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ON THE KOSTANT SECTION AND THE UNIVERSAL

CENTRALIZER IN POSITIVE CHARACTERISTIC

AND OVER THE INTEGERS

SIMON RICHE

Abstract. In this paper we prove analogues of fundamental results of Kostant
on the universal centralizer of a connected reductive algebraic group for alge-

braically closed fields of positive characteristic (with mild assumptions). We
also extend some of these results to integral coefficients.

1. Introduction

1.1. This note is concerned with the generalization of some fundamental results
concerning the universal centralizer group scheme I associated with a connected
reductive group G (and its Lie algebra I) to the case where the coefficients are an
algebraically closed field F of positive characteristic or a finite localization R of the
integers (with mild assumptions).

The case of complex coefficients is due to Kostant [Ko]. The case of fields of
positive characteristic is probably well known (at least in part) to experts, but
is not treated in detail in the literature as far we know (except for some results
in [Ve]), and is usually used only under rather strong assumptions (see e.g. [Ng]).
The case of integral coefficients might be new.

In the “classical” case (field of characteristic either zero or large), these results
play an important role in various aspects of the geometric Langlands program, see
e.g. [G1, BF, Do, Ng]. We expect our generalizations to play a similar role in
modular (or integral) versions of these results. In fact, our main motivation comes
from our desire to generalize the definition of the “Kostant–Whittaker reduction
functor” used e.g. in [BF, Do] to the case of integral coefficients. This functor plays
an important technical role in [MR].

1.2. The first main part of the paper (Section 3) is concerned with the case of
algebraically closed fields. In this case we have tried to prove the various results
in the maximal reasonable generality, and to introduce our assumptions only when
they become necessary.

First we recall the construction of Kostant’s section to the adjoint quotient g/G,
where g = Lie(G) (see Theorem 3.2.2). Then we use these results to prove that the
universal centralizer I is smooth over the regular locus greg (see Corollary 3.3.6).
We also describe the Lie algebra of the restriction Ireg of I to greg in terms of the
cotangent bundle to g/G (see Theorem 3.4.2), generalizing results in characteristic
zero due (to the best of our knowledge) to Bezrukavnikov–Finkelberg [BF]. Finally
we consider variants of these results when the Lie algebra g is replaced be the
Grothendieck resolution g̃ (see §3.5).
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2 SIMON RICHE

1.3. The second main part of the paper (Section 4) is concerned with the case
when G is a split, connected, simply-connected, semi-simple algebraic group over
the finite localization R of Z obtained by inverting all prime which are not very
good.

In this setting we define and study a Kostant section S (see in particular The-
orem 4.3.3), prove that the restriction of the universal centralizer to S is smooth
(see Proposition 4.4.1), and describe the Lie algebra of this restriction in terms of
the cotangent bundle to S (see Theorem 4.4.4). Finally we study analogues of these
objects for the Grothendieck resolution (see §4.5).

The proofs in this section mainly proceed by reduction to the case of algebraically
closed fields. (The required general results on this technique are treated in §4.1.)

1.4. Some notation and conventions. All rings in this paper are tacitly assumed
to be unital and commutative. If A is a B-algebra, we denote by ΩA/B the A-module
of relative differential forms, see [Ha, §II.8]. If M is an A-module, we denote by
SA(M) (or sometimes simply S(M)) the symmetric algebra of M .

If X is a scheme, we denote by OX its structure sheaf, and by O(X) the global
sections of OX . If Y is a scheme and X is a Y -scheme, we denote by ΩX/Y the
OX -module of relative differential forms. If X is smooth over Y , we denote by
T∗(X/Y ) (or simply T∗(X)) the cotangent bundle to X over Y , in other words the
relative spectrum of the symmetric algebra of the locally free OX -module TX/Y :=
H omOX

(ΩX/Y ,OX).
If R is a finite localization of Z, we define a geometric point of R to be an

algebraically closed field whose characteristic is not invertible in R. If F is a such
a geometric point, then there exists a unique algebra morphism R → F, so that
tensor products of the form F⊗R (−) make sense.

1.5. Acknowledgements. This work is part of a joint project with Carl Mautner,
see [MR]. We also thank Zhiwei Yun for useful conversations on regular elements,
and Sergey Lysenko for his help with some references.

The author was supported by ANR Grants No. ANR-2010-BLAN-110-02 and
ANR-13-BS01-0001-01.

2. Preliminaries on Lie algebras and regular elements

In this section we recall a number of definitions and basic results on Lie algebras
of group schemes and regular elements in the Lie algebra of a reductive group over
an algebraically closed field.

2.1. Lie algebra of a group scheme. Let X be a Noetherian scheme, and let G
be a Noetherian group scheme over X. We denote by ε : X → G the identity, and
consider the OX -coherent sheaf

ωG/X := ε∗(ΩG/X).

Then, by definition (see e.g. [SGA, Exposé II, §4.11]; see also [Wa, Chap. 12] for
the case G and X are affine), the Lie algebra of G is the quasi-coherent OX -module

Lie(G/X) := H omOX
(ωG/X ,OX),

with its natural bracket. We also denote by Lie(G/X) the scheme over X which
is the relative spectrum of the symmetric algebra of the OX -module ωG/X . This
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scheme is naturally a Lie algebra over X. When X is clear, we will sometimes
abbreviate Lie(G/X), resp. Lie(G/X), to Lie(G), resp. Lie(G).

We will use the following easy consequences of the definition.

Lemma 2.1.1. (1) If G is smooth over X, then the OX-module Lie(G/X) is
locally free of finite rank, and Lie(G/X) is a vector bundle over X.

(2) Let f : Y → X be a morphism. Assume that either G is smooth over X, or
that f is flat. Then there exists a canonical isomorphism

Lie(G×X Y/Y ) ∼= f∗Lie(G/X)

of OY -Lie algebras.

Proof. (1) Since G → X is smooth, the OG-module ΩG/X is locally free of finite
rank (see [SP, Tag 02G1]), which implies that ωG/X and Lie(G/X) are locally free
of finite rank over OX . The fact that Lie(G/X) is a vector bundle follows.

(2) We have

f∗Lie(G/X) = f∗H omOX
(ε∗ΩG/X ,OX) ∼= H omOY

(f∗ε∗ΩG/X ,OY )

under our assumptions (see [Ma, Theorem 7.11] for the second case). Now using [Ha,
Proposition II.8.10] one can easily check that f∗ε∗ΩG/X is the restriction to Y of
ΩG×XY/Y , which finishes the proof. �

2.2. Notation and assumptions. In Section 3 we will work in the following set-
ting.

Let F be an algebraically closed field of characteristic ℓ ≥ 0. LetG be a connected
reductive group over F, of rank r. Let B ⊂ G be a Borel subgroup and T ⊂ B be
a maximal torus. We denote by t ⊂ b ⊂ g the Lie algebras of T ⊂ B ⊂ G. We also
denote by U the unipotent radical of B, by n its Lie algebra, and by DG ⊂ G the
derived subgroup. We denote by B+ the Borel subgroup of G which is opposite to
B with respect to T, by U+ its unipotent radical, and by b+ and n+ their respective
Lie algebras.

We let Φ be the root system of (G,T), and W be its Weyl group. For α ∈ Φ,
we denote by gα ⊂ g the corresponding root subspace.

We denote by Φ+ ⊂ Φ the system of positive roots consisting of the opposites
of the T-weights in n, and by ∆ the corresponding basis of Φ. We also denote by
Φ̌ ⊂ X∗(T) the coroots of Φ, and by ∆̌ ⊂ Φ̌+ ⊂ Φ̌ the coroots corresponding to ∆
and Φ+ respectively. We denote by ZΦ ⊂ X∗(T), resp. ZΦ̌ ⊂ X∗(T), the lattice
generated by the roots, resp. coroots. For α ∈ Φ, resp. α̌ ∈ Φ̌, we denote by dα,
resp. dα̌, the differential of α, resp. α̌, considered as an element in t∗, resp. t.

The results of Section 3 will be proved under one of the following conditions:

(C1) for all α ∈ Φ, dα 6= 0;
(C2) ℓ is good for G, and X∗(T)/ZΦ̌ has no ℓ-torsion;
(C3) ℓ is good for G, and neither X∗(T)/ZΦ̌ nor X∗(T)/ZΦ has ℓ-torsion;
(C4) ℓ is good for G, X∗(T)/ZΦ̌ has no ℓ-torsion, and there exists a G-equi-

variant isomorphism g
∼
−→ g∗.

We claim that

(C4) ⇒ (C3) ⇒ (C2) and (C3) ⇒ (C1).

Indeed, the condition that X∗(T)/ZΦ has no ℓ-torsion means that the vectors dα
(α ∈ ∆) are linearly independent in t∗ ∼= F ⊗Z X

∗(T). This implies in particular
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that they are non zero. Since any root isW -conjugate to a simple root, this justifies
the implication (C3) ⇒ (C1).

The implication (C3) ⇒ (C2) is obvious. Now, if κ : g
∼
−→ g∗ is a G-equivariant

isomorphism, restricting to T-fixed points we obtain an isomorphism t
∼
−→ t∗. It is

not difficult to deduce from the G-equivariance of κ that this isomorphism must
send each differential of a simple root to a non-zero multiple of the differential of
the corresponding coroot. Hence the former are linearly independent iff the latter
are linearly independent, which justifies the implication (C4) ⇒ (C3).

