that its
value remains an upper bound for the codomain of h. We then check
that we have the capabilities needed to repack I (lines 32–34). The
first one (line 32), namely {ϕ : m[d 7→ c]}), generates two proof
obligations. First, we must prove that m[d 7→ c] is an injective
map: this holds because m is injective and c is not in the codomain
of m. Second, we must prove that m is a subset of m[d 7→ c]:
this holds because d is not in the domain of m. The second one
(line 33) represents a logical proposition that we must prove, namely
∀i, i ∈ codom(m[d 7→ c]) → i < c + 1. This follows from
the equality codom(m[d 7→ c]) = codom(m) ∪ {c} and from the
hypothesis ∀i, i ∈ codom(m) → i < c. The last capability (line 34)
is an observation. This line produces two trivial proof obligations:
first, we must check that [d 7→ c] is injective; second, we must prove
[d 7→ c] ⊆ m[d 7→ c].

Although the concrete syntax used in in our code snippets
is admittedly informal, we believe that we have explained fairly
precisely how a type-and-capability system, equipped with fates and
predictions, and supplemented with an expressive logic, can be used
to give a specification of a hash-consing facility. This specification
conceals the existence of an internal state, yet guarantees that two
pieces of input data receive the same code if and only if they are
equal. This is an original result: to the best of our knowledge, no
such specification of hash-consing has been presented before.

7. Related work

Ghost state and history constraints A fate is a ghost variable that
comes with a built-in temporal property: the sequence of its values
forms an increasing chain with respect to a certain preorder R. In
combination with an ordinary invariant (“the values of reference r
and fate ϕ coincide”), this allows expressing a temporal assertion
about the state (“the value of reference r must grow with time”).
The idea of introducing ghost variables in order to reduce temporal
reasoning to present-time reasoning is not new; see, for instance,
Schneider [28, chapter 7].

Liskov and Wing [18] associate a history constraint—a predicate
over pairs of visible states—with a class definition. This idea has
been implemented in the Larch/C++ [15] and JML [16] specification
languages. Unfortunately, there seems to exist no clear account
of how history properties are verified. Our understanding is that
the tools check that the pre- and post-state of every method are
related by the history constraint. This is a necessary condition but,
in the presence of callbacks, not a sufficient one. Furthermore, these

systems offer no way of exploiting a history constraint to establish a
new logical fact.

Fähndrich and Leino [10] note that, if the state of an object is
constrained to evolve in a monotonic manner, then it is sound to
make an assertion about this object, even in a system that does
not control aliasing or ownership. We take inspiration from this
idea: a prediction represents an assertion about an entity (namely,
a fate) that one does not own. Fähndrich and Leino require every
field update to be monotonic (that is, to preserve every property
that might be known of the object). We adopt a simpler and more
expressive approach: our fates and predictions are independent of
the treatment of mutable state. While the update of a fate is required
to be monotonic with respect to a fixed law R, there is a priori no
restriction on updates of references.

Leino and Schulte [17] extend the Spec# program verification
system with history invariants in order to verify a version of the
subject-observer pattern. Their approach is sound in the presence
of callbacks and re-entrancy. Furthermore, there is a benefit to
declaring history invariants. In the basic Spec# methodology, an
invariant associated with object o1 may refer to an object o2 only if
o1 owns o2 (o2 is a “transitive rep object” of o1). Leino and Schulte
relax this restriction and allow this also when o2 is declared to be a
“subject” of o1 and the invariant associated with o1 is stable under
the history invariant associated with o2. Again, this expresses the
idea that, provided updates to o2 are monotonic, it is sound for o1

to make an assertion about o2, even though o1 does not own o2.

Regions Most type-and-capability calculi use regions as a mecha-
nism for assigning a name to a single value or to a set thereof [3, 4,
29]. Regions involve a form of monotonicity, which manifests itself
in two ways: (i) once a region name is allocated, it exists forever;
(ii) the population of a region can only grow with time. Thus, if
a value v inhabits a region ρ, then this fact holds forever. For this
reason, the type [ρ] of the inhabitants of region ρ can safely be
considered duplicable. This is the same reason why predictions are
considered duplicable in the present paper.

Whereas regions denote sets of runtime values, fates take values
in some type T of the ambient logic. This design decision plays
an important part in the simplicity of the meta-theory of fates, but
makes it impossible to define regions in terms of fates.

