A new insight into Serre's reduction problem

Thomas Cluzeau, Alban Quadrat

To cite this version:

Thomas Cluzeau, Alban Quadrat. A new insight into Serre's reduction problem. [Research Report] RR-8629, Inria Saclay; INRIA. 2014, pp.92. hal-01083216

HAL Id: hal-01083216
https://inria.hal.science/hal-01083216
Submitted on 17 Nov 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A new insight into Serre's reduction problem

Thomas Cluzeau, Alban Quadrat

RESEARCH
 REPORT
 $\mathrm{N}^{\circ} 8629$
 November 2014
 Project-Team Disco

A new insight into Serre's reduction problem

Thomas Cluzeau ${ }^{*}$ Alban Quadrat ${ }^{\dagger}$
Project-Team Disco
Research Report n 8629 - November 2014 - 89 pages

Abstract

The purpose of this paper is to study the connections existing between Serre's reduction of linear functional systems - which aims at finding an equivalent system defined by fewer equations and fewer unknowns - and the decomposition problem - which aims at finding an equivalent system having a diagonal block structure - in which one of the diagonal blocks is assumed to be the identity matrix. In order to do that, we further develop results on Serre's reduction problem and on the decomposition problem obtained in Boudellioua and Quadrat (2010); Cluzeau and Quadrat (2008). Finally, we show how these techniques can be used to analyze the decomposability problem of standard linear systems of partial differential equations studied in hydrodynamics such as Stokes equations, Oseen equations and the movement of an incompressible fluid rotating with a small velocity around the vertical axis.

Key-words: Mathematical systems theory, linear functional systems, module theory, Serre's reduction, the factorization problem, the decomposition problem, applications to hydrodynamics.

[^0]```
RESEARCH CENTRE
SACLAY - ÎLE-DE-FRANCE
Parc Orsay Université
4 \text { rue Jacques Monod}
91893 Orsay Cedex
```


## Un nouveau point de vue sur le problème de réduction de Serre

Résumé : Ce papier porte sur l'étude des liens entre la réduction de Serre des systèmes fonctionnels linéaires - qui a pour but de trouver un système équivalent défini par moins d'équations et moins d'inconnues - et le problème de décomposition - qui a pour but de trouver un système diagonal par blocs équivalent - dans le cas où l'un des blocs diagonaux est une matrice d'identité. Pour cela, nous étendons des résultats obtenus dans Boudellioua and Quadrat (2010); Cluzeau and Quadrat (2008) sur la réduction de Serre et sur le problème de décomposition. Finalement, nous montrons comment ces résultats peuvent être utilisés pour analyser le problème de la décomposabilité des systèmes linéaires d'équations aux dérivées partielles classiquement étudiés en hydrodynamique tels que les équations de Stokes, les équations d'Oseen et le mouvement d'un fluide incompressible en rotation à petite vitesse autour d'un axe vertical.

Mots-clés : Théorie mathématique des systèmes, systèmes fonctionnels linéaires, théorie des modules, réduction de Serre, problème de factorisation, problème de décomposition, applications à l'hydrodynamique.

## Contents

1 Introduction ..... 3
2 Algebraic analysis approach to linear functional systems ..... 5
3 Homomorphisms of finitely presented left $D$-modules ..... 9
4 Factorization problem ..... 14
5 Decomposition problem ..... 17
5.1 General results ..... 17
5.2 The decomposition problem with an identity diagonal block ..... 22
6 Serre's reduction problem as a particular decomposition problem ..... 34
6.1 Serre's reduction ..... 34
6.2 From Serre's reduction problem to the decomposition problem and vice versa ..... 43
7 Applications to linear PD systems studied in hydrodynamics ..... 47
7.1 Oseen equations ..... 47
7.2 Implicit scheme for the Oseen equations and Stokes equations ..... 50
7.3 Fluid dynamics ..... 53
8 Appendix ..... 55
8.1 Wind tunnel model: decomposition ..... 56
8.2 Wind tunnel model: Serre's reduction ..... 67
8.3 Oseen equations ..... 74
8.4 Implicit scheme for the Oseen equations ..... 78
8.5 Rotating fluid ..... 85

## 1 Introduction

Mathematical systems theory aims at studying general systems defined by mathematical equations. These systems are usually defined by functional equations, namely, systems whose unknowns are functions, such as ordinary differential (OD) or partial differential (PD) equations, differential time-delay equations, (partial) difference equations, ... They can be linear, nonlinear, determined, overdetermined or underdetermined. A system can be studied by a broad spectrum of mathematical theories. For instance, mathematical models developed in natural sciences are usually studied by means of techniques coming from mathematical physics, functional analysis, probability and numerical analysis. There are at least two reasons for that. The first one is that it is generally difficult to obtain purely analytical results for such functional systems. The second one is the role that simulations play in nowadays life. Other functional systems coming from mathematical physics, differential geometry, hamiltonian systems, algebraic geometry, ... are usually studied by means of algebraic or differential geometry techniques. More recently, the development of constructive versions of parts of pure mathematical theories (e.g., differential algebra, algebraic geometry, differential geometry, module theory, homological algebra) and their implementations in efficient computer algebra systems allow one to develop a more analytic study of certain functional systems studied, for instance, in control theory and in mathematical physics. The questions raised in this approach are the intrinsic study of these systems, i.e., the study of their built-in properties, their symmetries and their solutions, the computation of particular forms for the systems (e.g., formal integrable forms, Gröbner or Janet bases, block triangular forms, block diagonal forms, equidimensional decomposition), of conservation laws, ... This intrinsic study leads to important information on the system (e.g., dimension of the solution space, invariants, cascade integration, decoupling), the computation of particular solutions (e.g., exponential, hypergeometric, parametrizations), ...

Following the latter approach, the purpose of this paper is to further develop certain results obtained in Cluzeau and Quadrat (2008) and Boudellioua and Quadrat (2010) which study the existence of factorizations of a matrix of functional operators defining a linear functional system, the existence of equivalent block diagonal forms for the system and the existence of equivalent forms defined by fewer unknowns and fewer equations than the original system. More precisely, if $\mathrm{GL}_{r}(D)$ is the group formed by the $r \times r$ matrices with entries in a ring $D$ which are invertible and $R \in D^{q \times p}$ is a matrix which defines the system equations $R \eta=0$, where $\eta \in \mathcal{F}^{p}$ is a vector of unknown functions which belong to a functional space $\mathcal{F}$ having a left $D$-module structure, then the so-called factorization problem, decomposition problem and Serre's reduction problem are respectively defined by:

1. Find $R^{\prime} \in D^{r \times p}$ and $R^{\prime \prime} \in D^{q \times r}$ such that $R=R^{\prime \prime} R^{\prime}$.
2. Find $V \in \mathrm{GL}_{q}(D)$ and $W \in \mathrm{GL}_{p}(D)$ such that

$$
V R W=\left(\begin{array}{cc}
\bar{R}_{1} & 0 \\
0 & \bar{R}_{2}
\end{array}\right)
$$

for certain matrices $\bar{R}_{1} \in D^{s \times t}$ and $\bar{R}_{2} \in D^{(q-s) \times(p-t)}$.
3. Find $V \in \mathrm{GL}_{q}(D)$ and $W \in \mathrm{GL}_{p}(D)$ such that

$$
V R W=\left(\begin{array}{cc}
I_{s} & 0 \\
0 & \bar{R}_{2}
\end{array}\right)
$$

for a certain matrix $\bar{R}_{2} \in D^{(q-s) \times(p-s)}$, where $I_{s}$ denotes the identity matrix of $\mathrm{GL}_{s}(D)$.
To do that, we study linear functional systems within the algebraic analysis approach (also called $D$-module theory) developed by Malgrange, Bernstein, Sato, Kashiwara ... See Hotta et al. (2008); Kashiwara (1995); Malgrange (1962); Quadrat 2010) and the references therein. In this approach, a linear functional system $R \eta=0$ is studied by means of the left $D$-module $M$ finitely presented by the matrix $R \in D^{q \times p}$ which defines the system equations and whose entries belong to a noncommutative polynomial ring $D$ of functional operators. Using the recent development of Gröbner or Janet basis techniques for certain classes of noncommutative polynomial rings of functional operators (Chyzak et al. (2005)), results of algebraic analysis, using module theory and homological algebra, were made algorithmic in Chyzak et al. (2005); Cluzeau and Quadrat (2008); Quadrat (2010) and implemented in the OreModules and OreMorphisms packages (Chyzak et al. (2007); Cluzeau and Quadrat (2009)).

In this paper, we first complete some of the main results obtained in Cluzeau and Quadrat (2008). In particular, we obtain a necessary and sufficient condition for the existence of a non-trivial factorization of the system matrix based on the concept of a non-generic solution developed in algebraic analysis. Even if this characterization is not constructive, it generalizes a result obtained in Cluzeau and Quadrat (2008) and gives another explanation to the well-known fact that, for a linear OD operator, the existence of a factorization cannot usually be detected from the knowledge of the associated eigenring (see Barkatou (2007); van der Put and Singer (2003) and the references therein). We then consider the decomposition problem and we obtain necessary and sufficient conditions for the existence of a direct decomposition of the module which generalize a result obtained in Cluzeau and Quadrat (2008). We study Serre's reduction problem as a particular case of the decomposition problem, i.e., as the particular case where one of the diagonal block is the identity matrix. We show how to use certain homotopies of the trivial idempotents of the left $D$-module $M$, namely, of the 0 and identity endomorphisms of $M$, and the solutions of an algebraic Riccati equation (generalized inverses) to obtain necessary and sufficient conditions of Serre's reduction. These conditions are then related to the ones obtained in Boudellioua and Quadrat (2010) following Serre's ideas (see the references of Boudellioua and Quadrat (2010)). In particular, we state a correspondence between these two approaches and show how to explicitly pass from one formulation to the other. Finally, we show how the above results can be used to prove that standard 2-dimensional linear PD systems studied in hydrodynamics (namely, Oseen equations and the movement of an incompressible fluid rotating with a small velocity around the vertical axis) are defined by indecomposable differential
modules. These results give a mathematical proof that the matrices of PD operators defining these systems are not equivalent to block diagonal matrices, and thus, that the equations of these systems cannot be uncoupled (which would exhibit independent physical subphenomema). These results are obtained by proving that their endomorphism rings are cyclic differential modules that only admit the two trivial idempotents.

The plan of the paper is the following. In Section 2, we briefly review the main ideas of the algebraic analysis approach to linear systems theory. In Section 3, we first present well-known results on the homomorphisms of finitely presented left modules and then study the multiplicative structure of the endomorphism ring of a finitely presented module over a commutative polynomial ring. In Section 4 , we complete the results obtained in Cluzeau and Quadrat (2008) on the factorization problem. In Section 5 , we further develop the results of Cluzeau and Quadrat (2008) on the decomposition problem. Serre's reduction problem is first recalled in Section 6 and the main results are reviewed. We then study the deep connections existing between Serre's reduction problem and the decomposition problem in the particular case when one of the diagonal blocks is the identity matrix. We exhibit a non-trivial correspondence between the solutions of Serre's reduction problem and those of the decomposition problem (which are based on the solvability of an algebraic Riccati equation). In Section 7, we illustrate how the techniques developed in this paper can be used to study the endomorphism ring of standard linear PD systems encountered in hydrodynamics and prove that some of these systems are indecomposable, i.e., that they cannot be uncoupled. Finally, the paper ends with Section 8 which is an appendix where the different computations used in Sections 5, 6 and 7, and obtained by means of the OreMorphisms package, are given.

Notation. In this article, $D$ will denote a left noetherian domain, namely a ring without zero divisors and which is such that every left ideal of $D$ is finitely generated as a left $D$-module (see, e.g., Rotman (2009). When $D$ is a (noncommutative) polynomial ring over a computational field $k$, we shall further assume that Buchberger's algorithm terminates for any admissible term order and computes a Gröbner basis (see Cluzeau and Quadrat (2008) and references therein). Moreover, $D^{q \times p}$ denotes the $D-D$ bimodule formed by the $q \times p$ matrices with entries in $D$. We simply note $D^{p \times 1}$ by $D^{p}$. The group of invertible matrices of $D^{p \times p}$ is denoted by $\operatorname{GL}_{p}(D)$. If $M$ and $N$ are two left $D$-modules, $\operatorname{hom}_{D}(M, N)$ is the abelian group formed by the left $D$-homomorphisms (i.e., left $D$-linear maps) from $M$ to $N$. If $k$ is a field and $D$ a $k$-algebra, then $\operatorname{hom}_{D}(M, N)$ inherits a $k$-vector space structure. Two left $D$-modules $M$ and $N$ are said to be isomorphic, which is denoted by $M \cong N$, if there exists an injective and surjective element of $\operatorname{hom}_{D}(M, N)$. We denote by $M \oplus N$ the direct sum of $M$ and $N$ (see, e.g., Rotman (2009)). Finally, $\operatorname{det}(R)$ denotes the determinant of a square matrix $R$ whose entries belong to a commutative ring and $\operatorname{diag}\left(R_{1}, R_{2}\right)$ is the block diagonal matrix formed by the matrices $R_{1}$ and $R_{2}$.