Let us note also that the condition that X∗(T)/ZΦ̌ has no ℓ-torsion is automatic
if DG is simply connected. Indeed, Let T′ be the maximal torus of DG contained
in T. Then, as explained in [J2, §II.1.18], we have

X∗(T
′) = X∗(T) ∩

(∑

α̌∈Φ̌

Q · α̌
)
.

In particular, X∗(T
′)/ZΦ̌ is the torsion part of X∗(T)/ZΦ̌. If DG is simply con-

nected then X∗(T
′)/ZΦ̌ = 0, hence X∗(T)/ZΦ̌ is a free Z-module. This remark

shows that condition (C4) holds (hence also the other conditions) provided G sat-
isfies Jantzen’s “standard hypotheses”, see e.g. [J1, §6.4].

Remark 2.2.1. (1) Condition (C1) is discussed in [J3, §13.3]. The only cases
when this condition might not be satisfied occurs when ℓ = 2 and G has a
component of type Cn (n ≥ 1). In particular, it is satisfied if ℓ is good for
G except possibly when ℓ = 2 and G has a component of type A1.

(2) Primes satisfying (C3) are called “pretty good” in [He]. See also [He, The-
orem 5.2] for the relation between this condition and other variants of the
“standard hypotheses.” In the case G is semisimple, this condition is equiv-
alent to ℓ being very good, and (C4) is equivalent to (C3), see the proof of
Lemma 4.2.3 below.

2.3. Regular elements and the adjoint quotient. We continue with the nota-
tion of §2.2. For any closed subgroup H ⊂ G and any x ∈ g, we denote by Hx the
scheme-theoretic centralizer of x in H, i.e. the closed subgroup of H defined by the
fiber product x×gH, where the morphism H → g sends h to h ·x. If H is reduced,
we also denote by CH(x) the reduced part of Hx, i.e. the reduced subgroup in H

whose closed points are {g ∈ H | g · x = x}. If h is the Lie algebra of H, we set
hx := {y ∈ h | [x, y] = 0}.

Recall that for x ∈ G we have dim(Gx) ≥ r. (This follows, by standard ar-
guments, from the fact that any element in g is contained in the Lie algebra of
a Borel subgroup, see [Bo, Proposition 14.25], and that B acts trivially on b/n.)
An element x ∈ g is called regular if dim(Gx) = r. We denote by greg ⊂ g the
subset consisting of regular elements; it is open (see e.g. [Hu, Proposition 1.4]) and
non empty (see Lemma 3.1.1 below). We will also consider the subset grs ⊂ greg
consisting of regular semi-simple elements. This subset is open, and non-empty if
(and only if) (C1) holds, see [J3, §13.3]. For any subset k ⊂ g, we set kreg := k∩greg,
krs := k ∩ grs. Then by [J3, §13.3], if (C1) holds we have

(2.3.1) trs = {x ∈ t | ∀α ∈ Φ, dα(x) 6= 0}.

We will denote by

χ : g → g/G
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the quotient morphism, and by χreg : greg → g/G its restriction to regular elements.
(Here, g/G := Spec(O(g)G).) In Section 3 we will need a few well-known results
concerning this morphism.

Lemma 2.3.1. If x, y ∈ greg and χ(x) = χ(y), then x and y are G-conjugate.

Proof. This follows from [J3, Proposition 7.13]. Alternatively, one can prove this
result directly using the facts that χ separates semi-simple G-orbits (since they are
closed, see [Bo, Proposition 11.8]), that CG(x)0 is reductive if x ∈ g is semi-simple
(see [Bo, Proposition 13.19]) and that the nilpotent cone of a connected reductive
group is irreducible (see [J3, Lemma 6.2]). �

Proposition 2.3.2. Assume that (C1) holds. Then the inclusion t ⊂ g induces an

algebra isomorphism O(g)G
∼
−→ O(t)W ; in other words an isomorphism of schemes

t/W
∼
−→ g/G.

Proof. In [J3, §7.12] it is explained that the proof given in [SS, §II.3.17’] applies if
(C1) is satisfied. �

When (C1) is satisfied, we will usually use Proposition 2.3.2 to consider χ as a
morphism from g to t/W .

Lemma 2.3.3. Assume that (C1) holds, and that X∗(T)/ZΦ̌ has no ℓ-torsion.
Then

(1) the action of W on trs is free (in the sense that the stabilizer of any x ∈ trs
is trivial);

(2) for any x ∈ trs we have Gx = T.

Proof. (1) Our assumptions imply that the stabilizer in t of the reflection sα as-
sociated with α ∈ Φ is the hyperplane Ker(dα). Using (2.3.1) we deduce that if
x ∈ trs, then x is not fixed by any sα. Hence to conclude it is enough to prove that
if w ∈ W and x ∈ t satisfy w · x = x, then w is a product of reflections stabilizing
x.

This property follows from a well-known argument (see e.g. [Hu, Lemma on
p. 32]). In fact, let us first assume that ℓ > 0. Then we have natural isomorphisms

t ∼= X∗(T)⊗Z F ∼= (X∗(T)/ℓ ·X∗(T))⊗Fℓ
F.

Hence it is enough to prove a similar property for theW -action on X∗(T)/ℓ·X∗(T).
Now let w ∈ W and µ̌ ∈ X∗(T) be such that w · µ̌ = µ̌ mod ℓ · X∗(T). Then
w · µ̌ − µ̌ ∈ ZΦ̌ ∩ ℓ · X∗(T). Since X∗(T)/ZΦ̌ has no ℓ-torsion, this implies that
w · µ̌− µ̌ ∈ ℓ ·ZΦ̌. Let us write w · µ̌− µ̌ = ℓλ̌. Then the image of µ̌ in X∗(T)⊗Z R

is fixed by the element (ℓλ̌) · w of the group W ⋉ ℓZΦ̌, which is the affine Weyl
group of [J2, §II.6.1] (for the reductive group which is Langlands dual to G). By a
well-known result on groups generated by reflections in real affine spaces (see [Bo,
V, §3, Proposition 1]), (ℓλ̌) ·w is a product of reflections in W ⋉ ℓZΦ̌ stabilizing µ̌.
Projecting on W , we deduce that indeed w is a product of reflections in W which
stabilize µ̌ mod ℓ ·X∗(T), which finishes the proof in the case ℓ > 0.

The case ℓ = 0 is similar and simpler; details are left to the reader.
(2) First we show that Gx is smooth. In fact, since x is regular we have

dim(Gx) = dim(CG(x)) = r. On the other hand, it is easily checked using the
triangular decomposition of g that gx = t. We deduce that the inclusions Lie(T) ⊂
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Lie(Gx) ⊂ gx must be equalities. We have proved that dim(Gx) = dim(Lie(Gx)),
which implies that Gx is smooth (see [Wa, Corollary on p. 94]).

It follows from [J3, Lemma 13.3] that Gx = CG(x) ⊂ NG(T). Since no element
of W = NG(T)/T stabilizes x by (1), we deduce that Gx = T. �

We will finally use the following easy observation.

Lemma 2.3.4. If κ : g
∼
−→ g∗ is a G-equivariant isomorphism, then for any x ∈ g

the image κ(gx) of gx is the subspace (g/[x, g])∗ ⊂ g∗.

Proof. Using the G-equivariance of κ we observe that κ(gx) ⊂ (g/[x, g])∗. Then we
conclude by a dimension argument. �

3. The case of fields

In this section we use the notation of §§2.2–2.3.

3.1. The principal nilpotent element and the Kostant section. For any
α ∈ ∆ we choose a non-zero root vector eα ∈ gα, and set

e :=
∑

α∈∆

eα.

Lemma 3.1.1. The element e ∈ g is regular.

Proof. First we observe that regular nilpotent elements exist: this follows from the
fact that the nilpotent cone in g has dimension dim(g)−r (see [J3, Theorem 6.4]) and
consists of finitely many G-orbits (see [J3, §2.8] and references therein). Then the
claim follows from [Sp, Lemma 5.8]. (In loc. cit. it is assumed that G is semisimple,
but this assumption does not play any role in the proof of this lemma.) �

Lemma 3.1.2. Assume that (C2) holds. Then the morphism

n → b, x 7→ [e, x]

is injective.

Proof. This result is a consequence of the considerations in [Sp, Section 2]. In fact,
let GZ ⊃ BZ ⊃ TZ be a split connected reductive group over Z, a Borel subgroup
and a (split) maximal torus such that the base change of GZ, resp. BZ, resp. TZ,
to F is G, resp. B, resp. T. We denote by tZ ⊂ bZ ⊂ gZ the Lie algebras of
TZ ⊂ BZ ⊂ GZ. Then we have g = F⊗Z gZ. Moreover, since the morphism

∏

α∈∆

α : T → (F×)∆

is surjective, we can assume that each eα is the image in g of a vector xα ∈ gZ
which forms a Z-basis of the α-weight space of gZ (with respect to the action of
TZ).