Concurrency Fates and predictions are sound in both sequential
and concurrent settings. The implementations of monotonic counters
and thunks presented in this paper exploit the anti-frame rule, which
is sound only in a sequential setting [24]. In a concurrent setting,
one would instead use dynamically allocated locks, which hold and
hide a capability [11, 13].

Deny-guarantee There is a strong connection between our work
and deny-guarantee reasoning [7]. (We are grateful to Hongseok
Yang for bringing this to our attention.) In fact, it is possible to
sketch an informal encoding of fates and predictions in terms of
stable deny-guarantee assertions.

First, the information that a fate variable ϕ has kind FATE T R

corresponds to a deny on any update of ϕ that does not respect R.
That is, no thread is allowed to perform a non-monotonic update.
In our system, this information carried in the kind is duplicable,
so it should be encoded as a “duplicable deny”. This can be ex-
pressed in terms of Dodds et al.’s “fractional denies” via existential
quantification over a fraction: ∃a > 0.(a)deny.

Second, a prediction 〈ϕ : i〉 corresponds to an assertion that the
value of ϕ is at least i, that is, i R ϕ. Such an assertion carries
no permission, hence is duplicable, as required. Furthermore, this
assertion, once conjoined with the deny that forbids non-monotonic
updates, is stable.

Last, a fate ownership token {ϕ : i} corresponds to a conjunction
of the assertion i = ϕ and a full permission over all monotonic



updates of ϕ. Again, once conjoined with the deny that forbids
non-monotonic updates, this assertion is stable.

One can informally check that this interpretation validates all of
the axioms that govern fates and predictions (§3).

In summary, like deny-guarantee, fates and predictions allow
reasoning about state changes. They are less ambitious and simpler
in several ways: (i) they do not permit interference between threads;
(ii) the law that governs a fate is fixed at allocation time, and, for
this reason, fractional permissions are not needed; (iii) fates hold
logical values, as opposed to runtime values. Fates and predictions
could perhaps be viewed as an interesting “design pattern” in a
programming language equipped with deny-guarantee reasoning.

Relational models of monotonic state Ahmed, Dreyer, and Ross-
berg [1] consider a call-by-value λ-calculus with general references,
and endow it with a possible worlds model in which the relational
interpretation of a type may grow with time. They use this model
to prove certain pairs of programs contextually equivalent, but also
(often) to establish facts about a single program, such as the fact that
a certain dynamic check is redundant. For this purpose, type-based
approaches are applicable and, perhaps, offer better potential for
integration in a programming language design.

When restricted to a unary setting, Ahmed et al.’s system exhibits
strong analogies with Charguéraud and Pottier’s calculi [3, 24]
as well as with the present paper. Roughly speaking, an island
corresponds to a piece of state that is hidden via the anti-frame
rule; the island’s population, a set of values, grows with time, and
corresponds to a fate; and the fixed law that relates the population
with a store relation corresponds to an invariant that is imposed via
the anti-frame rule and ties a fate to a piece of runtime state.

In Ahmed et al.’s motivating example [1, Figure 1], type abstrac-
tion is used to protect an extensible table implementation. Integer
indices into the table are passed to the client at an abstract type t,
so the client cannot forge indices. As a result, every index must be
in the domain of the table (which grows with time) and no bounds
check is necessary. Type generativity guarantees that distinct table
instances give rise to distinct instances of the abstract type t.

Our system also allows proving that no bounds check is neces-
sary; is amenable to mechanical checking; and (perhaps surprisingly)
is able to disclose the fact that table indices are just integers.

How does this work? The problem is essentially a simplified
version of hash-consing, so our approach is similar to that described
earlier (§6). With a table instance, we associate a fate ϕ, ranging
over sets of integers, and whose law is set inclusion. As an internal
invariant, we assert that ϕ represents the domain of the table. Then,
we define a “valid table index” as a pair of an integer index i and an
observation that i is in the domain of the table: that is, we define the
type index ϕ as ∃i.(int i ∗ 〈ϕ : {i}〉). This type plays the role of t
in Ahmed et al.’s paper.

When supplied by the client with a value of type index ϕ, we
confront the observation 〈ϕ : {i}〉 with the current state of ϕ, a
capability of the form {ϕ : I}, where the set of integers I represents
the current domain of the table. This yields i ∈ I , which guarantees
that the index is within bounds.

