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Abstract In a tabular database, patterns which occur over a frequency threshold
are called frequent patterns. They are central in numerous data processes and var-
ious efficient algorithms were recently designed for mining them. Unfortunately,
very few is known about the real difficulty of this mining, which is closely related
to the number of frequent patterns. The worst case analysis always leads to an ex-
ponential number of frequent patterns, but experimentations show that algorithms
become efficient for reasonable frequency thresholds. We perform here a proba-
bilistic analysis of the number of frequent patterns. We first introduce a general
model of random databases that encompasses all the previous classical models. In
this model, the rows of the database are seen as independent words generated by
the same probabilistic source [i.e. a random process that emits symbols]. Under
natural conditions on the source, the average number of frequent patterns is studied
for various frequency thresholds. Then, we exhibit a large class of sources, the class
of dynamical sources, which is proven to satisfy our general conditions. This finally
shows that our results hold in a quite general context of random databases.
Keywords: Data mining, Models of databases, Frequent patterns, Probabilistic
analysis, Dynamical sources.

1 Introduction

Data mining, which applies to various fields (Astronomy, Fraud detection,
Marketing, . . . ), aims extracting a new knowledge from large databases. We
consider here tabular databases where a knowledge is represented by a col-
lection of columns, also called a pattern.

Patterns which occur frequently at the same time in several rows are
of great interest since they indicate a correlation between the columns that
compose the pattern. A pattern is said frequent if it occurs over a frequency
threshold, which is defined by users. Frequent patterns intervene in numerous
data processes such as classification or clustering [Goethals, 2003]. They are
also essential [Agrawal et al., 1993] for generating the well known association
rules that apply in Bioinformatic, Physics, Geography, . . .

The frequent pattern mining problem was first described in
[Agrawal et al., 1993]; during the last decade, several algorithms have
been designed to solve it [Agrawal et al., 1996] [Savasere et al., 1995]
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[Toivonen, 1996] [Han et al., 2000] [Zaki, 2000]. Their complexities are
closely related to the number of frequent patterns. Whereas the worst-case
analysis leads to a number of patterns which is always exponential w.r.t the
number of columns, the actual behaviour appears to be quite different. The
algorithms fail when the frequency threshold is too small, which suggests
an exponential behaviour; however, they become efficient for reasonable fre-
quency thresholds, which suggests a polynomial behaviour. There already
exist bounds for the number of frequent patterns in [Geerts et al., 2001], but
they are involved and do not elucidate the influence of the frequency threshold
on the number of frequent patterns.

In this article, we perform a probabilistic analysis which elucidates the
real behaviour of the number of frequent patterns. There already exist
such analyses for frequent pattern mining, dealing with the maximal size
of the patterns [Agrawal et al., 1996], or the fail rate of Apriori algorithm
[Purdom et al., 2004]. But the previous analyses dealt with a model based
on the column independence, whereas the algorithms are precisely designed
for searching correlations between columns. We introduce a general model
of random databases which avoids this contradiction. Here, the rows of the
database are independent words generated by the same source. A source is a
probabilistic process that emits a symbol at each unit time, and the complete
process builds a word. Under natural conditions on words produced by this
source [Conditions 1 and 2-γ], we obtain two main results [Theorems 1 and
2] on the number of frequent patterns in two main cases: the first one is
related to a fixed frequency threshold, whereas the second one deals with a
linear frequency threshold [w.r.t the number of rows]. We then describe a
large class of sources, called dynamical sources, which are proven to satisfy
Conditions 1 and 2-γ [Theorem 3]. This class contains all the classical sources
(memoryless sources and Markov chains), but also many other sources which
may possesss a higher degree of correlations. It then follows that Theorem 1
and Theorem 2 apply to various models of databases (classical or not).

2 Model of databases

2.1 Frequent pattern mining

Frequent pattern mining is often described in the framework of market basket
analysis, but we adopt here the more general framework of multiple-choice
questionnaire. In this context, a set of persons (of cardinality n) answers to
a number m of multiple-choice questions. The set E of possible answers to
each question is the same, and is called the alphabet. The word of Em formed
by the answers of one person to all the questions is called a transaction. A
natural data structure for storing all the transactions is a n×m matrix over
E .

A pattern is a set of pairs (question, answer) where each question ap-
pears at most once. Figure 1 gives instances of patterns in a database. A
person p supports a pattern X if her transaction contains the pattern X .
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Questions

persons q1 q2 q3 q4 q5 q6 q7

p1 2 1 2 1 2 1 1
p2 1 2 2 1 2 1 3
p3 2 3 2 1 2 1 1
p4 2 1 3 2 1 2 1

Pattern Support Frequency

(q1, 2), (q3, 2) p1, p3 2
(q4, 1), (q7, 3) p2 1
(q5, 2) p1, p2, p3 3

Figure1. On the left, an instance of database with 7 questions and 4 persons
whose answers to the questionnaire belong to E = {1, 2, 3}. On the right, instances
of patterns with the associated support and frequency.