As in [Sp] we consider the Z-grading gZ =
⊕

i∈Z
gi
Z
induced by the height1 of

roots, and denote by ti : g
i
Z
→ gi+1

Z
the morphism y 7→ [

∑
α∈∆ xα, y]. Then the

morphism of the lemma is the morphism obtained from
⊕

i<0

ti :
⊕

i<0

giZ →
⊕

i≤0

giZ

1Recall that the height of a positive root α is the number of simple roots occurring in the
decomposition of α as a sum of simple roots (counted with multiplicities). The height of a nega-
tive root α is the opposite of the height of −α.
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by applying the functor F⊗Z (−).
It is clear that t−1 identifies with the inclusion ZΦ̌ →֒ X∗(T). Hence the induced

morphism F⊗Zg
−1
Z

→ F⊗Zg
0
Z
is injective if (C2) holds (more precisely, iff the second

condition in (C2) holds).
Now if i < −1, then by [Sp, Proposition 2.2] the morphism ti is injective, and

by [Sp, Theorem 2.6] its cokernel has no p-torsion if p is good. (In [Sp, Section 2]
it is assumed that the root system of GZ is simple. However the result we need
follows from Springer’s results applied to each simple factor in a simply-connected
cover of the derived subgroup of GZ.) Hence F⊗Z ti is injective, which finishes the
proof. �

From now on we will assume that (C2) holds, so that we can apply Lemma 3.1.2.
Let us consider the cocharacter λ̌◦ :=

∑
α̌∈Φ̌+ α̌ : Gm → T. This cocharacter defines

(via the adjoint action) a Gm-action on g. The vector e is a weight vector for this
action, of weight 2. Let us choose a Gm-stable complement s to [e, n] in b, and set

S := e+ s, Υ := e+ b.

Then Υ is endowed with a Gm-action defined by t · x := t−2λ̌◦(t) · x. This action
contracts Υ to e (as t→ ∞) and stabilizes S.

Let us note that

(3.1.1) Υ ⊂ greg.

Indeed, by Lemma 3.1.1, e ∈ greg. Hence an open neighborhood of e in Υ is included
in greg. Using the contracting Gm-action on Υ defined above, we deduce that the
whole of Υ is included in greg.

Lemma 3.1.3. Assume that (C3) holds. Then we have

g = s⊕ [e, g].

Proof. By the same argument as for centralizers in G (see §2.3), one can check that
dim(gx) ≥ r for all x ∈ g. In particular, it follows that dim([e, g]) ≤ dim(G) − r.
Hence to prove the lemma it suffices to prove that g = s + [e, g]. And for this it
suffices to prove that n+ ⊂ [e, g].

This fact will again by deduced from [Sp]. We use the same notation as in the
proof of Lemma 3.1.2. As in this proof, one can assume that each eα is obtained
from a Z-basis of the corresponding root space in gZ, and consider the morphisms
ti. Then F⊗ t0 : F⊗Z g0

Z
→ F⊗Z g1

Z
identifies with the morphism

t → F∆, t 7→ (dα(t))α∈∆.

Hence it is surjective if and only if the linear forms dα (α ∈ ∆) are linearly inde-
pendent, i.e. if and only if the third condition in (C3) holds.

And for i ≥ 1, combining [Sp, Proposition 2.2] and [Sp, Theorem 2.6] we obtain
that Coker(ti) is finite and has no p-torsion if p is good. Hence F⊗Z ti is surjective,
which finishes the proof. �

Remark 3.1.4. More generally, if (C3) holds, for any x ∈ S we have g = s⊕ [x, g].
(In particular, we have dim(gx) = r in this case.) Indeed, as in the proof of
Lemma 3.1.3, it suffices to prove that g = s+[x, g], i.e. that the morphism s⊕g → g

defined by (s, y) 7→ s + [x, y] is surjective. This property is an open condition on
x. Since it is satisfies by e, it is satisfied in a neighborhood of e in S. We conclude
using the contracting Gm-action.
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3.2. Kostant’s theorem.

Proposition 3.2.1. Assume that (C2) holds. Then the morphism

U× S → Υ

induced by the adjoint action is an isomorphism of varieties.

Proof. The proof is copied from that of [GG, Lemma 2.1].
Let us denote by ψ the morphism of the lemma. First, we remark that the

differential d(1,e)ψ of ψ at (1, e) can be identified with the morphism
{

n⊕ s → b

(n, s) 7→ [n, e] + s
.

By Lemma 3.1.2 and the definition of s, this morphism is an isomorphism. It follows
that ψ is étale in a neighborhood of (1, e), and in particular dominant. We deduce
that the morphism ψ∗ : O(Υ) → O(U× S) is injective.

To prove that ψ∗ is an isomorphism, we consider the Gm-actions on S and Υ
defined in §3.1. In fact we also define a Gm-action on U× S by setting t · (u, s) =
(λ̌◦(t)uλ̌◦(t)

−1, t · s). Then the actions on U× S and Υ are contracting as t → ∞
(to (1, e) and to e respectively), and ψ is Gm-equivariant. Hence to conclude we
only have to prove that the characters of the action of Gm on O(Υ) and O(U×S)
coincide. However, if X is any of these spaces, x is its Gm-fixed point, mx ⊂ O(X)
the ideal of x, and Tx the tangent space of X at x, then, as a Gm-module, O(X)
is isomorphic to the associated graded of the mx-adic filtration, which is itself
isomorphic (again as a Gm-module) to O(Tx). Since d(1,e)ψ is an isomorphism, we
deduce the equality of characters, which finishes the proof. �

Now we can prove the main result of this subsection. Our proof is essentially
identical to that in [Ve, Proposition 6.3] (which is due to Springer), and is partially
based on the same idea as for Proposition 3.2.1. The fact that the proof in [Ve]
can be generalized to very good primes using the results of Demazure is mentioned
in [Sl, §3.14], see also [J3, §7.14]. In fact, slightly weaker assumptions are sufficient.

Theorem 3.2.2 (Kostant’s theorem). Assume that (C1) and (C2) hold. Then the
natural morphisms

S → Υ/U → g/G

are isomorphisms.

Proof. Proposition 3.2.1 implies that the first morphism is an isomorphism. So
to complete the proof it is enough to prove that the composition S → g/G is an
isomorphism. First, let us prove that this morphism is dominant.

For this it suffices to prove that G ·S contains the open set of regular semisimple
elements. So, let x ∈ g be a regular semisimple element. Then x is G-conjugate to
a regular element y ∈ t by [Bo, Proposition 11.8]. Now U+ · y = y+n+ ∋ y+ e (see
e.g. [J3, §13.3]), hence x is G-conjugate to y + e. Finally, since y + e ∈ e+ b = Υ,
it follows from Proposition 3.2.1 that x ∈ G · S.

Now we consider again the Gm-action on S defined in §3.1. Then the morphism
S → g/G is Gm-equivariant, where the Gm-action on g/G is induced by the action
t · x = t−2x on g. As in the proof of Proposition 3.2.1, to conclude it is enough to
prove that the Gm-modules O(S) and O(g/G) have the same character.
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To prove this we remark that S is isomorphic, as a Gm-variety, to s, hence to
b/[e, n]. (Here the Gm-action on b is given by t ·x = t−2λ̌◦(t) ·x.) Now recall the no-
tation introduced in the proof of Lemma 3.1.2. As in this lemma we can assume that
each eα is obtained from an element xα ∈ gZ. Then one can consider the base change
GC of GZ to C, and the corresponding objects BC, TC, gC, bC, tC. If eC denotes
the image of

∑
α∈∆ xα in gC, then it follows from the proof of Lemma 3.1.2 that

the (Gm)F-character of b/[e, n] coincides with the (Gm)C-character of bC/[eC, nC]
(where the (Gm)C-action on bC is defined by the same formula as the (Gm)F-action
on bF considered above). By Lemma 3.1.3 applied to the field C, we have a Gm-

equivariant isomorphism bC/[eC, nC]
∼
−→ gC/[eC, gC]. Using Kostant’s theorem over

C (see [Ko, Theorem 7]), we deduce that the Gm-character of O(S) coincides with
the (Gm)C-character of O(tC/W ), where the (Gm)C-action is induced by the action
on tC given by t · x = t−2x.

From these considerations we obtain that to conclude the proof it suffices to prove
that the Gm-character of O(g/G) coincides with the (Gm)C-character of O(tC/W ).
By Proposition 2.3.2, it suffices to show that the Gm-character of O(t/W ) coincides
with the (Gm)C-character of O(tC/W ). However, if N is the product of the prime
numbers p which are bad primes for G or such that X∗(T)/ZΦ̌ has p-torsion, then
we have

O(tC/W ) = C⊗Z[1/N ] SZ[1/N ](X
∗(T)⊗Z Z[1/N ])W

O(tF/W ) = F⊗Z[1/N ] SZ[1/N ](X
∗(T)⊗Z Z[1/N ])W

by [De, Corollaire on p. 296]. (Note that the Z-module Coker(i), where i is
the map considered in [De, §5] for the root system Φ ⊂ X∗(T), is isomorphic
to Ext1Z(X∗(T)/ZΦ̌,Z) with our notation; in particular, this Z-module has the
same torsion as X∗(T)/ZΦ̌.) By [De, Théorème 2 on p. 295], the Z[1/N ]-module
SZ[1/N ](X

∗(T) ⊗Z Z[1/N ])W is graded free. We deduce the equality of characters,
which finishes the proof. �

Remark 3.2.3. If (C1) and (C2) hold, it follows from Theorem 3.2.2 that g/G = t/W
is smooth. In fact this follows more directly from the ingredients of the proof:
see [De, Corollaire and Théorème 3 on p. 296].

3.3. The universal centralizer. The main player of this subsection and the next
one is the “universal centralizer” over g, i.e. the closed subgroup of the group scheme
G× g over g defined as the fiber product

I := g×g×g (G× g).

Here the morphism g → g×g is the diagonal embedding, and the morphismG×g →
g×g is defined by (g, x) 7→ (g ·x, x). By definition, for x ∈ g, the (scheme-theoretic)
fiber of I over x identifies with the group scheme Gx.

We will denote by Ireg the restriction of I to greg, by Irs its restriction to grs,
and by IS its restriction to S.

