L. Bohman, R. Kristin, J. L. Swanson, R. Moore, C. Rockne et al., Magnetic Resonance Imaging Characteristics of Glioblastoma Multiforme: Implications for Understanding Glioma Ontogeny, Neurosurgery, vol.67, issue.5, p.671319, 2010.
DOI : 10.1227/NEU.0b013e3181f556ab

P. Bondiau, E. Konukoglu, O. Clatz, H. Delingette, M. Frenay et al., Biocomputing: Numerical simulation of glioblastoma growth and comparison with conventional irradiation margins, Physica Medica, vol.27, issue.2, pp.103-108, 2011.
DOI : 10.1016/j.ejmp.2010.05.002

O. Clatz, P. Sermesant, . Bondiau, S. Delingette, G. Warfield et al., Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE Transactions on Medical Imaging, vol.24, issue.10, pp.1334-1346, 2005.
DOI : 10.1109/TMI.2005.857217

O. Clatz, M. Sermesant, P. Y. Bondiau, H. Delingette, S. K. Warfield et al., Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE Transactions on Medical Imaging, vol.24, issue.10, pp.241334-1346, 2005.
DOI : 10.1109/TMI.2005.857217

D. Corwin, C. Holdsworth, C. Russell, . Rockne, D. Andrew et al., Toward Patient-Specific, Biologically Optimized Radiation Therapy Plans for the Treatment of Glioblastoma, PLoS ONE, vol.14, issue.11, p.79115, 2013.
DOI : 10.1371/journal.pone.0079115.t002

G. Cruywagen, . Woodward, . Tracqui, . Bartoo, E. Murray et al., THE MODELLING OF DIFFUSIVE TUMOURS, Journal of Biological Systems, vol.03, issue.04, pp.937-982, 1995.
DOI : 10.1142/S0218339095000836

U. Ebert and W. Van-saarloos, Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts, Physica D: Nonlinear Phenomena, vol.146, issue.1-4, pp.1-99, 2000.
DOI : 10.1016/S0167-2789(00)00068-3

A. Fedorov, R. Beichel, J. Kalpathy-cramer, J. Finet, J. Fillion-robin et al., al. 3d slicer as an image computing platform for the quantitative imaging network, Magnetic Resonance Imaging, 2012.

V. Fonov, . Evans, . Mckinstry, D. Cr-almli, and . Collins, Unbiased nonlinear average age-appropriate brain templates from birth to adulthood, NeuroImage, vol.47, pp.102-102, 2009.
DOI : 10.1016/S1053-8119(09)70884-5

A. Gooya, G. Biros, and C. Davatzikos, Deformable Registration of Glioma Images Using EM Algorithm and Diffusion Reaction Modeling, IEEE Transactions on Medical Imaging, vol.30, issue.2, pp.375-390, 2011.
DOI : 10.1109/TMI.2010.2078833

C. Hogea, C. Davatzikos, and G. Biros, An image-driven parameter estimation problem for a reaction???diffusion glioma growth model with mass effects, Journal of Mathematical Biology, vol.10, issue.3, pp.793-825, 2008.
DOI : 10.1007/s00285-007-0139-x

S. Jbabdi, E. Mandonnet, H. Duffau, L. Capelle, K. Swanson et al., Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging, Magnetic Resonance in Medicine, vol.6, issue.3, pp.616-624, 2005.
DOI : 10.1002/mrm.20625

J. Keener and J. Sneyd, Mathematical physiology, interdisciplinary applied mathematics 8, 1998.

E. Konukoglu, Modeling Glioma Growth and Personalizing Growth Models in Medical Images, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00633697

E. Konukoglu, O. Clatz, P. Y. Bondiau, H. Delingette, and N. Ayache, Extrapolating glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins, Medical Image Analysis, vol.14, issue.2, pp.111-125, 2010.
DOI : 10.1016/j.media.2009.11.005

URL : https://hal.archives-ouvertes.fr/inria-00616107

E. Konukoglu, O. Clatz, B. Menze, B. Stieltjes, M. Weber et al., Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations, IEEE Transactions on Medical Imaging, vol.29, issue.1, pp.77-95, 2009.
DOI : 10.1109/TMI.2009.2026413

URL : https://hal.archives-ouvertes.fr/inria-00616100

A. Daniel, S. Lim, . Cha, C. Mary, M. Mayo et al., Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype, Neurooncology, vol.9, issue.4, pp.424-429, 2007.

