A new insight into Serre's reduction problem

Thomas Cluzeau 1 Alban Quadrat 2
1 XLIM-DMI - DMI
XLIM - XLIM
2 DISCO - Dynamical Interconnected Systems in COmplex Environments
L2S - Laboratoire des signaux et systèmes, Inria Saclay - Ile de France, SUPELEC, CNRS - Centre National de la Recherche Scientifique : UMR8506
Abstract : The purpose of this paper is to study the connections existing between Serre's reduction of linear functional systems -- which aims at finding an equivalent system defined by fewer equations and fewer unknowns -- and the decomposition problem -- which aims at finding an equivalent system having a diagonal block structure -- in which one of the diagonal blocks is assumed to be the identity matrix. In order to do that, we further develop results on Serre's reduction problem and on the decomposition problem previously obtained. Finally, we show how these techniques can be used to analyze the decomposability problem of standard linear systems of partial differential equations studied in hydrodynamics such as Stokes equations, Oseen equations and the movement of an incompressible fluid rotating with a small velocity around the vertical axis.
Type de document :
Rapport
[Research Report] RR-8629, Inria Saclay; INRIA. 2014, pp.92
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01083216
Contributeur : Alban Quadrat <>
Soumis le : lundi 17 novembre 2014 - 11:41:40
Dernière modification le : jeudi 5 avril 2018 - 12:30:13
Document(s) archivé(s) le : vendredi 14 avril 2017 - 14:35:08

Fichier

RR-8629.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01083216, version 1

Citation

Thomas Cluzeau, Alban Quadrat. A new insight into Serre's reduction problem. [Research Report] RR-8629, Inria Saclay; INRIA. 2014, pp.92. 〈hal-01083216〉

Partager

Métriques

Consultations de la notice

438

Téléchargements de fichiers

155