The support of a pattern X is the set of persons that support X , and the
frequency of X is the size of its support. Figure 1 gives instances of patterns
with their support and frequency.

A pattern is said γ-frequent in B, with a frequency threshold γ ≥ 1, if
the cardinality of its support is greater than γ. In table of Figure 1, the
pattern (q5, 2) is 0, 1, 2 or 3-frequent since its frequency is 3. When the
database contains at least γ copies of each possible transaction (this means
that n ≥ γ · |E|m), all possible patterns are γ-frequent. in this case, the
number of frequent patterns equals (1 + |E|)m − 1 [for m questions]. Now,
if the matrix coefficients are all equal to v, all the patterns which contain
(question, v) are frequent [for any frequency threshold]. In this case, the
number of frequent patterns equals to 2m − 1. In particular, it is always at
least exponential (in the worst-case).

2.2 Model of random databases

Our model considers all the transactions as different words produced by the
same probabilistic source defined on the alphabet E . For instance, the word
associated to the first transaction [or row or person] in Figure 1 is 2121211.
Since frequent patterns aim describing correlations between questions, we
always suppose that the transactions are independent, even if the persons
themselves may not be independent. Finally, we are interested in asymptotics
when the databases become large, with a number of persons and a number
of questions which are polynomially related. The next definition summaries
these three hypotheses.

Definition 1. We call random database a probabilistic database that satis-
fies the three following conditions: (i) each transaction is a word produced
by the same probabilistic source over an alphabet E , (ii) the transactions
form a family of independent random variables, (iii) the number n of persons
and the number m of questions are polynomially related, namely of the form
log n = Θ(log m).
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3 Main results

We study the average number of frequent patterns in random databases [Defi-
nition 1] for two types of frequency thresholds: the linear frequency threshold
and the constant threshold [w.r.t n]. A general result which would hold for all
existing source is certainly unexpected. This is why we introduce a natural
condition on the source for each frequency threshold. In the whole section, m
and n respectively denote the number of questions and persons in a random
database B.

3.1 Linear frequency threshold

A frequency threshold γ is said to be linear if it satisfies, γ ∼ r · n (for some
r ∈]0, 1[) as n tends to infinity. The probability that a person, or equivalently
a word, supports the pattern X is noted pX . The quantities pX are essential
in our different conditions. One has clearly pY ≤ pX as soon as X ⊆ Y . The
next condition considers sources whose pattern probability is exponentially
decreasing with the size of the pattern.

Condition 1 There exist M > 0 and θ ∈]0, 1[ such that for any pattern X,
the probability pX satisfies: pX ≤ M · θ|X|.

In practice, Condition 1 implies that questions discriminate persons. In the
sequel, we will prove that various (classical) sources satisfy Condition 1.

Theorem 1. Let B be a random database with parameters (n, m) generated
by a probabilistic source that satisfies Condition 1 with parameters M and
θ. For a linear frequency threshold γ ∼ r · n, the average number Fγ,m,n of
γ-frequent patterns is polynomial w.r.t the number m of questions,

Fγ,m,n = O
(

mj0
)

with j0 = max{j ≥ 0 | Mθj ≥ r}

This polynomial behaviour explains the efficiency of the algorithms for rea-
sonable frequency thresholds. It is also possible to obtain an estimate of
Fγ,m,n under the weaker condition (1− θ) ·min(m, n) → ∞, but, in this case,
the asymptotic behaviour is no longer polynomial w.r.t m.

3.2 Constant frequency threshold

Here, the frequency threshold γ is now constant. Given γ random transac-
tions over m questions, the probability that γ transactions support X is pγ

X .
Hence, the average number of patterns supported by the γ transactions is

Σγ,m =
∑

X

pγ
X .

The sum Σγ,m is proven to be greater than 1. It admits a closed form for
various (classical) sources [see sections 4 and 5]. The next condition implies
that, for γ constant, Σγ,m is exponential w.r.t the number m of questions, :
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Condition 2-γ There exists θγ > 1 such that, for large m,

Σγ,m > θm
γ · Σγ+1,m

With Condition 2-γ, we prove our second main result.