E. Mandonnet, Mathematical modeling of glioma on MRI, Revue Neurologique, vol.167, issue.10, pp.715-720, 2011.
DOI : 10.1016/j.neurol.2011.07.009

E. Mandonnet, L. Capelle, and H. Duffau, Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns, Journal of Neuro-Oncology, vol.12, issue.2, pp.179-185, 2006.
DOI : 10.1007/s11060-005-9084-y

URL : https://hal.archives-ouvertes.fr/inserm-00147499

B. H. Menze, E. Stretton, E. Konukoglu, and N. Ayache, Image-based modeling of tumor growth in patients with glioma, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00825866

J. D. Murray, Mathematical biology, 2002.

M. Neal, D. Andrew, T. Trister, R. Cloke, S. Sodt et al., Discriminating Survival Outcomes in Patients with Glioblastoma Using a Simulation-Based, Patient-Specific Response Metric, PLoS ONE, vol.20, issue.1, p.51951, 2013.
DOI : 10.1371/journal.pone.0051951.s001

B. Ribba, G. Kaloshi, M. Peyre, D. Ricard, V. Calvez et al., A Tumor Growth Inhibition Model for Low-Grade Glioma Treated with Chemotherapy or Radiotherapy, Clinical Cancer Research, vol.18, issue.18, pp.5071-5080, 2012.
DOI : 10.1158/1078-0432.CCR-12-0084

URL : https://hal.archives-ouvertes.fr/hal-00744626

R. Rockne, K. Ec-alvord-jr, and . Swanson, A mathematical model for brain tumor response to radiation therapy, Journal of Mathematical Biology, vol.246, issue.(Suppl 13), pp.561-578, 2009.
DOI : 10.1007/s00285-008-0219-6

J. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 1999.

E. Stretton, . Geremia, . Menze, N. Delingette, and . Ayache, Importance of patient DTI's to accurately model glioma growth using the reaction diffusion equation, 2013 IEEE 10th International Symposium on Biomedical Imaging, 2013.
DOI : 10.1109/ISBI.2013.6556681

E. Stretton, E. Mandonnet, E. Geremia, B. H. Menze, H. Delingette et al., Predicting the Location of Glioma Recurrence after a Resection Surgery, Medical Image Computing and Computer-Assisted Intervention, 2012.
DOI : 10.1007/978-3-642-33555-6_10

URL : https://hal.archives-ouvertes.fr/hal-00813870

K. Swanson, E. Alvord, and J. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Proliferation, vol.29, issue.5, pp.317-330, 2000.
DOI : 10.1046/j.1365-2184.2000.00177.x

K. Swanson, C. Bridge, J. Murray, and E. Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, Journal of the Neurological Sciences, vol.216, issue.1, pp.1-10, 2003.
DOI : 10.1016/j.jns.2003.06.001

K. R. Swanson, Mathematical Modeling of the Growth and Control of Tumors, 1999.

K. Swanson and . Rostomily, A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle, British Journal of Cancer, vol.170, issue.1, pp.113-119, 2007.
DOI : 10.1002/(SICI)1096-9098(199912)72:4<199::AID-JSO4>3.0.CO;2-O

P. Tracqui, G. Cruywagen, D. Woodward, G. Bartoo, J. C. Murraye et al., A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth, Cell Proliferation, vol.32, issue.1, pp.17-31, 1995.
DOI : 10.1016/S0022-5193(87)80171-6

P. Tracqui, G. Cruywagen, D. Woodward, G. Bartoo, J. Murray et al., A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth, Cell Proliferation, vol.32, issue.1, pp.17-31, 1995.
DOI : 10.1016/S0022-5193(87)80171-6

H. Christina, J. K. Wang, M. Rockhill, . Mrugala, L. Danielle et al., Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Cancer research, issue.23, pp.699133-9140, 2009.

D. Woodward, . Cook, . Tracqui, . Gc-cruywagen, and . Murray, A mathematical model of glioma growth: the effect of extent of surgical resection, Cell Proliferation, vol.28, issue.6, pp.269-288, 1996.
DOI : 10.1002/1097-0142(197208)30:2<594::AID-CNCR2820300241>3.0.CO;2-2