## 2 Algebraic analysis approach to linear functional systems

In this paper, we study linear systems theory within the algebraic analysis framework (see Chyzak et al. (2005); Cluzeau and Quadrat (2008); Malgrange (1962); Quadrat (2010) and the references therein). Let us briefly state again the main ideas of this approach. Let $D$ be a left noetherian domain, $\mathcal{F}$ a left $D$-module and $R \in D^{q \times p}$. A linear system, also called behaviour in control theory, is defined by the following abelian group:

$$
\operatorname{ker}_{\mathcal{F}}(R .):=\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\} .
$$

If $k$ is a field and $D$ a $k$-algebra, then $\operatorname{ker}_{\mathcal{F}}(R$.) inherits a $k$-vector space structure.
To study the linear system $\operatorname{ker}_{\mathcal{F}}(R$.$) , we first introduce the finitely presented left D$-module $M$ defined as the cokernel of the following left $D$-homomorphism

$$
\begin{aligned}
. R: D^{1 \times q} & \longrightarrow D^{1 \times p} \\
\lambda & \longmapsto \lambda R,
\end{aligned}
$$

i.e., with the notation $\operatorname{im}_{D}(. R):=D^{1 \times q} R$, defined by the following factor left $D$-module:

$$
M:=D^{1 \times p} /\left(D^{1 \times q} R\right) .
$$

Let us explain why this module plays an important role in the algebraic analysis approach to linear systems theory. Let $\pi \in \operatorname{hom}_{D}\left(D^{1 \times p}, M\right)$ be the left $D$-homomorphism sending $\lambda \in D^{1 \times p}$ onto its residue class $\pi(\lambda) \in M$ (i.e., $\pi(\lambda)=\pi\left(\lambda^{\prime}\right)$ if and only if there exists $\mu \in D^{1 \times q}$ such that $\left.\lambda=\lambda^{\prime}+\mu R\right),\left\{f_{j}\right\}_{j=1, \ldots, p}$ the standard basis of $D^{1 \times p}$, i.e., $f_{j} \in D^{1 \times p}$ is the vector formed by 1 at the $j^{\text {th }}$ position and 0 elsewhere, and $y_{j}:=\pi\left(f_{j}\right)$ for $j=1, \ldots, p$. Then, every element $m \in M$ is of the form $m=\pi(\lambda)$ for a certain $\lambda=\left(\lambda_{1} \ldots \lambda_{p}\right) \in D^{1 \times p}$, which yields $m=\pi\left(\sum_{j=1}^{p} \lambda_{j} f_{j}\right)=\sum_{j=1}^{p} \lambda_{i} \pi\left(f_{j}\right)=\sum_{j=1}^{p} \lambda_{i} y_{j}$ and shows that $\left\{y_{j}\right\}_{j=1, \ldots, p}$ is a family of generators of $M$. These generators satisfy the following left $D$-linear relations:

$$
\forall i=1, \ldots, q, \quad \sum_{j=1}^{p} R_{i j} y_{j}=\sum_{j=1}^{p} R_{i j} \pi\left(f_{j}\right)=\sum_{j=1}^{p} \pi\left(R_{i j} f_{j}\right)=\pi\left(\left(R_{i 1} \ldots R_{i p}\right)\right)=0 .
$$

If we note $y:=\left(y_{1} \ldots y_{p}\right)^{T}$, then we have $R y=0$. For more details, see Chyzak et al. (2005); Cluzeau and Quadrat (2008); Quadrat (2010).

Let $M^{\prime}, M$ and $M^{\prime \prime}$ be left $D$-modules, $f \in \operatorname{hom}_{D}\left(M^{\prime}, M\right)$ and $g \in \operatorname{hom}_{D}\left(M, M^{\prime \prime}\right)$. If $\operatorname{ker} g=\operatorname{im} f$, then $M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime}$ is called an exact sequence at $M$ (see, e.g., Rotman (2009). If the above sequence is exact at $M$ and if $g=0$, then $\operatorname{im} f=M$, i.e., $f$ is surjective, or if $f=0$, then ker $g=0$, i.e., $g$ is injective. By definition of $M$ as the cokernel of $R \in \operatorname{hom}_{D}\left(D^{1 \times q}, D^{1 \times p}\right)$, we have the exact sequence

$$
D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0
$$

which is called a finite presentation of $M$. If we apply the contravariant left exact functor $\operatorname{hom}_{D}(\cdot, \mathcal{F})$ (see, e.g., Rotman (2009) to the above exact sequence, we get the following exact sequence

$$
\operatorname{hom}_{D}\left(D^{1 \times q}, \mathcal{F}\right) \stackrel{(. R)^{\star}}{\longleftarrow} \operatorname{hom}_{D}\left(D^{1 \times p}, \mathcal{F}\right) \stackrel{\pi^{\star}}{\operatorname{hom}_{D}(M, \mathcal{F}) \longleftarrow 0, ~}
$$

where $(. R)^{\star}(\phi)=\phi \circ(. R)$ for all $\phi \in \operatorname{hom}_{D}\left(D^{1 \times p}, \mathcal{F}\right)$ and $\pi^{\star}(\psi)=\psi \circ \pi$ for all $\psi \in \operatorname{hom}_{D}(M, \mathcal{F})$. For more details, see, e.g., Rotman (2009). Using the isomorphism $\operatorname{hom}_{D}\left(D^{1 \times r}, \mathcal{F}\right) \cong \mathcal{F}^{r}$ defined by mapping the elements of the standard basis of $D^{1 \times r}$ to elements of $\mathcal{F}$, the above exact sequence yields the following exact sequence of abelian groups

$$
\mathcal{F}^{q} \ll R . \mathcal{F}^{p} \longleftarrow \operatorname{hom}_{D}(M, \mathcal{F}) \longleftarrow 0
$$

where $(R).(\eta)=R \eta$ for all $\eta \in \mathcal{F}^{p}$, which finally shows that:

$$
\begin{equation*}
\operatorname{ker}_{\mathcal{F}}(R .)=\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\} \cong \operatorname{hom}_{D}(M, \mathcal{F}) \tag{1}
\end{equation*}
$$

More precisely, we can easily show that $\phi \in \operatorname{hom}_{D}(M, \mathcal{F})$ yields $\eta:=\left(\phi\left(y_{1}\right) \ldots \phi\left(y_{p}\right)\right)^{T} \in \operatorname{ker}_{\mathcal{F}}(R$. $)$, where $\left\{y_{j}\right\}_{j=1, \ldots, p}$ is the family of generators of $M$ defined as above, and if $\eta \in \operatorname{ker}_{\mathcal{F}}(R$.$) , then \phi_{\eta}(\pi(\lambda)):=\lambda \eta$ for all $\lambda \in D^{1 \times p}$ is a left $D$-homomorphism from $M$ to $\mathcal{F}$. See, e.g., Chyzak et al. (2005). The isomorphism (1) shows that the linear system $\operatorname{ker}_{\mathcal{F}}(R$.) can be studied by means of $M$ and $\mathcal{F}$ (Malgrange (1962)). The finitely presented left $D$-module $M$ encodes the algebraic side (i.e., the linear equations) of $\operatorname{ker}_{\mathcal{F}}(R$.$) and$ the left $D$-module $\mathcal{F}$ is the (functional) space in which the solutions are sought.

Example 1. A commutative ring $A$ is called a differential ring if $A$ is equipped with $n$ commuting derivations $\partial_{i}, i=1, \ldots, n$, i.e., maps $\partial_{i}: A \longrightarrow A$ satisfying $\partial_{i}\left(a_{1}+a_{2}\right)=\partial_{i} a_{1}+\partial_{i} a_{2}, \partial_{i}\left(a_{1} a_{2}\right)=$ $\left(\partial_{i} a_{1}\right) a_{2}+a_{1} \partial_{i} a_{2}$ (Leibniz rule) for all $a_{1}, a_{2} \in A$, and $\partial_{j} \partial_{i} a=\partial_{i} \partial_{j} a$ for all $a \in A$. A differential field $K$ is a field $K$ endowed with a differential ring structure (which yields $\partial_{i} a^{-1}=-a^{-2} \partial_{i} a$ ).

The ring $D:=A\left\langle d_{1}, \ldots, d_{n}\right\rangle$ of PD operators with coefficients in a differential ring $\left(A,\left\{\partial_{i}\right\}_{i=1, \ldots, n}\right)$ is defined as the noncommutative polynomial ring formed by elements of the form $\sum_{0 \leq|\mu| \leq r} a_{\mu} d^{\mu}$, where $a_{\mu} \in A, \mu:=\left(\mu_{1} \ldots \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n},|\mu|:=\mu_{1}+\cdots+\mu_{n}, d^{\mu}:=d_{1}^{\mu_{1}} \ldots d_{n}^{\mu_{n}}$, and the $d_{i}$ 's satisfy the relations:

$$
\forall a \in A, \quad \forall i, j=1, \ldots, n, \quad\left\{\begin{array}{l}
d_{i} a=a d_{i}+\partial_{i} a \\
d_{i} d_{j}=d_{j} d_{i}
\end{array}\right.
$$

If $A:=k\left[x_{1}, \ldots, x_{n}\right]$ (resp., $k\left(x_{1}, \ldots, x_{n}\right)$ ), then the ring $A\left\langle d_{1}, \ldots, d_{n}\right\rangle$ is simply denoted by $A_{n}(k)$ (resp., $\left.B_{n}(k)\right)$ and is called the polynomial (resp., rational) Weyl algebra. Finally, if $A:=k \llbracket x_{1}, \ldots, x_{n} \rrbracket$ (resp., $A=k\left\{x_{1}, \ldots, x_{n}\right\}$ ) is the integral domain of formal (resp., locally convergent) power series in $x_{1}, \ldots, x_{n}$ with coefficients in the field $k$ (resp., $k=\mathbb{R}$ or $\mathbb{C}$ ), and $Q(A)$ its quotient field, i.e., the ring of Laurent formal power series (resp., the ring of Laurent power series), then $Q(A)\left\langle d_{1}, \ldots, d_{n}\right\rangle$ is simply denoted by $\widehat{\mathcal{D}}_{n}(k)$ (resp., $\left.\mathcal{D}_{n}(k)\right)$.

If $D=A\left\langle d_{1}, \ldots, d_{n}\right\rangle$ is a ring of PD operators with coefficients in a differential ring $A$, then $R \in D^{q \times p}$ is a $q \times p$ matrix of PD operators. If $\mathcal{F}$ is a left $D$-module (e.g., $\mathcal{F}=A$ ), then (1) shows that the solutions $\eta \in \mathcal{F}^{p}$ of the PD system $R \eta=0$ are in a 1-1 correspondence with the elements of $\operatorname{hom}_{D}(M, \mathcal{F})$.

See Chyzak et al. (2005); McConnell and Robson (2000) for other noncommutative polynomial algebras of functional operators (e.g., time-delay or shift operators) such as the Ore extensions and the Ore algebras.

Let us briefly review a part of the classification of finitely generated left $D$-modules, i.e., left $D$-modules which can be defined by a finite number of generators.

Definition $1(\overline{\text { Lam }}(\boxed{1999)}$; McConnell and Robson $(2000) ;$ Rotman $(2009)$ ). Let $D$ be a left noetherian domain and $M$ a finitely generated left $D$-module.

1. $M$ is free if there exists $r \in \mathbb{Z}_{\geq 0}$ such that $M \cong D^{1 \times r}$. Then, $r$ is called the rank of the free left $D$-module $M$ and is denoted by $\operatorname{rank}_{D}(M)$.
2. $M$ is stably free if there exist $r, s \in \mathbb{Z}_{\geq 0}$ such that $M \oplus D^{1 \times s} \cong D^{1 \times r}$. Then, $r-s$ is called the rank of the stably free left $D$-module $M$.
3. $M$ is projective if there exist $r \in \mathbb{Z}_{\geq 0}$ and a left $D$-module $N$ such that $M \oplus N \cong D^{1 \times r}$.