Lemma 3.3.1. Assume that (C3) holds. Then the morphism

a : G× S → greg

induced by the adjoint action is smooth and surjective.

Proof. Let us first prove smoothness. The differential of a at (1, e) can be identified
with the morphism g × s → g sending (x, s) to [x, e] + s. By Lemma 3.1.3 this
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differential is surjective, hence a is smooth in a neighborhood of (1, e). In fact,
since this morphism is G-equivariant, there exists a neighborhood V of e in S such
that a is smooth onG×V . Then using the Gm-action on S as in the proof of (3.1.1),
we conclude that a is smooth.

To prove surjectivity, using smoothness it is enough to prove that closed points
of greg belong to the image of a. In other words, we have to prove that any element
of greg is G-conjugate to an element of S. Let x ∈ greg. Then it follows from
Theorem 3.2.2 that there exists y ∈ S such that χ(x) = χ(y). We conclude using
Lemma 2.3.1 and (3.1.1). �

Remark 3.3.2. Assume that (C3) holds. Then for all x ∈ greg we have dim(gx) = r.
In fact, this property was observed for x ∈ S in Remark 3.1.4. But since any
element of greg is G-conjugate to an element in S by Lemma 3.3.1, it holds on the
whole of greg. In the terminology of [Sp, §5.7] this means that, in this case, all
regular elements in g are smoothly regular.

Let us note the following consequence. (See also [BG, Corollary on p. 746] for a
different proof, assuming that Jantzen’s “standard hypotheses” hold and that ℓ is
odd.)

Proposition 3.3.3. Assume that (C3) holds. Then the morphism χreg : greg →
g/G is smooth and surjective.

Proof. Consider the composition

G× S
a
−→ greg

χreg

−−−→ g/G.

Using Theorem 3.2.2 this morphism identifies with the projection G × S → S on
the second factor. In particular it is smooth and surjective. By [SP, Tag 02K5], we
deduce that χreg is smooth and surjective. �

Remark 3.3.4. Assume that (C3) holds. The fact that χreg is smooth implies
that, for all x ∈ greg, the morphism dx(χreg) : Tx(greg) → Tχ(x)(g/G) is sur-
jective; in other words we have a surjection g ։ Tχ(x)(g/G). (Here Tx(greg),
resp. Tχ(x)(g/G), denotes the tangent space to greg at x, resp. to g/G at χ(x).)
Since the composition of χreg with the morphism G → greg defined by g 7→ g · x is
constant, the differential dx(χreg) must vanish on [x, g]. Since dim(g/[x, g]) = r (see

Remark 3.3.2), we finally obtain that dx(χreg) induces an isomorphism g/[x, g]
∼
−→

Tχ(x)(g/G).

Proposition 3.3.5. Assume that (C3) holds. Then the group scheme IS is smooth
over S.

Proof. By definition we have IS = S ×g×S (G × S). Since each of the mor-
phisms which define this fiber product factors through g ×g/G S, we also have
IS ∼= S ×g×g/GS (G × S). Now using Theorem 3.2.2 we obtain that the first pro-

jection induces an isomorphism g×g/G S
∼
−→ g, which provides an isomorphism

IS
∼
−→ S ×g (G× S).

In this fiber product the morphism G×S → g is the composition of the morphism a
of Lemma 3.3.1 with the open embedding greg →֒ g, hence it is smooth; this implies
our claim. �
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Corollary 3.3.6. Assume that (C3) holds. Then the group scheme Ireg is smooth
over greg.

Proof. The following diagram (where each map is the natural one) is Cartesian by
the G-equivariance of I:

G× IS //

��

Ireg

��
G× S

a
// greg.

By Lemma 3.3.1 and Proposition 3.3.5, the composition G× IS → greg is smooth.
Since a is smooth and surjective, so is the morphism G × IS → Ireg. Using [SP,
Tag 02K5], we deduce that the morphism Ireg → greg is smooth. �

Remark 3.3.7. Assume that (C3) holds. Then it follows from Corollary 3.3.6 that
for any x ∈ greg, the stabilizer Gx is a smooth group scheme over F, i.e. an al-
gebraic group in the “traditional” sense. In particular we have dimF(Lie(Gx)) =
dim(Gx) = r, see [Wa, Second corollary on p. 94], and therefore the embedding
Lie(Gx) →֒ gx is an isomorphism (see Remark 3.3.2).

Corollary 3.3.8. Assume that (C3) holds. Then the group scheme Ireg is commu-
tative.

Proof. By Corollary 3.3.6, Ireg is flat over greg. Hence it is enough to prove that
Irs is commutative. Since any element in grs is G-conjugate to an element in trs
(see [Bo, Proposition 11.8]), it is enough to prove that for any x ∈ trs, the group
Gx is commutative. However in this case we have Gx = T (see Lemma 2.3.3(2)),
which is clearly commutative. �

Let us also note the following property.

Proposition 3.3.9. Assume that (C3) holds. Then there exists a unique smooth
affine commutative group scheme J over t/W such that the pullback of J under
χreg : greg → t/W is Ireg.

Sketch of proof. The group scheme J is constructed by descent (for schemes affine
over a base) along the smooth and surjective morphism χreg (see Proposition 3.3.3),
following the arguments in [Ng, Lemma 2.1.1].

These arguments use the fact that the morphism µ : G × greg → greg ×t/W greg
defined by (g, x) 7→ (x, g · x) is smooth and surjective. To check this property, we
consider the composition

(3.3.1) G×G× S
idG×a
−−−−→ G× greg

µ
−→ greg ×t/W greg.

To prove that µ is smooth and surjective, it suffices to prove that this composition
has the same properties: then surjectivity is clear, and smoothness follows from
Lemma 3.3.1 and [SP, Tag 02K5]. Now, to prove that (3.3.1) is smooth and surjec-
tive, it is enough to prove that its composition with the automorphism of G×G×S
defined by (g, h, x) 7→ (hg−1, g, x) has the same properties. The latter morphism
sends (g, h, x) to (g · x, h · x). Hence it identifies with the smooth and surjective
morphism

(G× S)×t/W (G× S)
a×a
−−−→ greg ×t/W greg,

which finishes the proof. �
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Remark 3.3.10. The group scheme IS is naturally isomorphic to the pullback of J
along the isomorphism S

∼
−→ t/W given by the composition S →֒ greg → t/W .

Using the group scheme J one can obtain a more “concrete” description of the
category of G-equivariant coherent sheaves on greg, as follows.

Proposition 3.3.11. Assume that (C3) holds. Then there exists a canonical equiv-
alence of categories

CohG(greg) ∼= Rep(J),

where the right-hand side is the category of representations of J which are of finite
type over O(t/W ).

Sketch of proof. We only indicate how to construct the functors in both directions.
First, consider a G-equivariant coherent sheaf F on greg. Then it is naturally

endowed with the structure of a representation of I, see e.g. [MR, §2.3]. Hence its re-
striction to S is a representation of IS . Identifying S with t/W (see Theorem 3.2.2)
and IS with J (see Remark 3.3.10), we obtain a representation of J.

In the other direction, consider some (finite type) representation G of J. Then, to
define the corresponding G-equivariant coherent sheaf F on greg, since a is smooth
and surjective (see Lemma 3.3.1) it suffices to define a G-equivariant coherent
sheaf F ′ on G×S together with a descent datum. However G defines (as above) a
representation G′ of IS , and we can consider the coherent sheaf F ′ := OG ⊠ G′ on
G×S. One can identify the fiber product (G×S)×greg

(G×S) with G×IS , so that
the two projections toG×S are given by (g, (h, s)) 7→ (g, s) and (g, (h, s)) 7→ (gh, s)
respectively. With this identification, the descent datum is equivalent to the datum
of an IS -equivariant structure on F ′, where IS acts on G × S via (h, s) · (g, s) =
(gh, s). However G′ can be considered as an IS -equivariant coherent sheaf on S,
and this structure is obtained by considering F ′ as the inverse image of G′ under
the (IS -equivariant) projection G× S → S. �

3.4. Lie algebras. We set

I := Lie(I/g), Ireg := Lie(Ireg/greg), Irs := Lie(Irs/grs),

IS := Lie(IS/S), J := Lie(J/(t/W )).

It follows from Lemma 2.1.1(2) that Ireg, resp. Irs, is the restriction of I to greg,
resp. grs. We also set

I := Lie(I/g), Ireg := Lie(Ireg/greg), Irs := Lie(Irs/grs),

IS := Lie(IS/S), J := Lie(J/(t/W )).

The following properties are easy consequences of the results of §3.3.

Proposition 3.4.1. Assume that (C3) holds. Then:

(1) the coherent sheaf Ireg, resp. Irs, resp. IS , resp. J, on greg, resp. grs, resp. S
resp. t/W , is locally free of finite rank;

(2) the Lie algebra Ireg, resp. Irs, resp. IS , resp. J, is a vector bundle over greg,
resp. grs, resp. S, resp. t/W ;

(3) the Lie algebras Ireg, Irs, IS and J are commutative;
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(4) the restriction of Ireg to S is canonically isomorphic to IS ; in other words
there exists a canonical Cartesian diagram

IS //

��

Ireg

��
S // greg;

(5) there exists a canonical isomorphism χ∗
reg(J)

∼= Ireg; in other words there
exists a canonical Cartesian diagram

Ireg //

��

J

��

greg
χreg

// t/W ;

(6) the coherent sheaf IS is canonically isomorphic to the pullback of J under

the isomorphism S
∼
−→ t/W ; in other words IS is canonically isomorphic to

the pullback of J under the isomorphism S
∼
−→ t/W .