Theorem 2. Fix γ ∈ N⋆ and consider a random database B generated by a
probabilistic source that satisfies Condition 2-γ with parameter θγ . The mean
number of γ-frequent patterns verifies

Fγ,m,n =

(

n

γ

)

Σγ,m ·

[

1 + n · O

(

1

θm
γ

.

)]

.

In other words, for a constant frequency threshold, the number of frequent
patterns is exponential w.r.t the number m of questions, and polynomial
w.r.t the number n of persons. This result explains why the algorithms fail
for small frequency thresholds.

3.3 Sketch of proofs

For a given frequency threshold γ, the average number of frequent patterns
is the sum over all possible patterns X and all possible supports S, of the
probability that X has support S. Now, the size of the support of X follows
a binomial law with parameter pX , so that

Fγ,m,n =
∑

X

Fγ,m,n,X with Fγ,m,n,X :=
n

∑

k=γ

(

n

k

)

pk
X(1 − pX)n−k.

The fundamental step transforms Fγ,m,n,X into an integral. Developing
(1 − pX)k, doing a change of variable, inverting two signs sum and using
a recurrence lead to the alternative formula

Fγ,m,n,X = γ

(

n

γ

)
∫ pX

0

tγ−1(1 − t)n−γdt.

The proofs for constant and linear thresholds separate here.
For a constant threshold, we use the bounds 1 − (n − γ)t < (1 − t)n−γ < 1
and get a lower bound of Fγ,m,n that involves the sums Σm,γ and Σm,γ+1,
whereas the upper bound only involves Σm,γ . Condition 2-γ is then used to
conclude.
For a linear threshold γ ∼ r ·n, we prove that Fγ,m,n,X tends to 0 if pX < r−ǫ
for some positive ǫ (with an explicit error term). Otherwise, it is bounded
by 1. Hence, the sum Fγ,m,n only involves patterns with probability greater
than r − ǫ and Condition 1 ensures that the number of such patterns is at
most polynomial.
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4 Dynamical databases

The results of the previous section are valid for any database generated by
any source, provided that it satisfies Conditions 1 and 2-γ. In this paper,
we will prove that a large class of sources satisfy these Conditions. We now
present this class, formed by a large subset of dynamical sources introduced
by Brigitte Vallée in [Vallée, 2001], and further used in [Clément et al., 2001]
[Bourdon, 2001] [Bourdon et al., 2001] The model of dynamical sources gath-
ers classical sources as the Bernoulli sources or the Markov chains, as well as
more correlated ones. It is sufficiently general and can be yet precisely anal-
ysed. This class is then a good candidate for generating general databases,
that we call Dynamical databases. We prove the following.

Theorem 3. A [Markovian and irreducible] dynamical source satisfies con-
dition 1 and, for all γ ≥ 1, condition 2-γ, with Σγ,m of the form:
Σm,γ = κγ · λm

γ (1 + O(θ−m
γ )), κγ > 0, λγ > 1, θγ > 1 and λγ > λγ+1.

In particular, Theorems 1 and 2 hold for [Markovian and irreducible] dynam-
ical databases.

4.1 Dynamical sources

A dynamical source is defined by six elements: (i) an interval I, (ii) an al-
phabet E , (iii) a topological partition (Iα)α∈E of I [i.e., α 6= β ⇒ Iα ∩ Iβ = ∅
and ∪αIα = I], (iv) a coding function σ : I → E such that σ(Iα) = α, (v) a
shift function T on I, of class C2, strictly monotone on each interval Iα, and
strictly expansive [namely |T ′| > ρ−1 > 1 on I], (vi) an initial density f0 on
I.
Figure 2 describes some instances of dynamical sources. A dynamical source
emits symbols in the following way: (i) first a random real x is chosen in I
according to the initial density f0, (ii) then, the emitted symbol at the i-th
step is the symbol associated to the interval that contains the i-th iterate of
x [αi = σ(T ix)], so that the (infinite) word M(x) produced by the source is
M(x) := α1α2 . . ..
A dynamical source is similar to a pseudo-random generator, where a prob-
abilistic seed is used to initialise the process, which is, after this random
choice, completely deterministic.

There exist several types of dynamical sources according to the geometric
or analytic properties of T . The simplest family occurs when T is affine and
surjective on each interval of the partition. Such sources models the classical
memoryless sources that emit symbols independently from the previous ones,
but following always the same probabilistic law. When such a source is used
for generating a database, the questions are not correlated. Figure 2 gives
an example of Bernoulli source.