4. $M$ is reflexive if the canonical left $D$-homomorphism $\varepsilon: M \longrightarrow M^{\star \star}$ defined by $\varepsilon(m)(f)=f(m)$ for all $f \in M^{\star}:=\operatorname{hom}_{D}(M, D)$, where $M^{\star \star}=\operatorname{hom}_{D}\left(\operatorname{hom}_{D}(M, D), D\right)$, is an isomorphism (which then yields $M \cong M^{\star \star}$ ).
5. $M$ is torsion-free if the torsion left $D$-submodule of $M$, namely,

$$
t(M):=\{m \in M \mid \exists d \in D \backslash\{0\}: d m=0\}
$$

is reduced to 0 , i.e., if $t(M)=0$. The elements of $t(M)$ are called the torsion elements of $M$.
6. $M$ is torsion if $t(M)=M$, i.e., if every element of $M$ is a torsion element.
7. $M$ is cyclic if there exists $m \in M$ such that $M=D m:=\{d m \mid d \in D\}$.
8. $M$ is decomposable if there exist two proper left $D$-submodules $M_{1}$ and $M_{2}$ of $M$ such that:

$$
M=M_{1} \oplus M_{2}
$$

If $M$ is not decomposable, then $M$ is said to be indecomposable.
9. A non-zero left $D$-module $M$ is called simple if $M$ has no non-zero proper left $D$-submodules.

Similar definitions exist for finitely generated right $D$-modules.
We refer to Chyzak et al. (2005); Fabiańska and Quadrat (2007); Quadrat and Robertz (2007a) for algorithms which test whether or not a finitely presented module $M$ over some classes of noncommutative polynomial rings admits a non-trivial torsion submodule, is torsion-free, projective, stably free or free. These algorithms are implemented in the OreModules (Chyzak et al. (2007)), QuillenSuslin (Fabiańska and Quadrat (2007)) and Stafford Quadrat and Robertz (2007a) packages.

A free module is clearly stably free (take $s=0$ in 2 of Definition 1 ), a stably free module is projective (take $N=D^{1 \times s}$ in 3 of Definition 11) and a projective module is torsion-free (since it can be embedded into a free, and thus into a torsion-free module). More generally, we have the following results.

Theorem 1 (Lam (1999); McConnell and Robson (2000); Rotman (2009)). Let $D$ be a left noetherian domain. Then, we have the following implications for finitely generated left/right $D$-modules:

$$
\text { free } \Rightarrow \text { stably free } \Rightarrow \text { projective } \Rightarrow \text { reflexive } \Rightarrow \text { torsion-free. }
$$

The converses of the above results are generally not true. Some of them hold for particular domains playing particular roles in linear systems theory.

Theorem 2 (Lam (1999); McConnell and Robson (2000); Quadrat and Robertz (2014); Rotman (2009)). We have the following results:

1. If $D$ is a principal ideal domain, i.e., every left ideal $I$ and every right ideal $J$ of the domain $D$ are principal, i.e., are of the form $I=D d_{1}$ and $J=d_{2} D$ for $d_{1}, d_{2} \in D$ (e.g., the ring $A\langle\partial\rangle$ of $O D$ operators with coefficients in a differential field $A$ such as the ring $\left.B_{1}(k), \widehat{\mathcal{D}}_{1}(k), \mathcal{D}_{1}(k)\right)$, then every finitely generated torsion-free left or right D-module is free.
2. If $D=k\left[x_{1}, \ldots, x_{n}\right]$ is a commutative polynomial ring with coefficients in a field $k$, then every finitely generated projective $D$-module is free (Quillen-Suslin theorem).
3. If $D$ is the Weyl algebra $A_{n}(k)$ or $B_{n}(k)$, where $k$ is a field of characteristic $0($ e.g., $k=\mathbb{Q}, \mathbb{R}, \mathbb{C})$, then every finitely generated projective left/right $D$-module is stably free and every finitely generated stably free left/right D-module of rank at least 2 is free (Stafford's theorem).
4. If $D=\widehat{\mathcal{D}}_{n}(k), \mathcal{D}_{n}(k)$ or $D=A\langle\partial\rangle$, where $A=k \llbracket t \rrbracket$ and $k$ is a field of characteristic 0 , or $A=k\{t\}$ and $k=\mathbb{R}$ or $\mathbb{C}$, then every finitely generated projective left/right $D$-module is stably free and every finitely generated stably free left/right D-module of rank at least 2 is free.

A matrix $R \in D^{q \times p}$ is said to have full row rank if $\operatorname{ker}_{D}(. R):=\left\{\mu \in D^{1 \times q} \mid \mu R=0\right\}=0$, i.e., if the rows of the matrix $R$ are left $D$-linearly independent. If $R \in D^{q \times p}$ has full row rank, then we have $D^{1 \times q} \cong D^{1 \times q} R \subseteq D^{1 \times p}$, which yields $q \leq p$. The next theorem characterizes when a left $D$-module $M$, finitely presented by a full row rank matrix $R$, is a projective or a free module.

Theorem 3 (Fabiańska and Quadrat (2007); Quadrat and Robertz (2007a)). Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ be a left $D$-module finitely presented by a full row rank matrix $R \in D^{q \times p}$. Then, we have:

1. $M$ is a projective left $D$-module if and only if $M$ is a stably free left $D$-module.
2. $M$ is a stably free left $D$-module of rank $p-q$ if and only if $R$ admits a right inverse, i.e., if and only if there exists a matrix $S \in D^{p \times q}$ such that $R S=I_{q}$.
3. $M$ is a free left $D$-module of rank $p-q$ if and only if there exists $U \in \operatorname{GL}_{p}(D)$ such that:

$$
R U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right) .
$$

If $U:=\left(\begin{array}{ll}S & Q\end{array}\right)$, where $S \in D^{p \times q}$ and $Q \in D^{p \times(p-q)}$, then we have the following isomorphisms

$$
\begin{aligned}
\psi: M & \longrightarrow D^{1 \times(p-q)} & \psi^{-1}: D^{1 \times(p-q)} & \longrightarrow M \\
\pi(\lambda) & \longmapsto \lambda Q, & \mu & \longmapsto \pi(\mu T),
\end{aligned}
$$

where the matrix $T \in D^{(p-q) \times p}$ is defined by:

$$
U^{-1}:=\binom{R}{T} \in D^{p \times p} .
$$

In particular, we have $M \cong D^{1 \times p} Q=D^{1 \times(p-q)}$. The matrix $Q$ is called an injective parametrization of $M$. If $T_{i \bullet}$ denotes the $i^{\text {th }}$ row of $T$, then $\left\{\pi\left(T_{i \bullet}\right)\right\}_{i=1, \ldots, p-q}$ is a basis of the free left $D$-module $M$ of rank $p-q$.
The Quillen-Suslin theorem (resp., Stafford's theorem) is implemented in the Quillensuslin package (Fabiańska and Quadrat (2007)) (resp., Stafford package Quadrat and Robertz (2007a))). Hence, for $D=k\left[x_{1}, \ldots, x_{n}\right]$ and $k=\mathbb{Q}, A_{n}(\mathbb{Q})$ or $B_{n}(\mathbb{Q})$, bases and injective parametrizations of finitely generated free left $D$-modules can be computed.

## 3 Homomorphisms of finitely presented left $D$-modules

In this section, we first briefly review the characterization of a left $D$-homomorphism of two finitely presented left $D$-modules. For more details, see Cluzeau and Quadrat (2008); Rotman (2009).
Lemma 1 Cluzeau and Quadrat 2008). Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and $M^{\prime}=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)$ be two finitely presented left $D$-modules and $\pi: D^{1 \times p} \longrightarrow M$ and $\pi^{\prime}: D^{1 \times p^{\prime}} \longrightarrow M^{\prime}$ the canonical projections onto $M$ and $M^{\prime}$.

1. The existence of $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ is equivalent to the existence of a pair of matrices $P \in D^{p \times p^{\prime}}$ and $Q \in D^{q \times q^{\prime}}$ satisfying the following relation:

$$
\begin{equation*}
R P=Q R^{\prime} \tag{2}
\end{equation*}
$$

Hence, we have the following commutative exact diagram

i.e., (2) holds and $f \circ \pi=\pi^{\prime} \circ(. P)$, where $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ is defined by:

$$
\begin{equation*}
\forall \lambda \in D^{1 \times p}, \quad f(\pi(\lambda))=\pi^{\prime}(\lambda P) \tag{3}
\end{equation*}
$$

2. Let $P \in D^{p \times p^{\prime}}$ and $Q \in D^{q \times q^{\prime}}$ satisfy (2) and $R_{2}^{\prime} \in D^{q_{2}^{\prime} \times q^{\prime}}$ be such that $\operatorname{ker}_{D}\left(. R^{\prime}\right)=\operatorname{im}_{D}\left(. R_{2}^{\prime}\right)$. Then, the matrices defined by

$$
\left\{\begin{array}{l}
\bar{P}:=P+Z R^{\prime} \\
\bar{Q}:=Q+R Z+Z_{2} R_{2}^{\prime}
\end{array}\right.
$$

for all $Z \in D^{p \times q^{\prime}}$ and $Z_{2} \in D^{q \times q_{2}^{\prime}}$, satisfy the identity $R \bar{P}=\bar{Q} R^{\prime}$ and we have:

$$
\forall \lambda \in D^{1 \times p}, \quad f(\pi(\lambda))=\pi^{\prime}(\lambda P)=\pi^{\prime}(\lambda \bar{P})
$$

For two finitely presented left $D$-modules $M$ and $M^{\prime}$, the problem of characterizing elements of $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$ is considered in Cluzeau and Quadrat (2008) for certain classes of noncommutative polynomial rings and algorithms are given (see Algorithms 2.1 and 2.2 of Cluzeau and Quadrat (2008)). An implementation is available in the OreMorphisms package (Cluzeau and Quadrat (2009)).

If $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$, then we can define the following finitely generated left $D$-modules:

$$
\left\{\begin{array}{l}
\operatorname{ker} f:=\{m \in M \mid f(m)=0\} \\
\operatorname{im} f:=\left\{m^{\prime} \in M^{\prime} \mid \exists m \in M: m^{\prime}=f(m)\right\} \\
\operatorname{coim} f:=M / \operatorname{ker} f \\
\operatorname{coker} f:=M^{\prime} / \operatorname{im} f
\end{array}\right.
$$

For two finitely presented left $D$-modules $M$ and $M^{\prime}$, let us explicitly characterize the kernel, image, coimage and cokernel of $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$.

Lemma 2 Cluzeau and Quadrat (2008)). Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ (resp., $\left.M^{\prime}=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)\right)$ be a left $D$-module finitely presented by $R \in D^{q \times p}$ (resp., $R^{\prime} \in D^{q^{\prime} \times p^{\prime}}$ ) and $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ defined by (3), where $P \in D^{p \times p^{\prime}}$ satisfies (2) for a certain matrix $Q \in D^{q \times q^{\prime}}$.

1. Let $S \in D^{r \times p}$ and $T \in D^{r \times q^{\prime}}$ be two matrices such that

$$
\operatorname{ker}_{D}\left(.\left(\begin{array}{ll}
P^{T} & R^{\prime T}
\end{array}\right)^{T}\right)=\operatorname{im}_{D}\left(.\left(\begin{array}{ll}
S & -T \tag{4}
\end{array}\right)\right)
$$

$L \in D^{q \times r}$ a matrix satisfying $R=L S$ and $Q=L T$, and $S_{2} \in D^{r_{2} \times r}$ a matrix such that $\operatorname{ker}_{D}(. S)=$ $\operatorname{im}_{D}\left(. S_{2}\right)$. Then, we have:

$$
\begin{equation*}
\operatorname{ker} f=\left(D^{1 \times r} S\right) /\left(D^{1 \times q} R\right) \cong D^{1 \times r} /\left(D^{1 \times\left(q+r_{2}\right)}\left(L^{T} \quad S_{2}^{T}\right)^{T}\right) \tag{5}
\end{equation*}
$$

Hence, $f$ is injective if and only if the matrix $\left(\begin{array}{ll}L^{T} & S_{2}^{T}\end{array}\right)^{T}$ admits a left inverse, i.e., if and only if there exists $X=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right) \in D^{r \times\left(q+r_{2}\right)}$ such that $X_{1} L+X_{2} S_{2}=I_{r}$.