Proof. (1) and (2) follow from Lemma 2.1.1(1) together with Proposition 3.3.5,
Corollary 3.3.6 and Proposition 3.3.9. (3) follows from Corollary 3.3.8 and Propo-
sition 3.3.9. (4) follows from Lemma 2.1.1(2) and Corollary 3.3.6. (5) follows from
Lemma 2.1.1(2) and Proposition 3.3.9. Finally, (6) follows from Remark 3.3.10. �

The main result of this subsection gives a more concrete description of the Lie
algebras J, Ireg and IS . The proof will require that (C4) holds. In fact, from now

on we fix a G-equivariant isomorphism κ : g
∼
−→ g∗.

Theorem 3.4.2. Assume that (C4) holds. Then there exist canonical isomorphisms

J ∼= T∗(t/W ), Ireg ∼= greg ×t/W T∗(t/W ), IS ∼= T∗(S)

of commutative Lie algebras over t/W , greg and S, respectively.

Proof. It is enough to construct the third isomorphism; then the other two isomor-
phisms follow, using Proposition 3.4.1(5)-(6).

First we construct a morphism of coherent sheaves IS → ΩS . Since IS is a closed
subgroup ofG×S, the Lie algebra IS embeds naturally in Lie(G×S/S) = g⊗FOS .
Now since S is a smooth closed subvariety in g, the tangent sheaf TS embeds in
the restriction of Tg to S, i.e. in g ⊗F OS , and the cokernel of this embedding is
a locally free sheaf. We deduce a canonical surjection g∗ ⊗F OS ։ ΩS . Then we
define our morphism as the composition

(3.4.1) IS →֒ g⊗F OS
κ⊗OS−−−−→

∼
g∗ ⊗F OS ։ ΩS .

To finish the proof it suffices to prove that this morphism is an isomorphism.
Recall the contracting Gm-action on S considered in §3.1. One can “extend” this

action to a compatible action on G×S by group automorphisms, setting t · (g, x) =
(λ̌◦(t)gλ̌◦(t)

−1, t · x). This action stabilizes IS , and we deduce a Gm-equivariant
structure on IS . Clearly ΩS is also Gm-equivariant, and (3.4.1) is a morphism of
Gm-equivariant coherent sheaves. Since ΩS is locally free (in particular, has no
torsion), using some version of the graded Nakayama lemma we deduce that to
prove that (3.4.1) is an isomorphism it suffices to prove that the induced morphism

(3.4.2) i∗e(IS) → i∗e(ΩS)
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is an isomorphism, where ie : {e} →֒ S is the inclusion.

We claim that there exists a canonical isomorphism i∗e(IS)
∼
−→ ge. Indeed, us-

ing Lemma 2.1.1(2) and Proposition 3.3.5 there exists a canonical isomorphism

i∗e(IS)
∼
−→ Lie(Ge), and by Remark 3.3.7 the right-hand side identifies with ge

canonically. Using this claim and the obvious isomorphism i∗e(ΩS) ∼= s∗, one can
identify (3.4.2) with the composition

ge →֒ g
κ
−→
∼

g∗ ։ s∗.

The fact that this morphism is an isomorphism follows from Lemma 2.3.4 and
Lemma 3.1.3. �

3.5. Variant for the Grothendieck resolution. In this subsection we consider
analogues of the objects studied above for the Grothendieck resolution g̃. Recall
that this variety is the vector bundle on the flag variety B of G (considered as the
variety of Borel subgroups in G) defined as

g̃ = {(x,B′) ∈ g× B | x ∈ Lie(B′)}.

There exists a natural projective morphism π : g̃ → g defined by π(x,B′) = x.
We denote by g̃reg, resp. g̃rs, the inverse image of greg, resp. grs, in g̃, and by
πreg : g̃reg → greg, resp. πrs : g̃rs → grs, the restriction of π.

We will also use the morphism ν : g̃ → t defined as follows: for g ∈ G and
x ∈ Lie(gBg−1), ν(x, gBg−1) is the inverse image under the isomorphism t →֒
b ։ b/n of the image of g−1 ·x in b/n. (One can easily check that this morphism is
well defined, and is a smooth morphism which satisfies g̃rs = ν−1(trs), see e.g. [J3,
§13.3].) We denote by νreg : g̃reg → t the restriction of ν to g̃reg. Combining π and
ν we obtain a morphism

ϕ : g̃ → g×t/W t.

We denote by ϕreg : g̃reg → greg×t/W t, resp. ϕrs : g̃rs → grs×trs/W trs, the restriction
of ϕ to g̃reg, resp. g̃rs.

We will consider the schemes

S̃ := S ×g g̃, Υ̃ := Υ×g g̃.

These schemes are also endowed with an action of Gm, obtained by restricting the
action on g̃ defined by

t · (x,B′) := (t−2λ̌◦(t) · x, λ̌◦(t)B
′λ̌◦(t)

−1)

for t ∈ Gm and (x,B′) ∈ g̃. The natural morphisms S̃ → S and Υ̃ → Υ are
Gm-equivariant. Note that the set-theoretic fiber of π over e is reduced to (e,B+)

by [Sp, Lemma 5.3]. Hence this Gm-action on Υ̃ is contracting to (e,B+).

One can also consider the universal stabilizer Ĩ over g̃, defined as the fiber product

Ĩ := g̃×g̃×g̃ (G× g̃).

If (x,B′) is a point in g̃, then the fiber of Ĩ over (x,B′) identifies with (B′)x. We

will denote by Ĩreg the restriction of Ĩ to g̃reg, by Ĩrs its restriction to g̃rs, and by

ĨS its restriction to S̃. If (C3) holds, then it follows from Corollary 3.3.8 that these
group schemes are commutative.
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Lemma 3.5.1. Assume that (C3) holds. Then the morphism

ã : G× S̃ → g̃reg

induced by the G-action on g̃ is smooth and surjective.

Proof. By G-equivariance the following diagram is Cartesian:

G× S̃
ã

//

��

g̃reg

πreg

��
G× S

a
// greg,

where the left vertical map is the product of idG with the morphism induced by
π. Hence smoothness and surjectivity of ã follow from the same properties for a,
which we proved in Lemma 3.3.1. �

Remark 3.5.2. Using similar arguments one can prove that the morphism U×S̃ →

Υ̃ induced by the U-action on g̃ is an isomorphism, assuming that (C2) holds.

Lemma 3.5.3. Assume that (C3) holds. Then the morphism

ϕreg : g̃reg → greg ×t/W t

is an isomorphism.

Proof. Following the arguments in [G2, Remark 4.2.4(i)], we only have to prove the
following properties:

(1) the morphism ϕreg is finite;
(2) the scheme greg ×t/W t is a smooth variety;
(3) ϕrs is an isomorphism.

Indeed, then the claim follows from the general result that if f : X → Y is a finite,
birational morphism of integral Noetherian schemes such that Y is normal, then f
is an isomorphism.

First, we claim that the projection πreg : g̃reg → greg is quasi-finite. In fact, since
the locus where πreg is quasi-finite is open (see [SP, Tag 01TI]), it is enough to prove
that this morphism is quasi-finite at all closed points of g̃reg. Since any closed point

in g̃reg is G-conjugate to a closed point in S̃ (see Lemma 3.5.1), it is enough to prove

that πreg is quasi-finite at all closed point of S̃. Using the contracting Gm-action

on S̃ (and again the fact that the quasi-finite locus is open), it is enough to prove
that πreg is quasi-finite at (e,B+). This property follows from [SP, Tag 02NG] and
the fact that the set-theoretic fiber of πreg over e is reduced to (e,B+).

Since πreg is quasi-finite, a fortiori ϕreg is quasi-finite, see [SP, Tag 03WR]. Since
this morphism is also projective, it is finite, see [SP, Tags 02NH and 02LS], which
proves (1).

Property (2) is a consequence of Proposition 3.3.3.
Finally we turn to (3). We remark that πrs is étale by [J3, Lemma 13.4]. On the

other hand, the quotient morphism trs → trs/W is étale by Lemma 2.3.3(1) and [J3,
Remark 12.8], hence the morphism grs ×trs/W trs → grs is also étale. We deduce
that ϕrs is étale. Moreover, comparing the fibers of πrs (see [J3, Lemma 13.3]) and
of the projection grs ×trs/W trs → grs (see Lemma 2.3.3(1)) over closed points, we
obtain that ϕrs induces a bijection at the level of closed points. Using [SP, Tag
04DH], we deduce that ϕrs is an isomorphism. �



16 SIMON RICHE

Proposition 3.5.4. Assume that (C3) holds.

(1) The morphisms

S̃ → S ×t/W t, and Υ̃ → Υ×t/W t

induced by ϕ are isomorphisms. In particular, S̃ and Υ̃ are affine schemes.

(2) The morphism νreg restricts to an isomorphism S̃
∼
−→ t.

Proof. (1) follows from (3.1.1) and Lemma 3.5.3. Then (2) follows from (1) and
Theorem 3.2.2. �

Proposition 3.5.5. Assume that (C3) holds.

(1) The group scheme ĨS is smooth over S̃.
(2) The natural commutative diagram

ĨS //

��

IS

��

S̃ // S

is Cartesian.

Proof. The proof of (1) is similar to the proof of Proposition 3.3.5, namely we use
isomorphisms

ĨS = S̃ ×
g̃×S̃

(G× S̃) ∼= S̃ ×
g̃×tS̃

(G× S̃) ∼= S̃ ×g̃ (G× S̃)

(where the last isomorphism uses Proposition 3.5.4(2)), and then the result follows
from Lemma 3.5.1.