In Ahmed et al.’s “irreversible state change” example [1, §5.5],
the challenge is to prove that !x evaluates to 1, even though the
unknown function f might (via a re-entrant call) affect x:

let x = ref 0 in λf.(x := 1; f(); !x)

This is proved by introducing a fate to express the fact that the value
of x grows with time, and by using the anti-frame rule to hide the
existence of the cell x and of its fate, together with the invariant that
x is 0 or 1. The update x := 1 is provably monotonic, since 1 is the
greatest permitted value for x. An observation of the fate in state 1
is created before the call to f() and is exploited, after the call, to
establish that x still holds the value 1.

Dreyer et al. [9] revisit Ahmed et al.’s framework and introduce
so-called “state transition systems” to model the way in which
properties of local state evolve over time. In their most basic form,
state transition systems have “public transitions” only. In that case,
they are just pre-orders, and allow reasoning about monotonic
hidden state much in the same way as we do, as illustrated by
the above examples. In their most general form, state transition
systems also have “private transitions”, which offer a way of taking
advantage of the well-bracketing of function calls and returns.
The second author’s unpublished generalized anti-frame rule [25]
stems from a similar motivation, and also allows exploiting well-
bracketing. The basic anti-frame rule requires a fixed invariant,
so a piece of hidden state is typically governed by a single fate
throughout its lifetime. In contrast, the generalized anti-frame rule
accepts a parameterized invariant, and uses universal quantification
to express well-bracketing, so a piece of hidden state can be
usefully tied to different fates at different points in time. Roughly
speaking, dynamically allocating a new fate and tying it to the state
corresponds to creating a fresh instance of a state transition system,
or, in Dreyer et al.’s approach, to taking a private transition. In
summary, the two approaches are closely related. Ours differs in
that it is expressed as a type system and (we believe) is presented in
a more orthogonal fashion. In particular, the rules that govern fates
and predictions are independent of those that govern hidden state.

Sumii’s environmental bisimulations [30] also involve a form
of monotonicity, as the set of values that are accessible to the
environment grows with time. We are unfortunately unable to offer
a more informed comparison of the two approaches. The examples
that Sumii presents are borrowed from Ahmed et al. and can be
dealt with using our type- and assertion-based approach.

Type-based complexity analysis Although automated time com-
plexity analysis is a research field of its own, the development of
expressive type systems that can check user-provided time complex-
ity assertions has received surprisingly little attention.

The type systems by Dornic et al. [8], Reistad and Gifford [27],
and Crary and Weirich [5] annotate function types with a worst-case
cost. The type-and-capability system that we have sketched (§5) is
significantly more expressive. This is evidenced, we hope, by our
encoding of Okasaki and Danielsson’s analysis of thunks.

The idea that a space credit is a linear entity, which can be passed
around and stored, is not new: Hofmann [14] uses it quite elegantly
to keep track of heap space usage. The idea that a time credit is a
linear entity, which can similarly be passed around and stored, is
explicit in Tarjan’s work [31], and is formalized, for instance, by
Atkey [2]. Atkey’s system is analogous to ours in its motivation
and in its treatment of credits. It is less expressive in several ways:
because it lacks a treatment of hidden state and of monotonicity, we
believe that it does not allow an encoding of Danielsson’s thunks.
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A. Quick reference

We very briefly summarize how to equip a type-and-capability sys-
tem in the style of Charguéraud and Pottier [3] with fates and predic-
tions. In order to do this, the system must have existential quantifi-
cation; a distinction between duplicable and linear capabilities; and
logical assertions (viewed as duplicable capabilities). Everything
else (products, sums, functions, regions, references, recursive types,
hidden state) is orthogonal and described elsewhere [3, 24].

The kinds are listed in Figure 14. There, the judgement ⊢CIC

is the typing judgement of the ambient logic, which we take to be
the Calculus of Inductive Constructions. In this and the following
figures, uses of ⊢CIC correspond to proof obligations, which, in an
implementation, would be shipped to an external theorem prover.
Metavariables in bold face stand for objects of the ambient logic:
typically, T ranges over types, R over preorders, t over terms, P
over propositions.