2. With the above notations, we have:

$$
\operatorname{coim} f=D^{1 \times p} /\left(D^{1 \times r} S\right) \cong \operatorname{im} f=\left(D^{1 \times\left(p+q^{\prime}\right)}\left(\begin{array}{ll}
P^{T} & R^{T}
\end{array}\right)^{T}\right) /\left(D^{1 \times q^{\prime}} R^{\prime}\right)
$$

Moreover, we have the following commutative exact diagram

where $\rho: M \longrightarrow \operatorname{coim} f=M / \operatorname{ker} f$ is the canonical projection.
3. We have coker $f=D^{1 \times p^{\prime}} /\left(D^{1 \times\left(p+q^{\prime}\right)}\left(\begin{array}{ll}P^{T} & R^{\prime T}\end{array}\right)^{T}\right)$ and the following long exact sequence

$$
D^{1 \times r} \xrightarrow{.(S \quad-T)} D^{1 \times\left(p+q^{\prime}\right)} \xrightarrow{.\left(\begin{array}{ll}
P^{T} & R^{\prime T}
\end{array}\right)^{T}} D^{1 \times p^{\prime}} \xrightarrow{\epsilon} \operatorname{coker} f \longrightarrow 0
$$

defining the beginning of a finite free resolution of coker $f$. Hence, $f$ is surjective if and only if the matrix $\left(\begin{array}{ll}P^{T} & R^{T}\end{array}\right)^{T}$ admits a left inverse, i.e., if and only if there exists $Y=\left(\begin{array}{ll}Y_{1} & Y_{2}\end{array}\right) \in D^{p^{\prime} \times\left(p+q^{\prime}\right)}$ such that $Y_{1} P+Y_{2} R^{\prime}=I_{p^{\prime}}$.
4. We have the following commutative exact diagram

where $f^{\sharp} \in \operatorname{hom}_{D}\left(\operatorname{coim} f, M^{\prime}\right)$ is defined by $f^{\sharp}(\kappa(\lambda))=\pi^{\prime}(\lambda P)$ for all $\lambda \in D^{1 \times p}$.

To study the decomposition problem, namely the problem of recognizing whether or not a finitely presented left $D$-module $M$ is decomposable (see of 8 of Definition 1), we shall focus on the case $M^{\prime}=M$, i.e., on the study of the endomorphism ring $\operatorname{end}_{D}(M):=\operatorname{hom}_{D}(M, M)$ of $M$.

In many standard examples coming from linear systems theory and mathematical physics (see, e.g., the examples considered in Section 7), $D$ is a commutative polynomial ring. In this particular case, $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$ inherits a $D$-module structure (which is usually not the case for a noncommutative ring $D)$ and an explicit description of the $D$-module $\operatorname{hom}_{D}\left(M, M^{\prime}\right)$ in terms of generators and relations can be given. For more details and explicit algorithms, we refer to Cluzeau and Quadrat (2008).

Till the end of this section, we assume that $D$ is a commutative ring. From Lemma 1 , it follows that the ring $\operatorname{end}_{D}(M)$ can be written as the factor of two $D$-modules, i.e., we have

$$
\operatorname{end}_{D}(M) \cong \mathcal{B}:=\mathcal{A} /\left(D^{p \times q} R\right)
$$

where $\mathcal{A}:=\left\{P \in D^{p \times p} \mid \exists Q \in D^{q \times q}: R P=Q R\right\}$ is a ring called eigenring. Indeed, we clearly have $0 \in \mathcal{A}, I_{p} \in \mathcal{A}$ and if $P_{1}, P_{2} \in \mathcal{A}$, i.e., $R P_{1}=Q_{1} R$ and $R P_{2}=Q_{2} R$ for some matrices $Q_{1}, Q_{2} \in D^{q \times q}$, then we have $R\left(P_{1}+P_{2}\right)=\left(Q_{1}+Q_{2}\right) R$ and $R\left(P_{1} P_{2}\right)=\left(Q_{1} Q_{2}\right) R$ so that $P_{1}+P_{2} \in \mathcal{A}$ and $P_{1} P_{2} \in \mathcal{A}$. The other properties of a ring can easily be checked. The ring $\mathcal{A}$ is a noncommutative ring since $P_{1} P_{2}$ is usually different from $P_{2} P_{1}$. Moreover, $D^{p \times q} R$ is a two-sided ideal of $\mathcal{A}$. Indeed, if $P_{1}, P_{2} \in \mathcal{A}$ and $Z_{1} R, Z_{2} R \in D^{p \times q} R$, where $Z_{i} \in D^{p \times q}$ for $i=1,2$, then we have:

$$
\left\{\begin{array}{l}
P_{1}\left(Z_{1} R\right)+P_{2}\left(Z_{2} R\right)=\left(P_{1} Z_{1}+P_{2} Z_{2}\right) R \\
\left(Z_{1} R\right) P_{1}+\left(Z_{2} R\right) P_{2}=\left(Z_{1} Q_{1}+Z_{2} Q_{2}\right) R
\end{array}\right.
$$

Thus, $\mathcal{B}=\mathcal{A} /\left(D^{p \times q} R\right)$ is a noncommutative ring and $\kappa:=\operatorname{id}_{p} \otimes \pi: \mathcal{A} \longrightarrow \mathcal{B}$ is the canonical projection onto $\mathcal{B}$. In particular, the product of $\mathcal{B}$ is defined by:

$$
\forall P_{1}, P_{2} \in \mathcal{A}, \quad \kappa\left(P_{1}\right) \kappa\left(P_{2}\right)=\kappa\left(P_{1} P_{2}\right)
$$

We call opposite ring of $\mathcal{B}$, denoted by $\mathcal{B}^{\text {op }}$, the ring defined by $\mathcal{B}$ as an abelian group but equipped with the opposite multiplication - defined by:

$$
\forall b_{1}, b_{2} \in \mathcal{B}, \quad b_{1} \bullet b_{2}:=b_{2} b_{1}
$$

If $\phi: \mathcal{B} \longrightarrow \operatorname{end}_{D}(M)$ is the abelian group isomorphism mapping $\kappa(P)$ to $\phi(\kappa(P))$ defined by

$$
\forall \lambda \in D^{1 \times p}, \quad \phi(\kappa(P))(\pi(\lambda))=\pi(\lambda P),
$$

then we have

$$
\forall \lambda \in D^{1 \times p}, \quad\left(\phi\left(\kappa\left(P_{2}\right)\right) \circ \phi\left(\kappa\left(P_{1}\right)\right)\right)(\pi(\lambda))=\pi\left(\lambda P_{1} P_{2}\right)=\phi\left(\kappa\left(P_{1} P_{2}\right)\right)(\pi(\lambda))=\phi\left(\kappa\left(P_{1}\right) \kappa\left(P_{2}\right)\right)(\pi(\lambda)),
$$

i.e., using the opposite ring $\mathcal{B}^{\text {op }}$, we obtain:

$$
\phi\left(\kappa\left(P_{2}\right) \bullet \kappa\left(P_{1}\right)\right)=\phi\left(\kappa\left(P_{1}\right) \kappa\left(P_{2}\right)\right)=\phi\left(\kappa\left(P_{2}\right)\right) \circ \phi\left(\kappa\left(P_{1}\right)\right) .
$$

Since $\phi\left(\kappa\left(I_{p}\right)\right)=\operatorname{id}_{M}, \phi$ is a ring isomorphism, i.e.:

$$
\operatorname{end}_{D}(M) \cong \mathcal{B}^{\mathrm{op}}
$$

Algorithm 2.1 in Cluzeau and Quadrat (2008) computes a family of generators $\left\{f_{i}\right\}_{i=1, \ldots, s}$ of the finitely generated $D$-module $\operatorname{end}_{D}(M)$. The $f_{i}$ 's are given by means of two matrices $P_{i} \in D^{p \times p}$ and $Q_{i} \in D^{q \times q}$ satisfying $R P_{i}=Q_{i} R$, i.e., $f_{i}(\pi(\lambda))=\pi\left(\lambda P_{i}\right)$ for all $\lambda \in D^{1 \times p}$ and $i=1, \ldots, s$ (see Lemma 11.

Let us now explain how to obtain a finite family of $D$-linear relations among these generators, i.e., $X F=0$, where $F=\left(f_{1} \ldots f_{s}\right)^{T}$ and $X \in D^{t \times s}$. A $D$-linear relation $\sum_{j=1}^{s} d_{j} f_{j}=0$ between the $f_{i}$ 's is equivalent to the existence of $Z \in D^{p \times q}$ satisfying:

$$
\begin{equation*}
\sum_{j=1}^{s} d_{j} P_{j}=Z R \tag{6}
\end{equation*}
$$

To solve (6), let us introduce a few definitions and a standard result which holds for matrices with entries in a commutative ring $D$. If $F \in D^{q \times p}$, then $\operatorname{row}(F) \in D^{1 \times q p}$ denotes the row vector obtained by concatenating the rows of $F$. If $F \in D^{q \times p}$ and $F^{\prime} \in D^{q^{\prime} \times p^{\prime}}$, then $K:=F \otimes F^{\prime}$ stands for the Kronecker product of $F$ and $F^{\prime}$, namely, the matrix $K \in D^{q q^{\prime} \times p p^{\prime}}$ defined by $\left(F_{i j} F^{\prime}\right)_{1 \leq i \leq q, 1 \leq j \leq p}$. If $F \in D^{q \times p}$, $G \in D^{r \times q}$ and $H \in D^{s \times r}$, then a standard result on Kronecker products states that we have:

$$
\operatorname{row}(H G F)=\operatorname{row}(G)\left(H^{T} \otimes F\right)
$$

Applying the above identity to (6), we get:

$$
\sum_{j=1}^{s} d_{j} \operatorname{row}\left(P_{j}\right)-\operatorname{row}(Z)\left(I_{p} \otimes R\right)=0 \quad \Longleftrightarrow \quad\left(d_{1} \ldots d_{s}-\operatorname{row}(Z)\right)\left(\begin{array}{c}
\operatorname{row}\left(P_{1}\right) \\
\vdots \\
\operatorname{row}\left(P_{s}\right) \\
I_{p} \otimes R
\end{array}\right)=0
$$

If we introduce the matrices

$$
\left\{\begin{array}{l}
U:=\left(\operatorname{row}\left(P_{1}\right)^{T} \ldots \operatorname{row}\left(P_{s}\right)^{T}\right)^{T} \in D^{s \times p^{2}}  \tag{7}\\
V:=I_{p} \otimes R \in D^{p q \times p^{2}} \\
W:=\left(U^{T} \quad V^{T}\right.
\end{array}\right)^{T} \in D^{(s+p q) \times p^{2}}, ~ \$
$$

then there exist $X \in D^{t \times s}$ and $Y \in D^{t \times p q}$ satisfying $\operatorname{ker}_{D}(. W)=D^{1 \times t}(X \quad-Y)$. If $Y_{i, j}$ denotes the $i \times j$ entry of the matrix $Y$ and for $i=1, \ldots, t$,

$$
Z_{i}=\left(\begin{array}{ccc}
Y_{i, 1} & \ldots & Y_{i, q} \\
Y_{i,(q+1)} & \ldots & Y_{i, 2 q} \\
\vdots & & \vdots \\
Y_{i,(p-1) q+1} & \ldots & Y_{i, p q}
\end{array}\right) \in D^{p \times q}
$$

then $\sum_{j=1}^{s} X_{i j} P_{j}=Z_{i} R$, and thus the $f_{i}$ 's satisfy the following $D$-linear relations:

$$
\begin{equation*}
\forall i,=1, \ldots, t, \quad \sum_{j=1}^{s} X_{i j} f_{j}=0 . \tag{8}
\end{equation*}
$$

Hence, we get $\operatorname{end}_{D}(M) \cong D^{1 \times s} /\left(D^{1 \times t} X\right)$, i.e., $\operatorname{end}_{D}(M)$ is finitely presented by the matrix $X \in D^{t \times s}$.
Now, the ring structure of $\operatorname{end}_{D}(M)$ is characterized by the expressions of the $f_{i} \circ f_{j}$ 's in terms of the generators $f_{k}$ 's of the $D$-module $\operatorname{end}_{D}(M)$, i.e.:

$$
\begin{equation*}
\forall i, j=1, \ldots, s, \quad f_{i} \circ f_{j}=\sum_{k=1}^{s} \gamma_{i j k} f_{k}, \quad \gamma_{i j k} \in D . \tag{9}
\end{equation*}
$$

The $\gamma_{i j k}$ 's look like the structure constants appearing in the theory of finite-dimensional algebras. The matrix $\Gamma$ formed by the $\gamma_{i j k}$ satisfies $F \otimes F=\Gamma F$. $\Gamma$ is called a multiplication table in group theory. If $D\left\langle f_{1}, \ldots f_{s}\right\rangle$ denotes the free associative $D$-algebra generated by the $f_{i}$ 's and

$$
J=\left\langle\sum_{j=1}^{s} X_{i j} f_{j}, i=1, \ldots, t, f_{i} \circ f_{j}-\sum_{k=1}^{s} \gamma_{i j k} f_{k}, i, j=1, \ldots, s\right\rangle
$$

is the two-sided ideal of $D\left\langle f_{1}, \ldots f_{s}\right\rangle$ generated by the relations (8) and (9), then the noncommutative ring $\operatorname{end}_{D}(M)$ is defined by $\operatorname{end}_{D}(M)=D\left\langle f_{1}, \ldots f_{s}\right\rangle / J$, which shows that end ${ }_{D}(M)$ can be defined as the quotient of a free associative algebra by a two-sided ideal generated by linear and quadratic relations over $D$.