To prove (2) we use the isomorphisms

IS ∼= S ×greg
(G× S) and ĨS ∼= S̃ ×g̃reg

(G× S̃)

constructed in the proof of Proposition 3.3.5 and of (1), respectively. By definition

there exists a natural closed embedding ĨS → S̃ ×S IS , which we interpret as a
morphism

(3.5.1) S̃ ×g̃reg
(G× S̃) → S̃ ×S

(
S ×greg

(G× S)
)
.

Using the isomorphisms S̃
∼
−→ t and S

∼
−→ t/W induced by ν and χ respectively, the

right-hand side in (3.5.1) is isomorphic to t ×t/W (S ×greg
(G × S)). Then, using

the isomorphisms S̃
∼
−→ t (again induced by ν) and ϕreg : g̃reg

∼
−→ greg ×t/W t (see

Lemma 3.5.3), the morphism (3.5.1) identifies with the natural morphism

(t×t/W S)×t×t/W greg
(t×t/W (G× S)) → t×t/W (S ×greg

(G× S)),

which is clearly an isomorphism. �

Corollary 3.5.6. Assume that (C3) holds. Then the group scheme Ĩreg is smooth
over g̃reg, and the natural commutative diagram

Ĩreg //

��

Ireg

��
g̃reg

πreg
// greg

is Cartesian.
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Proof. The smoothness of Ĩreg can be proved by the same arguments as for Corol-
lary 3.3.6 (or can be deduced from the second claim). To prove that the diagram
is Cartesian it suffices (by descent) to do so after pullback under the smooth and
surjective morphism ã (see Lemma 3.5.1). Then the claim follows from Proposi-
tion 3.5.5(2) (see the Cartesian diagram in the proof of Corollary 3.3.6). �

Remark 3.5.7. Assume that (C3) holds. Then the second claim of Corollary 3.5.6
implies that for (x,B′) ∈ g̃reg the inclusion (B′)x →֒ Gx is an isomorphism.

From Proposition 3.3.9 and Corollary 3.5.6 we deduce that, if (C3) holds, there

exists a smooth, affine and commutative group scheme J̃ on t whose pullback under

νreg : g̃reg → t is Ĩreg. In fact we have Cartesian diagrams

(3.5.2)

J̃ //

��

J

��

t // t/W

and

ĨS
∼

//

��

J̃

��

S̃
∼

// t.

Remark 3.5.8. Assume that (C3) holds. Then, using the same arguments as for
Proposition 3.3.11, one can check that there exists a canonical equivalence of cate-

gories CohG(g̃reg) ∼= Rep(J̃).

We set

Ĩ := Lie(̃I/g̃), Ĩreg := Lie(̃Ireg/g̃reg), Ĩrs := Lie(̃Irs/g̃rs),

ĨS := Lie(̃IS/S̃), J̃ := Lie(J̃/t)

and

Ĩ := Lie(̃I/g̃), Ĩreg := Lie(̃Ireg/g̃reg), Ĩrs := Lie(̃Irs/g̃rs),

ĨS := Lie(̃IS/S̃), J̃ := Lie(J̃/t).

The following proposition is analogous to Proposition 3.4.1, and its proof is
similar (hence left to the reader).

Proposition 3.5.9. Assume that (C3) holds. Then:

(1) the coherent sheaf Ĩreg, resp. Ĩrs, resp. ĨS , resp. J̃ on g̃reg, resp. g̃rs, resp. S̃,
resp. t, is locally free of finite rank;

(2) the Lie algebra Ĩreg, resp. Ĩrs, resp. ĨS , resp. J̃, is a vector bundle over g̃reg,

resp. g̃rs, resp. S̃, resp. t;

(3) the Lie algebras Ĩreg, Ĩrs, ĨS and J̃ are commutative;

(4) the restriction of Ĩreg to S̃ is canonically isomorphic to ĨS ; in other words
there exists a canonical Cartesian diagram

ĨS //

��

Ĩreg

��

S̃ // g̃reg;
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(5) there exists a canonical isomorphism ν∗reg(J̃)
∼= Ĩreg; in other words there

exists a canonical Cartesian diagram

Ĩreg //

��

J̃

��

g̃reg
νreg

// t;

(6) the coherent sheaf ĨS is canonically isomorphic to the pullback of J̃ under

the isomorphism S̃
∼
−→ t; in other words ĨS is canonically isomorphic to the

pullback of J̃ under the isomorphism S̃
∼
−→ t. �

Lemma 3.5.10. Assume that (C3) holds. Then there exist canonical Cartesian
diagrams

ĨS //

��

IS

��

S̃ // S,

Ĩreg //

��

Ireg

��
g̃reg // greg

and

J̃ //

��

J

��

t // t/W.

Proof. This follows from Lemma 2.1.1(2), Corollary 3.3.6, Proposition 3.5.5, Corol-
lary 3.5.6, and the left diagram in (3.5.2). �

Combining Theorem 3.4.2 and Lemma 3.5.10 we obtain the following.

Theorem 3.5.11. Assume that (C4) holds. Then there exist canonical isomor-
phisms

J̃ ∼= t×t/W T∗(t/W ), Ĩreg ∼= g̃reg ×t/W T∗(t/W ), ĨS ∼= S̃ ×S T∗(S)

of commutative Lie algebras over t, g̃reg and S̃, respectively. �

3.6. Comparison with the regular semisimple locus. In this subsection we
assume that (C4) holds.

In Theorem 3.5.11 we have obtained a description of Ĩreg. Restricting to g̃rs, we
deduce a canonical isomorphism

(3.6.1) Ĩrs ∼= g̃rs ×trs/W T∗(trs/W ).

On the other hand one can obtain a simpler description of Ĩrs (which only requires
(C1) to hold) as follows. By [J3, Lemma 13.4], there exists a canonical isomorphism

G/T× trs
∼
−→ g̃rs,

which sends (gT, x) to (g · x, gBg−1). The universal stabilizer for the G-action on
G/T × trs is G/T × trs × T, considered as a closed subgroup of G/T × trs × G

via the morphism (gT, x, t) 7→ (gT, x, gtg−1). The Lie algebra of G/T× trs ×T is
G/T× trs × t. Hence we obtain a commutative diagram

G/T× trs × t
∼

//

��

Ĩrs

��

G/T× trs
∼

// g̃rs.

Comparing with (3.6.1), we obtain an isomorphism

(3.6.2) G/T× trs × t
∼
−→ (G/T× trs)×trs/W T∗(trs/W )
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of commutative Lie algebras over G/T× trs.
To describe this isomorphism more explicitly, recall that we have fixed a G-

equivariant isomorphism κ : g
∼
−→ g∗, and that κ induces an isomorphism t

∼
−→ t∗.

This allows to identify trs × t with the cotangent bundle T∗(trs). The quotient
morphism trs → trs/W is étale (see the proof of Lemma 3.5.3); therefore it induces

an isomorphism T(trs)
∼
−→ trs ×trs/W T(trs/W ) between tangent bundles, hence an

isomorphism T∗(trs)
∼
−→ trs ×trs/W T∗(trs/W ). Combining these remarks we finally

obtain an isomorphism of vector bundles over trs

trs × t
∼
−→ trs ×trs/W T∗(trs/W ).

We claim that the pullback of this isomorphism under the projectionG/T×trs →
trs coincides with (3.6.2). Indeed, this claim amounts to the following observation.
Both of the compositions

trs
x 7→(x,B)
−−−−−−→ g̃rs

ν
−→ trs

and
S̃rs →֒ g̃rs

ν
−→ trs

(where S̃rs := S̃ ∩ g̃rs) are isomorphisms, which provides a canonical isomorphism

σ : trs
∼
−→ S̃rs. Now if (y, gB) = σ(x), we have to check that the diagram

t = gx
∼

//

≀

��

gy

≀

��

t∗ = T∗
x(trs)

dxσ

∼
// T∗

(y,gB)(S̃rs)

is commutative. (Here the upper horizontal arrow is the canonical isomorphism,
induced by any h ∈ G such that y = h · x, and the vertical arrows are the iso-

morphisms constructed above.) Using the fact that the morphisms S̃rs → Srs and
trs → trs/W are étale and Remark 3.3.4, one can rewrite this diagram as

gx
∼

//

≀

��

gy

≀
��

(g/[x, g])∗
∼

// (g/[y, g])∗,

and the commutativity follows from the G-equivariance of κ.

4. The case of R

In this section, for simplicity we restrict to the case of semisimple, simply con-
nected groups.

4.1. Reduction to algebraically closed fields. Let R be a finite localization of
Z. In this subsection we prove various results that allow to deduce results over R
from their analogues over algebraically closed fields of positive characteristic. These
results (which are independent of the rest of the paper) will be used crucially in
the rest of the section.

Lemma 4.1.1. Let A be a finitely generated R-algebra, and let A′ be a finitely
generated A-algebra. Assume that A′ is flat over R and that for any geometric
point F of R of positive characteristic, F⊗RA

′ is flat over F⊗RA. Then A′ is flat
over A.
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Proof. By [SP, Tag 00HT, Item (7)], it suffices to prove that for all maximal ideals
m ⊂ A′, with p the inverse image of m in A, the Ap-module A′

m is flat. Let also
q be the inverse image of m in R. Then, by [SP, Tag 00GB], q is a maximal
ideal of R, i.e. is of the form ℓ · R for some prime number ℓ not invertible in R.
From our assumption on geometric points one can easily deduce that A′/(ℓ ·A′) is
flat over A/(ℓ · A). Hence, using [SP, Tag 00HT, Item (7)] again, we deduce that
(A′/(ℓ · A′))m/ℓ·A′ = A′

m/q · A
′
m is flat over (A/(ℓ · A))p/ℓ·A = Ap/q · Ap. By the

same result and our other assumption we know that A′
m is flat over Rq. Hence we

can apply [SP, Tag 00MP] to the morphisms Rq → Ap → A′
m to deduce that A′

m

is flat over Ap, which finishes the proof. �

In the next statements, if X is an R-scheme and S is an R-algebra, we set
XS := X ×Spec(R) Spec(S).