In order to introduce some correlations between questions, we first con-
sider sources with bounded memory, such as Markov chains. A Markov chain
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emits a new symbol according to a constant probabilistic law that depends
on a bounded number of previous symbols. Used to generate databases, it
entails that close questions are correlated. A Markov chain is a particular
dynamical source. In this case, T is piecewise affine and the image of an
interval of the partition is the union of intervals of the partition. Figure 2
gives an instance of Markov chain.

In this article, we deal with more general sources, called Markovian dy-
namical sources. A Markovian dynamical source has the same geometry as
a Markov chain [ the image by T of the interval Iα is a union of such inter-
vals], but the shift function is not necessary affine. Moreover, we suppose
that the process is irreducible, i.e., the matrix M = (mα,β) with mα,β = 1 if
T (Iβ) ∩ Iα 6= ∅, and mα,β = 0 elsewhere, satisfies Mk > 0 for some positive
integer k. Figure 2 presents a Markovian source. More general dynamical
sources will be not used in this article.

Figure2. Instances of dynamical sources (without the initial density). From left
to right: a Bernoulli source, a Markov chain, a Markovian dynamical source, a
general dynamical source.

4.2 Idea of proof

The main tool for analysing a dynamical source is the transfer operator. It
generalizes the density transformer G. The density transformer G describes
the evolution of the density: one begins with some density f0, and, after one
iteration of the shift T , the new density is f1 = G[f0]. We consider here the
constrained operators GF , relative to F ⊂ E , which are used to generate the
probabilities pX .

The set of words (or transactions) that support a pattern X is of the form
E1 ·E2 ·. . .·Em where · is the concatenation operator and Ei := {α, (qi, α) ∈ X},
and the probability pX satisfies

pX =

∫

I

GEm
◦ . . . ◦ GE1

[f0](t)dt.

On a convenient functional space, the density transformer admits a unique
dominant eigenvalue 1, separated from the remainder of the spectrum by a
spectral gap. This spectral property, with |T ′| > ρ−1 > 1 and the irreducible
property entail that pX ≤ M · ρm/2, for some positive constant M .

The sum Σm,γ is the average number of patterns supported by γ ran-
dom transactions. All the previous operators, defined to “describe” only one
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transaction, generalise for γ transactions. They give rise to operators Gγ,w

whose m-th iterates provide an alternative expression for Σm,γ , namely

Σm,γ =

∫

Iγ

G
m
γ,2[(f0, . . . , f0)](t1, . . . , tγ)dt1 . . . dtγ .

Here, Gγ,w is a multidimensional functional operator that admits a unique
dominant eigenvalue λ(γ, w), separated from the remainder of the spectrum
by a spectral gap, and λ(γ, w) > λ(γ + 1, w). This spectral property entails
a decomposition of Gγ,w of the form

G
m
γ,w[F ] = λ(γ, w)m

P[F ]
(

1 + O(θm
γ,w)

)

,

with P a projector and θγ,w < 1. Theorem 3 follows.

5 Improved memoryless model of databases

All the existing databases are not a particuler case of Dynamical databases
do not recover. Consider for instance a quite simple one, which is called
the improved memoryless model. Persons and questions are independent,
and each question has its own probabilistic behaviour. More precisely, the
answer to the i-th question follows a Bernoulli law Bi = (pi,α)α∈E over the
alphabet Ei, where the Bi’s and the Ei’s may be depend in the index i. In
the “simple” memoryless model, used for the classical probabilistic analyses,
the Bi’s were the sames.

Let p denote the maximum of all the probabilities pi,v. Since p < 1, the
relation pX ≤ p|X| holds and ensures Condition 1. Moreover, the sum Σγ,m

admits the closed formula

Σγ,m =

m
∏

j=1

(1 +
∑

v∈E

pγ
j,v)

and Condition 2-γ is clearly satisfied with θγ = (1 + p/|E|γ)/(1 + 1/|E|γ).

6 Experiments

This section presents some experiments realised with classical databases of
the FIMI website (Frequent Itemset Mining Implementations, http://fimi.
cs.helsinki.fi/). In Figure 3, the plain line in the graphics represents
the number of frequent patterns in function of the frequency threshold for a
real database [Chess.dat] and a synthetic one [T10I4D100K.dat]. The dotted
(resp. dashed) line represents the average number of frequent patterns of
the simple (resp. improved) Bernoulli model naturally associated to the real
database.

In the graphics, the improved model gives very good estimations whereas
the simple model is quite bad. This result is not surprising for synthetic data
since they have, by construction, few correlations. However, so closed results
were unexpected for real life databases. The same remarks also hold for other
tested databases.
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Figure3. Number of frequent patterns in function of the frequency threshold in
the real database (plain line), in the associated simple Bernoulli model (dashed)
and in the associated improved Bernoulli model (dotted).
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