Using (7), the structure constants $\gamma_{i j k}$ 's can be computed as follows. The computation of the normal form of the rows row $\left(P_{i} P_{j}\right)$ with respect to a Gröbner basis of the $D$-module $D^{1 \times(s+p q)} W$ for $i, j=$ $1, \ldots, s$ yields a matrix $\left(\begin{array}{ll}\Gamma_{1} & \Gamma_{2}\end{array}\right) \in D^{s^{2} \times(s+p q)}$, where $\Gamma_{1} \in D^{s^{2} \times s}$ and $\Gamma_{2} \in D^{s^{2} \times p q}$. Then, the matrix $\Gamma_{1}$ defines the multiplication table of the family of generators $\left\{f_{i}\right\}_{i=1, \ldots, s}$ of $\operatorname{end}_{D}(M)$. The computation of the endomorphism ring $\operatorname{end}_{D}(M)$ (i.e., generators, relations and multiplication table) for a finitely presented module over a commutative polynomial ring $D$ is implemented in the OreMorphisms package (Cluzeau and Quadrat 2009).

Example 2. Let us consider the motion of a fluid in a one-dimensional tank studied in Dubois et al. (1999) and defined by the following linear system of OD time-delay equations

$$
\left\{\begin{array}{l}
y_{1}(t-2 h)+y_{2}(t)-2 \dot{u}(t-h)=0,  \tag{10}\\
y_{1}(t)+y_{2}(t-2 h)-2 \dot{u}(t-h)=0,
\end{array}\right.
$$

where $h$ a positive real number. Let $D=\mathbb{Q}(\alpha)[\partial, \delta]$ be the commutative polynomial ring of OD time-delay operators with rational constant coefficients, i.e., $\partial y(t)=\dot{y}(t), \delta y(t)=y(t-h)$ and $\partial \delta=\delta \partial$,

$$
R=\left(\begin{array}{ccc}
\delta^{2} & 1 & -2 \partial \delta  \tag{11}\\
1 & \delta^{2} & -2 \partial \delta
\end{array}\right) \in D^{2 \times 3}
$$

the matrix defining $\sqrt{10}$, and the $D$-module $M=D^{1 \times 3} /\left(D^{1 \times 2} R\right)$ finitely presented by $R$. Applying Algorithm 2.1 of Cluzeau and Quadrat (2008) to $R$, the $D$-module structure of $\operatorname{end}_{D}(M)$ is generated by $f_{e_{1}}, f_{e_{2}}, f_{e_{3}}, f_{e_{4}} \in \operatorname{end}_{D}(M)$ defined by $f_{\alpha}(\pi(\lambda))=\pi\left(\lambda P_{\alpha}\right)$ for all $\lambda \in D^{1 \times 3}$, where $\alpha=\left(\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}\right) \in$ $D^{1 \times 4},\left\{e_{i}\right\}_{i=1, \ldots, 4}$ is the standard basis of $D^{1 \times 4}$ and:

$$
\begin{aligned}
P_{\alpha} & =\left(\begin{array}{ccc}
\alpha_{1} & \alpha_{2} & 2 \alpha_{3} \partial \delta \\
\alpha_{2}+2 \alpha_{4} \partial & \alpha_{1}-2 \alpha_{4} \partial & 2 \alpha_{3} \partial \delta \\
\alpha_{4} \delta & -\alpha_{4} \delta & \alpha_{1}+\alpha_{2}+\alpha_{3}\left(\delta^{2}+1\right)
\end{array}\right), \\
Q_{\alpha} & =\left(\begin{array}{cc}
\alpha_{1}-2 \alpha_{4} \partial & \alpha_{2}+2 \alpha_{4} \partial \\
\alpha_{2} & \alpha_{1}
\end{array}\right) .
\end{aligned}
$$

Let us simply set $f_{i}:=f_{e_{i}}$. We can check that the generators $\left\{f_{i}\right\}_{i=1, \ldots, 4}$ of the $D$-module structure of $\operatorname{end}_{D}(M)$ satisfy the following $D$-linear relations:

$$
\begin{equation*}
\left(\delta^{2}-1\right) f_{4}=0, \quad \delta^{2} f_{1}+f_{2}-f_{3}=0, \quad f_{1}+\delta^{2} f_{2}-f_{3}=0 \tag{12}
\end{equation*}
$$

A complete description of the noncommutative ring $\operatorname{end}_{D}(M)$ is given by the knowledge of the expressions of the compositions $f_{i} \circ f_{j}$ in the family of generators $\left\{f_{k}\right\}_{k=1, \ldots, 4}$ for $i, j=1, \ldots, 4$ :

$$
\left\{\begin{array} { l } 
{ f _ { 1 } \circ f _ { i } = f _ { i } \circ f _ { 1 } = f _ { i } , \quad i = 1 , \ldots , 4 , }  \tag{13}\\
{ f _ { 2 } \circ f _ { 2 } = f _ { 1 } , } \\
{ f _ { 2 } \circ f _ { 3 } = f _ { 3 } \circ f _ { 2 } = f _ { 3 } , } \\
{ f _ { 2 } \circ f _ { 4 } = 2 \partial f _ { 1 } - 2 \partial f _ { 2 } + f _ { 4 } , } \\
{ f _ { 4 } \circ f _ { 2 } = - f _ { 4 } , }
\end{array} \quad \left\{\begin{array}{l}
f_{3} \circ f_{3}=\left(\delta^{2}+1\right) f_{3} \\
f_{3} \circ f_{4}=2 \partial f_{1}-2 \partial f_{2}+2 f_{4} \\
f_{4} \circ f_{3}=0 \\
f_{4} \circ f_{4}=-2 \partial f_{4}
\end{array}\right.\right.
$$

Denoting by $f_{c} \circ f_{r}$ the composition of an element $f_{c}$ in the first column by an element $f_{r}$ in the first row of the table below, we can write (13) in the form of the following multiplication table:

| $f_{c} \circ f_{r}$ | $f_{1}$ | $f_{2}$ | $f_{3}$ | $f_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $f_{1}$ | $f_{1}$ | $f_{2}$ | $f_{3}$ | $f_{4}$ |
| $f_{2}$ | $f_{2}$ | $f_{1}$ | $f_{3}$ | $2 \partial f_{1}-2 \partial f_{2}+f_{4}$ |
| $f_{3}$ | $f_{3}$ | $f_{3}$ | $\left(\delta^{2}+1\right) f_{3}$ | $2 \partial f_{1}-2 \partial f_{2}+2 f_{4}$ |
| $f_{4}$ | $f_{4}$ | $-f_{4}$ | 0 | $-2 \partial f_{4}$ |

We finally obtain $\operatorname{end}_{D}(M)=D\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle / J$, where

$$
J=\left\langle\left(\delta^{2}-1\right) f_{4}, \delta^{2} f_{1}+f_{2}-f_{3}, f_{1}+\delta^{2} f_{2}-f_{3}, f_{1} \circ f_{1}-f_{1}, \ldots, f_{4} \circ f_{4}+2 \partial f_{4}\right\rangle
$$

is the two-sided ideal of the free $D$-algebra $D\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle$ generated by the polynomials defined by the identities (12) and (13).

## 4 Factorization problem

In this section, we complete results of Cluzeau and Quadrat (2008) to obtain a necessary and sufficient condition for the existence of a strict factorization of a linear functional system.

Let us first give a necessary and sufficient condition for the existence of a factorization of $R \in D^{q \times p}$.
Lemma 3. If $R \in D^{q \times p}$, then the following assertions are equivalent:

1. There exist two matrices $L \in D^{q \times r}$ and $S \in D^{r \times p}$ such that:

$$
\begin{equation*}
R=L S \tag{14}
\end{equation*}
$$

2. There exist a finitely presented left $D$-module $M^{\prime}$ and $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$, where $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$, such that:

$$
\begin{equation*}
\operatorname{coim} f=D^{1 \times p} /\left(D^{1 \times r} S\right), \quad \operatorname{ker} f=\left(D^{1 \times r} S\right) /\left(D^{1 \times q} R\right) \tag{15}
\end{equation*}
$$

Proof. $1 \Rightarrow 2$. Let $M^{\prime}:=D^{1 \times p} /\left(D^{1 \times r} S\right)$ be the left $D$-module finitely presented by $S$. The relation $R=L S$ induces the commutative exact diagram

which defines $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ by $f(\pi(\lambda))=\kappa(\lambda)$ for all $\lambda \in D^{1 \times p}$. Indeed, if $\pi(\lambda)=\pi\left(\lambda^{\prime}\right)$ for some $\lambda^{\prime} \in D^{1 \times p}$, then there exists $\mu \in D^{1 \times q}$ such that $\lambda=\lambda^{\prime}+\mu R$, which yields:

$$
f(\pi(\lambda))=\kappa(\lambda)=\kappa\left(\lambda^{\prime}\right)+\kappa(\mu R)=\kappa\left(\lambda^{\prime}\right)+\kappa((\mu L) S)=\kappa\left(\lambda^{\prime}\right)=f\left(\pi\left(\lambda^{\prime}\right)\right) .
$$

Using $\operatorname{ker}_{D}\left(.\left(\begin{array}{ll}I_{p}^{T} & S^{T}\end{array}\right)^{T}\right)=D^{1 \times r}\left(\begin{array}{ll}S & -I_{r}\end{array}\right), 1$ and 2 of Lemma 2 yield 15$)$.
$2 \Rightarrow 1$ is proved in Theorem 3.1 of Cluzeau and Quadrat (2008). For the sake of completeness, we repeat the proof here. Let $M^{\prime}:=D^{1 \times p^{\prime}} /\left(D^{1 \times q^{\prime}} R^{\prime}\right)$ and $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ satisfy 15 . From Lemma 1 , $f$ is defined by (3) where $P \in D^{p \times p^{\prime}}$ satisfies (2) for a certain matrix $Q \in D^{q \times q^{\prime}}$. Using (22) and (4) of Lemma 2, we get $\operatorname{im}_{D}\left(.\left(\begin{array}{ll}R & -Q)) \subseteq \operatorname{ker}_{D}\left(.\left(\begin{array}{ll}P^{T} & R^{T}\end{array}\right)^{T}\right)=\operatorname{im}_{D}\left(.\left(\begin{array}{ll}S & -T\end{array}\right) \text {, which shows that there }\right.\end{array}\right.\right.$ exists a matrix $L \in D^{q \times r}$ such that $R=L S$ and $Q=L T$.

Using Gröbner basis techniques for a polynomial ring $D$, the factorization (14) can be computed (see, e.g., Chyzak et al. (2005, 2007)).

Definition 2. A factorization $R=L S$, where $R \in D^{q \times p}, L \in D^{q \times s}$ and $S \in D^{s \times p}$, is called strict if:

$$
\operatorname{im}_{D}(. R) \subsetneq \operatorname{im}_{D}(. S) .
$$

If $\mathcal{F}$ is a left $D$-module and $R=L S$, then $\operatorname{ker}_{\mathcal{F}}(S$. $) \subseteq \operatorname{ker}_{\mathcal{F}}(R$.), i.e., every $\mathcal{F}$-solution of $S \eta=0$ is a $\mathcal{F}$-solution of $R \eta=0$. Hence, finding solutions of a linear functional system is an application of the problem of factoring matrices of functional operators.

Proposition 1. If $R=L S$ is not a strict factorization, then we have $\operatorname{ker}_{\mathcal{F}}(R$. $)=\operatorname{ker}_{\mathcal{F}}(S$.) for all left $D$-modules $\mathcal{F}$.