Corollary 4.1.2. Let X and Y be schemes which are locally of finite type over R,
and let f : X → Y be a morphism. Assume that X is flat over R and that for any
geometric point F of R of positive characteristic, the morphism XF → YF induced
by f is flat. Then f is flat.

Proof. Since flatness is a property which is local both on X and Y , we can assume
that both of them are affine. Then the claim follows from Lemma 4.1.1. �

Proposition 4.1.3. Let X and Y be schemes which are of finite type over R, and
let f : X → Y be a morphism. Assume that X is flat over R and that for any
geometric point F of R of positive characteristic, the morphism XF → YF induced
by f is smooth. Then f is smooth.

Proof. First, by Corollary 4.1.2, f is flat.
The smooth locus of f is open (see e.g. the definition of smoothness in [SP, Tag

01V5]) and the closed points are dense in every closed subset of X (see [SP, Tag
00G3]), hence it is enough to prove that f is smooth at closed points of X. Let x
be such a closed point. By [SP, Tag 00GB], the residue field κ(x) has characteristic
ℓ for some prime number ℓ invertible in R. Let F be an algebraic closure of κ(x),
let x′ be the point in Xκ(x) whose image in X is x, and let x′′ be the unique closed
point of XF lying over x′. Let also f ′ : Xκ(x) → Yκ(x) and f ′′ : XF → YF be the
morphisms induced by f . Then f ′′ is smooth by assumption. Moreover, one can
see (using e.g. the characterization of smoothness in [SP, Tag 01V9, Item (3)] and
the invariance of dimension under field extension, see [GW, Proposition 5.38]) that
the smoothness of f ′′ at x′′ is equivalent to the smoothness of f ′ at x′, which is
itself equivalent to the smoothness of f at x. This finishes the proof. �

Lemma 4.1.4. Let A be a finitely generated R-algebra. Let X be a Noetherian A-
scheme which is projective over A and flat over R. Assume that for any geometric
point F of R of positive characteristic, the scheme XF is affine. Then X is affine.

Proof. By Serre’s criterion (see [Ha, Theorem III.3.7]) it suffices to prove that
for any coherent sheaf of ideals I ⊂ OX , the complex of A-modules RΓ(X, I)
is concentrated in degree 0. However by Grothendieck’s vanishing theorem [Ha,
Theorem III.2.7] this complex is bounded, and since X is projective over A its
cohomology sheaves are finitely generated over A (see [Ha, Theorem III.5.2]). Hence
by [BR2, Lemma 1.4.1(2)] it suffices to prove that for any geometric point F of R,
the complex F⊗L

R RΓ(X, I) is concentrated in degree 0.
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Now one can easily check that we have

F
L
⊗R RΓ(X, I) ∼= RΓ(X,F

L
⊗R I).

Moreover, since OX is flat over R, the complex F⊗L
R I is concentrated in degree 0,

and isomorphic to the direct image of a coherent sheaf IF on XF. Hence we have

F
L
⊗R RΓ(X, I) ∼= RΓ(XF, IF),

and the desired claim follows from the assumption that XF is affine and the other
direction in Serre’s criterion. �

4.2. Definitions and preliminary results. Let GZ be a split connected, simply-
connected, semi-simple algebraic group over Z. We let BZ ⊂ GZ be a Borel sub-
group, and TZ ⊂ BZ be a (split) maximal torus. We denote by gZ, bZ, tZ the Lie
algebras of GZ, BZ, TZ.

We let N be the product of all the prime numbers which are not very good for
GZ, and set R := Z[1/N ]. We let GR, BR, TR be the groups obtained from GZ,
BZ, TZ by base change to R, and gR, bR, tR be their respective Lie algebras. We
have gR = R⊗Z gZ. We also denote by UR the unipotent radical of BR, by nR its
Lie algebras, and by W the Weyl group of (GR,TR).

We denote by Φ ⊂ X∗(TR) the root system of GR, by Φ+ ⊂ Φ the set of roots
which are opposite to the TR-weights in nR, by ∆ ⊂ Φ+ the corresponding basis,
by Φ̌ ⊂ X∗(TR) the coroots, and by Φ̌+ ⊂ Φ̌ the coroots corresponding to Φ+.

For any geometric point F of R we set

GF := Spec(F)×Spec(R) GR.

We also denote by BF, TF the base change of BR, TR, and by tF ⊂ bF ⊂ gF the
Lie algebras of TF ⊂ BF ⊂ GF.

Proposition 4.2.1. The inclusion tR →֒ gR induces an isomorphism of R-schemes

tR/W
∼
−→ gR/GR.

Moreover, these R-schemes are smooth (in fact they are affine spaces).

Proof. Consider the first claim. Under our assumptions, the group GR is a product
of quasi-simple groups. Hence it is enough to prove the claim in the case GR is
quasi-simple. In this case, it follows from [CR, Theorem 1].

The second claim follows from [De, Théorème 3]. �

Using Proposition 4.2.1, we will freely identify gR/GR with tR/W . Let us also
note the following corollary.

Corollary 4.2.2. For any geometric point F of R, the natural morphism

gF/GF → Spec(F)×Spec(R) (gR/GR)

is an isomorphism.

Proof. By Proposition 2.3.2 and Proposition 4.2.1 it is enough to prove that the
natural morphism

tF/W → Spec(F)×Spec(R) (tR/W )

is an isomorphism. The latter property follows from [De, Corollary on p. 296]. �

Lemma 4.2.3. There exists a symmetric GR-invariant bilinear form on gR which
is a perfect pairing.
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Proof. As in the proof of Proposition 4.2.1, we can assume that GR is quasi-simple
(and simply-connected). If GR is exceptional then by [SS, Corollary I.4.9] the
discriminant of the Killing form of gZ is invertible in R, hence the Killing form
of gR satisfies the conditions of the lemma. If GR is classical then gR can be
realized naturally as a subalgebra of gl(m,R) for some m, and one can check that
the restriction of the bilinear form

(4.2.1)

{
gl(m,R)⊗R gl(m,R) → R

X ⊗ Y 7→ tr(XY )

is non-degenerate, see the considerations in [SS, p. 184]. For instance, let us explain
this argument in types B orD: in this case there exists a natural quotient morphism

GR → SO(m,R) = {M ∈ GL(m,R) | tM ·M = 1}

for some m ≥ 3. The induced morphism on Lie algebras is an isomorphism since 2
is invertible in R, so that we can identify gR with

so(m,R) = {x ∈ gl(m,R) | tx = −x}.

Then the submodule
{x ∈ gl(m,R) | tx = x}

is a complement to so(m,R) in gl(m,R) which is orthogonal to so(m,R) for (4.2.1),
which proves that the restriction to so(m,R) is a perfect pairing. �

Lemma 4.2.3 implies in particular that for any geometric point F of R, the group
GF satisfies condition (C4) of §2.2. It follows that all the results of Section 3 are
applicable to this group.

From now on, we fix a bilinear form as in Lemma 4.2.3, and denote by κ : gR
∼
−→

g∗R the induced isomorphism of GR-modules. (Here g∗R := HomR(gR,R).)

4.3. Kostant section. We now explain how to define the Kostant section over R.
For any α ∈ ∆ we choose a vector eα ∈ gZ which forms a Z-basis of the α-weight
space in gZ (with respect to the action of TZ), and set

e =
∑

α∈∆

eα.

We denote similarly the image of this vector in gR.

Lemma 4.3.1. The R-module bR/[e, nR] is free of rank r.

Proof. This follows from the results of [Sp] as in the proof of Lemma 3.1.2. �

Now we consider the cocharacter λ̌◦ :=
∑

α̌∈Φ̌+ α̌ ∈ X∗(TR), and the (Gm)R-
action on gR defined by

z · x := z−2λ̌◦(z) · x.

Then e is fixed under this action, and the subalgebras bR and nR are (Gm)R-stable.
Using Lemma 4.3.1 we can choose a (Gm)R-stable free R-submodule sR ⊂ bR such
that bR = sR ⊕ [e, nR]. Then we set

SR := e+ sR, ΥR := e+ bR.

It is clear that SR and ΥR are (Gm)R-stable.
By construction, if F is a geometric point of R, the base change of ΥR to F is

the scheme Υ studied in Section 3 for the group GF, and the base change of SR is
the scheme S studied in Section 3 for GF, for the choice s = F⊗R sR.
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Proposition 4.3.2. The morphism

UR ×Spec(R) SR → ΥR

induced by the adjoint action is an isomorphism of R-schemes.