The syntax of types and capabilities appears in Figure 15. They
are presented as a single syntactic category of objects o. A kind
assignment system (Figure 16) allows telling which objects are
types and which are capabilities; which objects are linear and which
are duplicable; etc. This kind-driven approach to linearity has been
independently studied by Mazurak et al. [19].

A kinding environment K maps type variables to kinds. We write
⌊K⌋CIC for the restriction of K to bindings of the form α ::T. Value
types (VAL) form a subset of computation types (CMP); similarly,
duplicable capabilities (DCAP) form a subset of capabilities (CAP).
The conjunction (∗) of a type and a capability is duplicable if and
only if both conjuncts are duplicable. The ownership of a fate
is considered a linear capability, whereas predictions and logical
assertions are duplicable capabilities.

The typing judgements and typing rules are exactly as in Char-
guéraud and Pottier [3]. The delta with this previous work lies in
the following subtyping axioms. The axioms that govern fates and
predictions appear in Figure 17. They are subject to the implicit
side condition that ϕ has kind FATE T R. The axioms that govern
propositions appear in Figure 18. Last, in order to allow duplicable
capabilities to be copied, we add the axiom D <: D ∗ D, where D
has kind DCAP.
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κ := VAL a (duplicable) value type
| CMP a (linear) computation type
| DCAP a duplicable capability
| CAP a linear capability
| T a logical value (an index)
| FATE T R a fate

⊢CIC T : Type

T is well-formed

⊢CIC T : Type

⊢CIC R : T → T → Prop

⊢CIC R is a preorder

FATE T R is well-formed

Figure 14. Kinds

o := α variable
| o → o arrow
| o ∗ o conjunction
| ∃α ::κ.o existential quantification
| ∅ null capability
| {o : o} ownership of a fate
| 〈o : o〉 prediction (observation)
| 〈P〉 logical proposition
| t logical value (index)

Figure 15. Types and capabilities

α ::κ ∈ K

K ⊢ α :: κ

K ⊢ o1 :: CMP

K ⊢ o2 :: CMP

K ⊢ o1 → o2 :: VAL

K ⊢ o1 :: κ
K ⊢ o2 :: DCAP

κ ∈ {VAL, DCAP}

K ⊢ o1 ∗ o2 :: κ

K ⊢ o1 :: κ
K ⊢ o2 :: CAP

κ ∈ {CMP, CAP}

K ⊢ o1 ∗ o2 :: κ

K, α ::κ1 ⊢ o :: κ2

K ⊢ ∃α ::κ1.o :: κ2 K ⊢ ∅ :: DCAP

⌊K⌋CIC ⊢CIC t : T

K ⊢ t :: T

K ⊢ o1 :: FATE T R

K ⊢ o2 :: T

K ⊢ {o1 : o2} :: CAP

K ⊢ 〈o1 : o2〉 :: DCAP

⌊K⌋CIC ⊢CIC P : Prop

K ⊢ 〈P〉 :: DCAP

K ⊢ o :: VAL

K ⊢ o :: CMP

K ⊢ o :: DCAP

K ⊢ o :: CAP

Figure 16. Kind assignment

FATE-CREATE ∅ <: ∃ϕ.{ϕ : t}

FATE-UPDATE {ϕ : t1} ∗ 〈t1 R t2〉 <: {ϕ : t2}

OBS-CREATE {ϕ : t} <: {ϕ : t} ∗ 〈ϕ : t〉

OBS-WEAKEN 〈ϕ : t2〉 ∗ 〈t1 R t2〉 <: 〈ϕ : t1〉

OBS-EXPLOIT {ϕ : t2} ∗ 〈ϕ : t1〉 <: {ϕ : t2} ∗ 〈t1 R t2〉

OBS-JOIN 〈ϕ : t1〉 ∗ 〈ϕ : t2〉 <:

∃α3 ::T.(〈t1 R α3〉 ∗ 〈t2 R α3〉 ∗ 〈ϕ : α3〉)

Figure 17. Subtyping axioms: fates

∅ ≡ 〈True〉

〈P1〉 ∗ 〈P2〉 ≡ 〈P1 ∧ P2〉

〈∃α :T.P〉 ≡ ∃α ::T.〈P〉

〈P1〉 <: 〈P2〉 if ⊢CIC P1 ⇒ P2

Figure 18. Subtyping axioms: propositions
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