Proof. Since, by definition of $S$, we have $D^{1 \times q} R \subseteq D^{1 \times r} S, D^{1 \times r} S=D^{1 \times q} R$ is equivalent to the existence of $F \in D^{r \times q}$ such that $S=F R$. Combining this identity with $R=L S$, we get $\left(I_{q}-L F\right) R=0$ and $\left(I_{r}-F L\right) S=0$, and thus there exist two matrices $X \in D^{r \times q_{2}}$ and $Y \in D^{r \times r_{2}}$ such that

$$
\left\{\begin{array}{l}
L F=I_{q}+X R_{2},  \tag{16}\\
F L=I_{r}+Y S_{2},
\end{array}\right.
$$

where $R_{2} \in D^{q_{2} \times q}$ (resp., $S_{2} \in D^{r_{2} \times r}$ ) satisfies $\operatorname{ker}_{D}(. R)=\operatorname{im}_{D}\left(. R_{2}\right)$ (resp., $\left.\operatorname{ker}_{D}(. S)=\operatorname{im}_{D}\left(. S_{2}\right)\right)$. Then, using (16), we can easily check that we have

$$
R \eta=L(S \eta)=0 \Rightarrow\left\{\begin{array}{l}
L \theta=0, \\
S \eta=\theta,
\end{array} \Rightarrow S \eta=0\right.
$$

since $\theta \in \mathcal{F}^{r}$ satisfies $S_{2} \theta=0$, and thus $\theta=F(L \theta)-Y\left(S_{2} \theta\right)=0$ by 16), and conversely

$$
S \eta=F(R \eta)=0 \Rightarrow\left\{\begin{array}{l}
F \zeta=0, \\
R \eta=\zeta
\end{array} \Rightarrow R \eta=0\right.
$$

since $\zeta \in \mathcal{F}^{q}$ satisfies $R_{2} \zeta=0$, and thus $\zeta=L(F \zeta)-X\left(R_{2} \zeta\right)=0$ by 16, i.e., $\operatorname{ker}_{\mathcal{F}}(R$. $)=\operatorname{ker}_{\mathcal{F}}(S$.$) .$
Remark 1. Homological algebra techniques can be used to give another proof of Proposition 1 Indeed, by $1 \Rightarrow 2$ of Lemma 3, the factorization $R=L S$ defines $f \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$, where $M^{\prime}=D^{1 \times p} /\left(D^{1 \times r} S\right)$, such that we have 15 . Then, applying the contravariant left exact functor $\operatorname{hom}_{D}(\cdot, \mathcal{F})$ to the canonical short exact sequence $0 \longrightarrow \operatorname{ker} f \longrightarrow M \longrightarrow \operatorname{coim} f \longrightarrow 0$ and using (1) and (15), we get the following long exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{ker}_{\mathcal{F}}(S .) \longrightarrow \operatorname{ker}_{\mathcal{F}}(R .) \longrightarrow \operatorname{hom}_{D}(\operatorname{ker} f, \mathcal{F}) \\
& \longrightarrow \operatorname{ext}_{D}^{1}(\operatorname{coim} f, \mathcal{F}) \longrightarrow \operatorname{ext}_{D}^{1}(M, \mathcal{F}) \longrightarrow \operatorname{ext}_{D}^{1}(\operatorname{ker} f, \mathcal{F}) \\
& \longrightarrow \operatorname{ext}_{D}^{2}(\operatorname{coim} f, \mathcal{F}) \longrightarrow \operatorname{ext}_{D}^{2}(M, \mathcal{F}) \longrightarrow
\end{aligned}
$$

where the $\operatorname{ext}_{D}^{i}(M, \mathcal{F})$ 's are the so-called extension abelian groups (see, e.g., Rotman (2009)). Hence, if $R=L S$ is not a strict factorization, i.e., $D^{1 \times r} S=D^{1 \times q} R$, or equivalently $\operatorname{ker} f=0$, then $\operatorname{hom}_{D}(\operatorname{ker} f, \mathcal{F})=0$, and thus $\operatorname{ker}_{\mathcal{F}}(S)=.\operatorname{ker}_{\mathcal{F}}(R$.$) .$

Now, if $\mathcal{F}$ is a so-called injective left $D$-module, i.e. if we have $\operatorname{ext}_{D}^{i}(P, \mathcal{F})=0$ for all left $D$-modules $P$ and for $i \geq 1$ (see, e.g., Rotman (2009)), then the above long exact sequence reduces to the following short exact sequence:

$$
0 \longrightarrow \operatorname{ker}_{\mathcal{F}}(S .) \longrightarrow \operatorname{ker}_{\mathcal{F}}(R .) \longrightarrow \operatorname{hom}_{D}(\operatorname{ker} f, \mathcal{F}) \longrightarrow 0
$$

We then get $\operatorname{ker}_{\mathcal{F}}(R.) / \operatorname{ker}_{\mathcal{F}}(S.) \cong \operatorname{hom}_{D}(\operatorname{ker} f, \mathcal{F}) \cong \operatorname{ker}_{\mathcal{F}}\left(\left(\begin{array}{ll}L^{T} & S_{2}^{T}\end{array}\right)^{T}\right.$.) by (1) and (5). In particular, if $S$ has full row rank, i.e., $S_{2}=0$, then we finally obtain:

$$
\operatorname{ker}_{\mathcal{F}}(R .) / \operatorname{ker}_{\mathcal{F}}(S .) \cong \operatorname{ker}_{\mathcal{F}}(L .)
$$

In particular, this result holds for $\mathcal{F}=C^{\infty}\left(\mathbb{R}^{n}\right)$ and $D=\mathbb{R}\left\langle d_{1}, \ldots, d_{n}\right\rangle=\mathbb{R}\left[d_{1}, \ldots, d_{n}\right]$.
Let us now introduce the concept of a generic solution of the linear system $\operatorname{ker}_{\mathcal{F}}(R$.$) .$
Definition 3. Let $\mathcal{F}$ be a left $D$-module, $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ a finitely presented left $D$-module, and $\pi: D^{1 \times p} \longrightarrow M$ the canonical projection onto $M$. Then, $\eta \in \operatorname{ker}_{\mathcal{F}}(R$.) is called a generic solution if $\phi_{\eta} \in \operatorname{hom}_{D}(M, \mathcal{F})$, defined by $\phi_{\eta}(\pi(\lambda))=\lambda \eta$ for all $\lambda \in D^{1 \times p}$, is injective.

For instance, with the notations of Section 2, $y=\left(y_{1} \ldots y_{p}\right)^{T}$ is a generic solution of $\operatorname{ker}_{M}(R.) \cong$ $\operatorname{end}_{D}(M)$ corresponding to $\operatorname{id}_{M}$.

The next result is a reformulation of the concept of a strict factorization in terms of homomorphisms.

Theorem 4. If $R \in D^{q \times p}$, then the following assertions are equivalent:

1. The matrix $R$ admits a strict factorization, i.e., there exist $L \in D^{q \times r}$ and $S \in D^{r \times q}$ such that $R=L S$ with $\operatorname{im}_{D}(. R) \subsetneq \operatorname{im}_{D}(. S)$.
2. There exist a finitely presented left $D$-module $\mathcal{F}$ and $f \in \operatorname{hom}_{D}(M, \mathcal{F})$ such that ker $f \neq 0$.
3. There exists a finitely presented left $D$-module $\mathcal{F}$ such that the linear system $\operatorname{ker}_{\mathcal{F}}(R$.) admits a non-generic solution in the sense of Definition 3 .

Proof. By Lemma 3, the existence of a factorization $R=L S$ is equivalent to the existence of a finitely presented left $D$-module $\mathcal{F}$ and $f \in \operatorname{hom}_{D}(M, \mathcal{F})$ such that $\operatorname{coim} f=D^{1 \times p} /\left(D^{1 \times r} S\right)$ and $\operatorname{ker} f=$ $\left(D^{1 \times r} S\right) /\left(D^{1 \times q} R\right)$. Moreover, the factorization is strict if and only if $\operatorname{ker} f \neq 0$, i.e., if and only if the linear system $\operatorname{ker}_{\mathcal{F}}(R$.) admits a non-generic solution.

Theorem 4 shows that the factorization problem cannot simply be solved by studying the ring $\operatorname{end}_{D}(M)$ since the factorizations of $R$ correspond to finitely presented left $D$-modules $\mathcal{F}$ which are usually not equal to $M$.

Example 3. We illustrate the known fact that an operator $R \in D=B_{1}(\mathbb{Q})$ can admit a strict factorization $R=L S$ even if $\operatorname{end}_{D}(M)$ is reduced to $k \operatorname{id}_{M}$ (see van der Put and Singer (2003); Barkatou (2007)). Let us consider the OD operator $R=d^{2}+t d \in D$. An element of $\operatorname{end}_{D}(M)$ can be defined by $P=a d+b$, where $a, b \in \mathbb{Q}(t)$, which satisfies $R P=Q R$ for a certain $Q \in D$. We have:

$$
R P=\left(d^{2}+t d\right)(a d+b)=a d^{3}+(2 \dot{a}+t a+b) d^{2}+(\ddot{a}+t(\dot{a}+b)+2 \dot{b}) d+\ddot{b}+t \dot{b}
$$

Hence, $Q$ has the form $Q=a d+c$, where $c \in \mathbb{Q}(t)$, which yields

$$
Q R=(a d+c)\left(d^{2}+t d\right)=a d^{3}+(t a+c) d^{2}+(a+t c) d
$$

and thus $R P=Q R$ is equivalent to the following linear OD system:

$$
\left\{\begin{array}{l}
2 \dot{a}+b-c=0  \tag{17}\\
\ddot{a}+t(\dot{a}+b-c)+2 \dot{b}-a=0 \\
\ddot{b}+t \dot{b}=0
\end{array}\right.
$$

If we note $u:=\dot{b}$, then the last equation of gives $\dot{u}+t u=0$, i.e., $u=c_{1} e^{-t^{2} / 2}$, and thus we have $b=c_{1} \int_{0}^{t} e^{-s^{2} / 2} d s+c_{2}$, where $c_{1}$ and $c_{2}$ are two arbitrary constants, i.e., $c_{1}, c_{2} \in \mathbb{Q}$. Since $b \in \mathbb{Q}(t)$, we get $c_{1}=0$ and $b=c_{2}$ and the above system becomes:

$$
\left\{\begin{array}{l}
\ddot{a}-t \dot{a}-a=\frac{d}{d t}(\dot{a}-t a)=0 \\
b=c_{2} \\
c=2 \dot{a}+c_{2}
\end{array}\right.
$$

The integration of the first equation gives $\dot{a}-t a=c_{3}$ so that we get $a=\left(c_{4}+c_{3} \int_{0}^{t} e^{-s^{2} / 2} d s\right) e^{t^{2} / 2}$, where $c_{3}$ and $c_{4}$ are two arbitrary constants, i.e., $c_{3}, c_{4} \in \mathbb{Q}$. Since $a \in \mathbb{Q}(t)$, we must have $c_{3}=c_{4}=0$, i.e., $a=0$ and $b=c=c_{2}$. Hence, we obtain $P=Q=c_{2}$, i.e., every element of end $D_{D}(M)$ has the form of $f=c_{2} \operatorname{id}_{M}$, where $c_{2} \in \mathbb{Q}$, and thus ker $f=0$ if $c_{2} \neq 0$. An algorithm for computing rational solutions of linear OD systems can be found in Barkatou (1999). See also Barkatou (2007); van der Put and Singer (2003) and references therein for the computation of the eigenring of a linear OD operator and a first order linear OD system.

Theorem 4 asserts that $R$ admits a strict factorization if and only if there exists a finitely presented left $D$-module $\mathcal{F}$ and $f \in \operatorname{hom}_{D}(M, \mathcal{F})$ such that ker $f \neq 0$. If we take $\mathcal{F}=D /(D d) \cong \mathbb{Q}(t)$ and $f \in \operatorname{hom}_{D}(M, \mathcal{F})$ defined by $f(\pi(\lambda))=\kappa(\lambda)$ for all $\lambda \in D$, where $\kappa: D \longrightarrow \mathcal{F}$ is the canonical projection onto $\mathcal{F}$, then we get ker $f=(D d) /(D R) \neq 0$, which shows that the OD equation $\ddot{\eta}+t \dot{\eta}=0$ admits the non-generic solution $\eta=1$ and yields the strict factorization $R=L S$, where $L=d+t$ and $S=d$.