Proof. We have to prove that the induced morphism O(ΥR) → O(UR × SR) is
an isomorphism of R-modules. Now, as in the proof of Proposition 3.2.1, each of
these modules is endowed with a natural (Gm)R-action (equivalently, a Z-grading),
and one can easily check that the weight spaces are finitely generated free R-
modules. Moreover, our morphism is (Gm)R-equivariant. Hence it suffices to prove
that for any prime ℓ not invertible in R, the induced morphism Fℓ ⊗R O(ΥR) →
Fℓ ⊗R O(UR × SR) is an isomorphism. The latter result follows from the similar
claim for an algebraic closure of Fℓ, which is a consequence of Proposition 3.2.1. �

Theorem 4.3.3 (Kostant’s theorem over R). The natural morphisms

SR → ΥR/UR → gR/GR

are isomorphisms of R-schemes.

Proof. The fact that the morphism SR → ΥR/UR is an isomorphism is a conse-
quence of Proposition 4.3.2. Hence what remains is to prove that the morphism
SR → gR/GR is an isomorphism. By the same arguments as in the proof of Propo-
sition 4.3.2 it suffices to observe that for any geometric point F of R, the induced
morphism

Spec(F)×Spec(R) SR → Spec(F)×Spec(R) (gR/GR)

is an isomorphism (by Corollary 4.2.2 and Theorem 3.2.2 applied to GF). �

Proposition 4.3.4. The morphism

a : GR ×Spec(R) SR → gR

induced by the GR-action on gR is smooth.

Proof. This follows from Proposition 4.1.3 and Lemma 3.3.1. �

Remark 4.3.5. Since a is in particular a flat morphism, its image is an open sub-
scheme in gR. One can define the regular locus gregR ⊂ gR as this image. Then the
morphism a : GR ×SR → g

reg
R is smooth and surjective. Moreover, the same argu-

ment as in the proof of Proposition 3.3.3 shows that the restriction g
reg
R → tR/W

of the adjoint quotient is smooth and surjective.

4.4. The universal centralizer and its Lie algebra. We define the (affine)
group scheme IR over gR as the fiber product

IR := gR ×gR×gR
(GR × gR),

where the morphisms are similar to those considered in §3.3. We also denote by
IRS the restriction of IR to SR. It is clear that for any geometric point F of R, the
base change of IR, resp. IRS , to F is the corresponding group scheme defined and
studied in §3.3 for the group GF.

Proposition 4.4.1. The group scheme IRS is smooth over SR, and commutative.
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Proof. Smoothness follows from the same arguments as in the proof of Proposi-
tion 3.3.5, using Theorem 4.3.3 and Proposition 4.3.4.

To prove commutativity, we have to prove that the comultiplication morphism
O(IRS ) → O(IRS )⊗O(SR)O(IRS ) is cocommutative. However using flatness of IRS over
SR (hence over R) we obtain that the vertical arrows in the natural commutative
diagram

O(IRS ) //

��

O(IRS )⊗O(SR) O(IRS )

��

O(ICS)
// O(ICS)⊗O(SC) O(ICS)

are injective, where ICS := Spec(C) ×Spec(R) I
R
S and SC := Spec(C) ×Spec(R) SR.

Hence the desired cocommutativity follows from the case F = C of Corollary 3.3.8.
�

Remark 4.4.2. If one defines gregR as in Remark 4.3.5, then the same arguments as in
the proof of Corollary 3.3.6 imply that the restriction of IR to the open subscheme
g
reg
R is smooth (and commutative). Moreover, one can construct an affine smooth

group scheme JR over tR/W as in Proposition 3.3.9.

We set

IRS := Lie(IRS /SR), IRS := Lie(IRS /SR).

Lemma 4.4.3. (1) The coherent sheaf ISR on SR is locally free of finite rank,
and the Lie algebra IRS is a vector bundle over SR.

(2) The Lie algebra IRS is commutative.
(3) For any geometric point F of R, the Lie algebra Spec(F)×Spec(R) I

R
S coin-

cides with the Lie algebra IS of §3.4 for the group GF.

Proof. These properties follows from Lemma 2.1.1 and Proposition 4.4.1. �

Theorem 4.4.4. There exists a canonical isomorphism

IRS
∼
−→ T∗(SR)

of commutative Lie algebras over SR. In other words, if one identifies SR with
tR/W via the isomorphism of Theorem 4.3.3, there exists a canonical isomorphism

IRS
∼
−→ T∗(tR/W )

of commutative Lie algebras over tR/W .

Proof. As in the proof of Theorem 3.4.2 one can construct a canonical morphism
IRS → ΩSR

of coherent sheaves on SR. To prove that this morphism is an isomor-
phism it suffices to prove that its cone is isomorphic to 0. Since both IRS and ΩSR

are flat over R, to prove this it suffices to prove that for any geometric point F

of R, the induced morphism F ⊗R IRS → F ⊗R ΩSR
is an isomorphism (see [BR2,

Lemma 1.4.1(1)]). However, by Lemma 4.4.3(3), F⊗R IRS is the Lie algebra IS of
§3.4 for the group GF, hence the desired claim follows from Theorem 3.4.2. �

Remark 4.4.5. If one defines g
reg
R as in Remark 4.3.5, and JR as in Remark 4.4.2,

then one can also obtain analogues over R of the first and second isomorphisms in
Theorem 3.4.2.
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4.5. Variant for the Grothendieck resolution. In this subsection we consider
the Grothendieck resolution

g̃R := GR ×BR bR.

It is clear that, for any geometric point F of R, the base change of g̃R to F is the
variety g̃ studied in §3.5, for the group GF. There is a natural projective morphism
π : g̃R → gR induced by the adjoint action, and we set

S̃R := SR ×gR
g̃R.

We will also consider the natural morphism ν : g̃R → tR.

Proposition 4.5.1. The scheme S̃R is affine, and the natural morphisms

(4.5.1) S̃R → SR ×tR/W tR → tR

are isomorphisms.

Proof. First we claim that S̃R is flat over R. In fact, by GR-equivariance the
following diagram is Cartesian:

GR × S̃R
//

��

g̃R

��
GR × SR

a
// gR.

Since a is smooth (see Proposition 4.3.4), the upper arrow is also smooth, and we

deduce that GR × S̃R is flat over R. Since R is a direct factor in O(GR), this

implies that S̃R is also flat over R. Then, since S̃R is R-flat and projective over
SR, the first assertion follows from Proposition 3.5.4(1) and Lemma 4.1.4.

The fact that the second morphism in (4.5.1) is an isomorphism follows from
Theorem 4.3.3. To prove that the first one is also an isomorphism, consider the
induced morphism

(4.5.2) O(SR ×tR/W tR) → O(S̃R).

Then both sides are finite modules over O(tR/W ) (by [De, Théorème 2] and [Ha,
Theorem III.5.2], respectively), and areR-flat. Hence, using [BR2, Lemma 1.4.1(1)],
to prove that (4.5.2) is an isomorphism it suffices to prove that it becomes an iso-
morphism after applying F⊗R (−) for all geometric points F of R. The latter fact
was proved in Proposition 3.5.4(1). �

We define the universal stabilizer ĨR over g̃R as the fiber product

ĨR := g̃R ×g̃R×g̃R
(GR × g̃R).

We denote by ĨRS the restriction of ĨR to S̃R.

Proposition 4.5.2. The group scheme ĨRS is smooth over S̃R, and the following
natural commutative diagram is Cartesian:

ĨRS
//

��

IRS

��

S̃R
// SR.
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Proof. The proof of the first claim is similar to the proof of Proposition 3.5.5(1).
To prove the second claim, we observe that the commutative square of the state-

ment induces a canonical morphism of S̃R-group schemes

(4.5.3) ĨRS → S̃R ×SR
IRS .

Since both group schemes are closed subschemes of GR ×Spec(R) S̃R, and since this

morphism is compatible with their inclusion in GR ×Spec(R) S̃R, (4.5.3) must be a

closed embedding. Since the R-algebra O(S̃R×SR
IRS ) is of finite type and flat over

R, and since ĨRS is also R-flat, by [BR2, Lemma 1.4.1(1)], to prove that (4.5.3) is an
isomorphism it suffices to prove that, for any geometric point F of R, the morphism

Spec(F)×Spec(R) Ĩ
R
S → Spec(F)×Spec(R) (S̃R ×SR

IRS )

is an isomorphism, which follows from Proposition 3.5.5(2). �

Now we set

ĨRS := Lie(̃IRS /S̃R), ĨRS := Lie(̃IRS /S̃R).

Lemma 4.5.3. There exists a canonical Cartesian diagram

ĨRS

��

// IRS

��

S̃R
// SR.

Proof. This follows from Lemma 2.1.1(2), Proposition 4.4.1 and Proposition 4.5.2.
�

Combining Lemma 4.5.3 and Theorem 4.4.4 we deduce the following result.

Theorem 4.5.4. There exists a canonical isomorphism

ĨRS
∼
−→ S̃R ×SR

T∗(SR)

of commutative Lie algebras over S̃R. In other words, if one identifies S̃R with tR
via the isomorphism of Proposition 4.5.1, there exists a canonical isomorphism

ĨRS
∼
−→ tR ×tR/W T∗(tR/W )

of commutative Lie algebras over tR. �
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[Ko] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963),

327–404.
[Ma] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.

[MR] C. Mautner, S. Riche, Exotic tilting sheaves, parity sheaves on affine Grassmannians, and
the Mirković–Vilonen conjecture, in preparation.

[Ng] B. C. Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes

Études Sci. 111 (2010), 1–169.
[Sl] P. Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Math. 815,

Springer, 1980.

[Sp] T. A. Springer, Some arithmetical results on semi-simple Lie algebras, Inst. Hautes Études
Sci. Publ. Math. 30 (1966), 115–141.

[SS] T. A. Springer, R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related
Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Lecture Notes

in Math. 131, Springer, 1970, pp. 167–266.
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