We refer the reader to the AlgebraicAnalysis package (Cluzeau et al. (2013)) which computes general homomorphisms of two finitely presented differential modules by integrating linear PD systems in the unknown coefficients of a fixed order ansatz for $P$. For instance, for the above example, the AlgebraicAnalysis package integrates 17) to get that the general endomorphism of $M$ is defined by:

$$
P=\left(c_{4}+c_{3} \int_{0}^{t} e^{-s^{2} / 2} d s\right) e^{t^{2} / 2} d+c_{1} \int_{0}^{t} e^{-s^{2} / 2} d s+c_{2}, \quad c_{1}, \ldots, c_{4} \in \mathbb{Q}
$$

If $M$ is a simple left $D$-module (see 9 of Definition 11) and $f \in \operatorname{hom}_{D}(M, \mathcal{F}) \backslash\{0\}$, then we have ker $f=0$, which shows that $f$ is injective. If $M$ is a left $D$-module finitely presented by $R \in D^{q \times p}$, then $R$ does not admit a strict factorization by Theorem 4 Moreover, if $\mathcal{F}=M$, then $\operatorname{im} f=M$ since im $f$ is a non-trivial left $D$-submodule of $M$, which shows that a non-trivial $f \in \operatorname{end}_{D}(M)$ is an automorphism, i.e., $f \in \operatorname{aut}_{D}(M)$. This result is the so-called Schur's lemma stating that the endomorphism ring end ${ }_{D}(M)$ of a simple left $D$-module $M$ is a division ring (see, e.g., McConnell and Robson (2000)).

Example 4. Let us show that $M=D /\left(D d_{1}+D d_{2}\right) \cong k\left[x_{1}, x_{2}\right]$ is a simple left $D=A_{2}(\mathbb{Q})$-module. If $L$ is a non-trivial left $D$-submodule of $M$ and $z:=d y \in L$, where $d \in D \backslash\{0\}, y=\pi(1)$ is the generator of $M$ and $\pi: D \longrightarrow M$ the canonical projection onto $M$, then we can assume without loss of generality that $d \in k\left[x_{1}, x_{2}\right]$ since $y$ satisfies the following relations:

$$
\left\{\begin{array}{l}
d_{1} y=0  \tag{18}\\
d_{2} y=0
\end{array}\right.
$$

Using (18), we get $d_{i} z=d_{i}(d y)=d d_{i} y+\frac{\partial d}{\partial x_{i}} y=\frac{\partial d}{\partial x_{i}} y=0$ for $i=1,2$. Thus, there exists $d^{\prime} \in D$ such that $y=d^{\prime} z \in L$ for a certain $d^{\prime} \in D \backslash\{0\}$, i.e., $L=M$, which proves that $M$ is a simple left $D$-module. Using Proposition 2.5 of Cluzeau and Quadrat (2008), we can easily prove that aut $D_{D}(M)=k \backslash\{0\}$.

## 5 Decomposition problem

### 5.1 General results

The existence of a non-trivial decomposition $M=M_{1} \oplus M_{2}$ of a left $D$-module $M$ is known to be equivalent to the existence of a non-trivial idempotent element $f \in \operatorname{end}_{D}(M)$, i.e., $f^{2}=f$, where $f$ is neither $\mathrm{id}_{M}$ nor 0. See, e.g., McConnell and Robson 2000); Cluzeau and Quadrat (2008).

Let us state a characterization of an idempotent element of $\operatorname{end}_{D}(M)$.
Lemma 4 Cluzeau and Quadrat (2008)). Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ be the left $D$-module finitely presented by $R \in D^{q \times p}$ and $R_{2} \in D^{r \times q}$ a matrix such that $\operatorname{ker}_{D}(. R)=\operatorname{im}_{D}\left(. R_{2}\right)$. Then, $f \in \operatorname{end}_{D}(M)$, defined by a matrix $P \in D^{p \times p}$ satisfying $R P=Q R$ for a certain $Q \in D^{q \times q}$, is an idempotent element of $\operatorname{end}_{D}(M)$, i.e., $f^{2}=f$, if and only if there exists $Z \in D^{p \times q}$ such that:

$$
\begin{equation*}
P^{2}=P+Z R \tag{19}
\end{equation*}
$$

Then, there exists a matrix $Z^{\prime} \in D^{q \times r}$ such that:

$$
Q^{2}=Q+R Z+Z^{\prime} R_{2}
$$

In particular, if $R \in D^{q \times p}$ has full row rank, then we have $Q^{2}=Q+R Z$.
An algorithm for the computation of idempotents of $\operatorname{end}_{D}(M)$ is given in Algorithm 4.1 of Cluzeau and Quadrat (2008).

If $f^{2}=f \in \operatorname{end}_{D}(M)$, then we have $M=\operatorname{ker} f \oplus \operatorname{im} f$. Indeed, we have $m=f(m)+(m-f(m))$ for all $m \in M$, where $m-f(m) \in \operatorname{ker} f$.

Let us now generalize Lemma 4.4 of Cluzeau and Quadrat (2008).

Lemma 5. Let $R \in D^{q \times p}, \operatorname{ker}_{D}(. R)=\operatorname{im}_{D}\left(. R_{2}\right), \operatorname{ker}_{D}\left(. R_{2}\right)=\operatorname{im}_{D}\left(. R_{3}\right), M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and $f \in \operatorname{end}_{D}(M)$ an idempotent defined by $P \in D^{p \times p}$ satisfying $P^{2}=P+Z R$ and $R P=Q R$ for a certain matrix $Z \in D^{p \times q}$ and a matrix $Q$ necessarily of the form $Q^{2}=Q+R Z+Z^{\prime} R_{2}$ for a certain matrix $Z^{\prime} \in D^{q \times r}$. Moreover, let $S \in D^{r \times r}$ be such that $R_{2} Q=S R_{2}$. If there exist $\Delta \in D^{p \times q}, \Delta_{2} \in D^{q \times r}$, $U \in D^{p \times r}$ and $V \in D^{q \times s}$ such that

$$
\left\{\begin{array}{l}
\Delta R \Delta+\left(P-I_{p}\right) \Delta+\Delta Q+Z=U R_{2}  \tag{20}\\
\Delta_{2} R_{2} \Delta_{2}+\left(Q-I_{q}+R \Delta\right) \Delta_{2}+\Delta_{2} S+R U+Z^{\prime}=V R_{3}
\end{array}\right.
$$

then the matrices defined by $\bar{P}:=P+\Delta R$ and $\bar{Q}:=Q+R \Delta+\Delta_{2} R_{2}$ satisfy $R \bar{P}=\bar{Q} R, \bar{P}^{2}=\bar{P}$, $\bar{Q}^{2}=\bar{Q}$ and $f(\pi(\lambda))=\pi(\lambda \bar{P})$ for all $\lambda \in D^{1 \times p}$.

If $R$ has full row rank, then (20) reduces to the following algebraic Riccati equation:

$$
\begin{equation*}
\Delta R \Delta+\left(P-I_{p}\right) \Delta+\Delta Q+Z=0 \tag{21}
\end{equation*}
$$

Proof. Considering $\bar{P}:=P+\Delta R$, we can check that

$$
\bar{P}^{2}-\bar{P}=\left(\Delta R \Delta+\left(P-I_{p}\right) \Delta+\Delta Q+Z\right) R
$$

which shows that $\bar{P}^{2}=\bar{P}$ if and only if the first equation of 20 holds for a certain $U \in D^{p \times r}$. Now, using the first equation of 20 , we can check that the matrix $Q:=Q+R \Delta+\Delta_{2} R_{2}$ satisfies

$$
\begin{aligned}
\bar{Q}^{2}-\bar{Q} & =R\left(\Delta R \Delta+\left(P-I_{p}\right) \Delta+\Delta Q+Z\right)+\left(\Delta_{2} R_{2} \Delta_{2}+\left(Q-I_{q}+R \Delta\right) \Delta_{2}+\Delta_{2} S+Z^{\prime}\right) R_{2} \\
& =\left(\Delta_{2} R_{2} \Delta_{2}+\left(Q-I_{q}+R \Delta\right) \Delta_{2}+\Delta_{2} S+R U+Z^{\prime}\right) R_{2}
\end{aligned}
$$

and thus $\bar{Q}^{2}=\bar{Q}$ if and only the second equation of 20 holds for a certain $V \in D^{q \times s}$. Finally, 20 reduces to 21 when $R$ has full row rank.

Remark 2. If $D$ is a polynomial ring over a computational field $k$, then a solution $\Delta \in D^{p \times q}$ of the first equation of 20 can be obtained by considering an ansatz for $\Delta$ for a fixed total degree and by solving the quadratic equations in the parameters of the ansatz so that all the normal forms of the rows of $\Delta R \Delta+\left(P-I_{p}\right) \Delta+\Delta Q+Z$ with respect of a Gröbner basis of the $D$-module $D^{1 \times r} R_{2}$ reduce to zero. In this way, we can obtain a solution $\Delta$ of the first equation of 20 for a certain $U \in D^{p \times r}$. Then, the second equation of 20 can be solved by considering an ansatz for $\Delta_{2}$ for a fixed total degree and by solving the quadratic equations in the parameters of the ansatz so that all the normal forms of the rows of $\Delta_{2} R_{2} \Delta_{2}+\left(Q-I_{q}+R \Delta\right) \Delta_{2}+\Delta_{2} S+R U+Z^{\prime}$ with respect of a Gröbner basis of the $D$-module $D^{1 \times s} R_{3}$ reduce to zero. We can get a solution $\Delta_{2}$ of the second equation of 20 for a certain $V \in D^{q \times s}$.

The interest of defining an idempotent $f$ of $\operatorname{end}_{D}(M)$ by two idempotent matrices $\bar{P} \in D^{p \times p}$ and $\bar{Q} \in D^{q \times q}$ (i.e., two projectors) is that the left $D$-modules $\operatorname{ker}_{D}(. \bar{P}), \operatorname{im}_{D}(. \bar{P}), \operatorname{ker}_{D}(. \bar{Q})$ and $\operatorname{im}_{D}(. \bar{Q})$ then satisfy

$$
\left\{\begin{array}{l}
D^{1 \times p}=\operatorname{ker}_{D}(. \bar{P}) \oplus \operatorname{im}_{D}(. \bar{P}),  \tag{22}\\
D^{1 \times q}=\operatorname{ker}_{D}(. \bar{Q}) \oplus \operatorname{im}_{D}(. \bar{Q}),
\end{array}\right.
$$

which shows that $\operatorname{ker}_{D}(. \bar{P}), \operatorname{im}_{D}(. \bar{P}), \operatorname{ker}_{D}(. \bar{Q})$ and $\operatorname{im}_{D}(. \bar{Q})$ are finitely generated projective left $D$ modules (see 3 of Definition 11). In this case, we also have $\operatorname{ker}_{D}(. \bar{P})=\operatorname{im}_{D}\left(.\left(I_{p}-\bar{P}\right)\right)$ and $\operatorname{im}_{D}(. \bar{P})=$ $\operatorname{ker}_{D}\left(.\left(I_{p}-\bar{P}\right)\right)$ and similarly with $\bar{Q}$.

Let us state again two standard results of homological algebra that will be used in what follows.
Proposition 2 Rotman (2009)). Let $0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0$ be a short exact sequence. Then, the following assertions are equivalent:

1. There exists $u \in \operatorname{hom}_{D}\left(M^{\prime \prime}, M\right)$ such that $g \circ u=\operatorname{id}_{M^{\prime \prime}}$.
2. There exists $v \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ such that $v \circ f=\operatorname{id}_{M^{\prime}}$.
3. There exist $u \in \operatorname{hom}_{D}\left(M^{\prime \prime}, M\right)$ and $v \in \operatorname{hom}_{D}\left(M, M^{\prime}\right)$ such that $f \circ v+u \circ g=\operatorname{id}_{M}$.
4. We have $M \cong M^{\prime} \oplus M^{\prime \prime}$, where the isomorphism is defined by $\left(\begin{array}{ll}f & u\end{array}\right): M^{\prime} \oplus M^{\prime \prime} \longrightarrow M$ and $\left(\begin{array}{ll}v^{T} & g^{T}\end{array}\right)^{T}: M \longrightarrow M^{\prime} \oplus M^{\prime \prime}$, with $u$ and $v$ defined as above, i.e.:

$$
\left(\begin{array}{ll}
f & u
\end{array}\right) \circ\binom{v}{g}=\operatorname{id}_{M}, \quad\binom{v}{g} \circ\left(\begin{array}{ll}
f & u \tag{23}
\end{array}\right)=\operatorname{id}_{M^{\prime} \oplus M^{\prime \prime}}
$$

The short exact sequence is then said to split or is a split short exact sequence, which is denoted by:

$$
\begin{equation*}
0 \longrightarrow M^{\prime} \underset{v}{\stackrel{f}{\rightleftarrows}} M \underset{u}{\stackrel{g}{\rightleftarrows}} M^{\prime \prime} \longrightarrow 0 \tag{24}
\end{equation*}
$$

Proposition 3 Rotman (2009). If $0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0$ is a short exact sequence and $M^{\prime \prime}$ is a projective left $D$-module, then the exact sequence splits, i.e. $M \cong M^{\prime} \oplus M^{\prime \prime}$.

Example 5. Let us suppose that the left $D$-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ is free of rank $m$. Then, composing the left $D$-isomorphism $\iota: M \longrightarrow D^{1 \times m}$ with $\pi \in \operatorname{hom}_{D}\left(D^{1 \times p}, M\right)$ defined by the finite presentation $0 \longrightarrow \operatorname{im}_{D}(. R) \xrightarrow{i} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0$ of $M$, we obtain the short exact sequence $0 \longrightarrow \operatorname{im}_{D}(. R) \xrightarrow{i} D^{1 \times p} \xrightarrow{. Q} D^{1 \times m} \longrightarrow 0$, where the matrix $Q:=\left(Q_{1}^{T} \ldots Q_{p \bullet}^{T}\right)^{T} \in D^{p \times m}$ is defined by $Q_{j \bullet}=(\iota \circ \pi)\left(f_{j}\right) \in D^{1 \times m}$ for $j=1, \ldots, p$ and $\left\{f_{j}\right\}_{j=1, \ldots, p}$ is the standard basis of $D^{1 \times p}$, i.e., $\iota \circ \pi=. Q$. Using Proposition 3 the above exact sequence splits, and thus there exists $T \in D^{m \times p}$ such that $T Q=I_{m}$. Hence, if $M$ is free of rank $m$, then there exist $Q \in D^{p \times m}$ and $T \in D^{m \times p}$ such that $\operatorname{ker}_{D}(. Q)=\operatorname{im}_{D}(. R)$ and $T Q=I_{m}$. Conversely, if such matrices exist, then the above short exact sequence holds, which shows that $M=\operatorname{coker} i \cong D^{1 \times m}$, i.e., that $M$ is a free left $D$-module of rank $m$. For more details, see Chyzak et al. (2005); Fabiańska and Quadrat (2007); Quadrat and Robertz (2007a).

We now recall Theorem 4.2 of Cluzeau and Quadrat (2008).
Theorem 5 (Cluzeau and Quadrat (2008)). Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ be the left $D$-module finitely presented by $R \in D^{q \times p}$ and $f \in \operatorname{end}_{D}(M)$ an idempotent, i.e., $f^{2}=f$, defined by two idempotent matrices $P \in D^{p \times p}$ and $Q \in D^{q \times q}$ satisfying the relations $R P=Q R, P^{2}=P$ and $Q^{2}=Q$. If the finitely generated projective left $D$-modules $\operatorname{ker}_{D}(. P), \operatorname{im}_{D}(. P), \operatorname{ker}_{D}(. Q)$ and $\operatorname{im}_{D}(. Q)$ are free of rank $m, p-m=\operatorname{trace}(P), l, q-l=\operatorname{trace}(Q)$, then there exist four matrices $U_{1} \in D^{m \times p}, U_{2} \in D^{(p-m) \times p}$, $V_{1} \in D^{l \times q}$ and $V_{2} \in D^{(q-l) \times q}$ satisfying

1. $U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{p}(D), V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{q}(D)$,
2. $\bar{R}:=V R U^{-1}=\left(\begin{array}{cc}V_{1} R W_{1} & 0 \\ 0 & V_{2} R W_{2}\end{array}\right) \in D^{q \times p}$, where $U^{-1}:=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right), W_{1} \in D^{p \times m}$ and $W_{2} \in D^{p \times(p-m)}$.

In particular, the full row rank matrix $U_{1}$ (resp., $U_{2}, V_{1}, V_{2}$ ) defines a basis of the free left $D$-module $\operatorname{ker}_{D}(. P)$ (resp., $\left.\operatorname{im}_{D}(. P), \operatorname{ker}_{D}(. Q), \operatorname{im}_{D}(. Q)\right)$ of rank $m$ (resp., $p-m, l, q-l$ ), i.e., we have:

$$
\left\{\begin{array}{l}
\operatorname{ker}_{D}(. P)=\operatorname{im}_{D}\left(. U_{1}\right)  \tag{25}\\
\operatorname{im}_{D}(. P)=\operatorname{im}_{D}\left(. U_{2}\right) \\
\operatorname{ker}_{D}(. Q)=\operatorname{im}_{D}\left(. V_{1}\right) \\
\operatorname{im}_{D}(. Q)=\operatorname{im}_{D}\left(. V_{2}\right)
\end{array}\right.
$$

If $V^{-1}:=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right)$, where $X_{1} \in D^{q \times l}$ and $X_{2} \in D^{(q-l) \times q}$, then we have the following diagram formed by horizontal split exact sequences, vertical exact sequences and whose squares commute in both directions:


In particular, we have $M=\operatorname{ker} f \oplus \operatorname{im} f$, where

$$
\left\{\begin{array}{l}
\operatorname{ker} f \cong D^{1 \times m} /\left(D^{1 \times l}\left(V_{1} R W_{1}\right)\right), \\
\operatorname{im} f \cong D^{1 \times(p-m)} /\left(D^{1 \times(q-l)}\left(V_{2} R W_{2}\right)\right)
\end{array}\right.
$$

i.e., the first (resp., second) diagonal block of $\bar{R}$ corresponds to $\operatorname{ker} f$ (resp., $\operatorname{im} f$ ) up to an isomorphism.

For rings $D$ and modules satisfying the conditions of Theorem 2, the projective left $D$-modules $\operatorname{ker}_{D}(. P), \operatorname{im}_{D}(. P), \operatorname{ker}_{D}(. Q)$ and $\operatorname{im}_{D}(. Q)$ satisfying 22 are free of finite rank.

We now prove the converse of Theorem 5
Theorem 6. A matrix $R \in D^{q \times p}$ is equivalent to a block-diagonal matrix $\bar{R} \in D^{q \times p}$, i.e., there exist $U \in \mathrm{GL}_{p}(D)$ and $V \in \mathrm{GL}_{q}(D)$ such that

$$
\bar{R}:=V R U^{-1}=\left(\begin{array}{cc}
\bar{R}_{1} & 0  \tag{27}\\
0 & \bar{R}_{2}
\end{array}\right), \quad \bar{R}_{1} \in D^{l \times m}, \quad \bar{R}_{2} \in D^{(q-l) \times(p-m)},
$$

if and only if there exist two idempotent matrices $P \in D^{p \times p}$ and $Q \in D^{q \times q}$, i.e., $P^{2}=P, Q^{2}=Q$, satisfying $R P=Q R$ and such that the projective left $D$-modules $\operatorname{ker}_{D}(. P), \operatorname{im}_{D}(. P), \operatorname{ker}_{D}(. Q)$ and $\operatorname{im}_{D}(. Q)$ are free of rank respectively $m, p-m, l$, and $q-l$. We then have $\operatorname{ker}_{D}(. P)=D^{1 \times m} U_{1}$, $\operatorname{im}_{D}(. P)=D^{1 \times(p-m)} U_{2}, \operatorname{ker}_{D}(. Q)=D^{1 \times l} V_{1}$ and $\operatorname{im}_{D}(. Q)=D^{1 \times(q-l)} V_{2}$, where $U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T}$, $U_{1} \in D^{m \times p}$ and $U_{2} \in D^{(p-m) \times p}$, and $V=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T}, V_{1} \in D^{l \times q}$ and $V_{2} \in D^{(q-l) \times q}$.

Proof. Let us suppose that $R$ is equivalent to the matrix $\bar{R}$ defined by 27 . We can check that the matrices $\bar{P} \in D^{p \times p}$ and $\bar{Q} \in D^{q \times q}$ defined by

$$
\bar{P}:=\left(\begin{array}{cc}
0 & 0 \\
0 & I_{p-m}
\end{array}\right), \quad \bar{Q}:=\left(\begin{array}{cc}
0 & 0 \\
0 & I_{q-l}
\end{array}\right)
$$

satisfy $\bar{P}^{2}=\bar{P}, \bar{Q}^{2}=\bar{Q}$, and $\bar{R} \bar{P}=\bar{Q} \bar{R}$. Now, if $\lambda=\left(\begin{array}{ll}\lambda_{1} & \lambda_{2}\end{array}\right) \in \operatorname{ker}_{D}(. \bar{P})$, where $\lambda_{1} \in D^{1 \times m}, \lambda_{2} \in$ $D^{1 \times(p-m)}$, then we get $\lambda_{2}=0$, i.e., $\left(\begin{array}{ll}\lambda_{1} & 0\end{array}\right) \in \operatorname{ker}_{D}(. \bar{P})$, which proves that $\operatorname{ker}_{D}(. \bar{P})=D^{1 \times m}\left(I_{m} \quad 0\right)$ and, since $\left(\begin{array}{ll}I_{m} & 0\end{array}\right)$ has full row rank, $\operatorname{ker}_{D}(. \bar{P})$ is a free left $D$-module of rank $m$. Similarly, $\operatorname{ker}_{D}(. \bar{Q})$ $\left(\right.$ resp., $\left.\operatorname{ker}_{\underline{D}}\left(.\left(I_{p}-\bar{P}\right)\right), \operatorname{ker}_{D}\left(.\left(I_{q}-\bar{Q}\right)\right)\right)$ is a free left $D$-module of rank $l$ (resp., $\left.p-m, q-l\right)$. Now, if we set $P:=U^{-1} \bar{P} U$ and $Q:=V^{-1} \bar{Q} V$, then we can easily check that $R P=Q R, P^{2}=P$ and $Q^{2}=Q$. Moreover, we have $\operatorname{ker}_{D}(. P)=\operatorname{ker}_{D}(. \bar{P}) U, \operatorname{im}_{D}(. P)=\operatorname{im}_{D}(. \bar{P}) U, \operatorname{ker}_{D}(. Q)=\operatorname{ker}_{D}(. \bar{Q}) V$ and $\operatorname{im}_{D}(. Q)=$ $\operatorname{im}_{D}(. \bar{Q}) V$, and since $U \in \mathrm{GL}_{p}(D)$ and $V \in \mathrm{GL}_{q}(D)$, we obtain that $\operatorname{ker}_{D}(. P), \operatorname{im}_{D}(. P)$, $\operatorname{ker}_{D}(. Q)$ and $\operatorname{im}_{D}(. Q)$ are free left $D$-modules of rank respectively $m, p-m, l$, and $q-l$. Finally, if we note $U:=$ $\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T}$, where $U_{1} \in D^{m \times p}$ and $U_{2} \in D^{(p-m) \times p}$, and $V:=\left(V_{1}^{T} \quad V_{2}^{T}\right)^{T}$, where $V_{1} \in D^{l \times q}$ and $V_{2} \in$ $D^{(q-l) \times q}$, then we get $\operatorname{ker}_{D}(. P)=D^{1 \times m}\left(\begin{array}{ll}I_{m} & 0\end{array}\right) U=D^{1 \times m} U_{1}, \operatorname{im}_{D}(. P)=D^{1 \times(p-m)}\left(\begin{array}{ll}0 & I_{p-m}\end{array}\right) U=$ $D^{1 \times(p-m)} U_{2}, \operatorname{ker}_{D}(. Q)=D^{1 \times l}\left(\begin{array}{ll}I_{l} & 0\end{array}\right) V=D^{1 \times l} V_{1}$ and $\operatorname{im}_{D}(. Q)=D^{1 \times(q-l)}\left(\begin{array}{ll}0 & I_{q-l}\end{array}\right) V=D^{1 \times(q-l)} V_{2}$.

Finally, we show that Theorems 5 and 6 are particular instances of the following more general result which proves that the diagram (26) is a particular instance of the diagram (28) below.

Theorem 7. The following results are equivalent:

1. The following diagram, formed by horizontal split exact sequences and vertical exact sequences, commutes in both directions:

2. There exist matrices $V \in \mathrm{GL}_{q}(D)$ and $W \in \mathrm{GL}_{p}(D)$ such that:

$$
V R W=\left(\begin{array}{cc}
R^{\prime} & 0  \tag{29}\\
0 & R^{\prime \prime}
\end{array}\right)
$$

With the notations (28) and (29), the unimodular matrices $V$ and $W$ can be defined by

$$
V:=\left(\begin{array}{ll}
V_{1}^{T} & V_{2}^{T}
\end{array}\right)^{T}, \quad V^{-1}=X:=\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right), \quad W:=\left(\begin{array}{ll}
W_{1} & W_{2}
\end{array}\right), \quad W^{-1}=U:=\left(\begin{array}{ll}
U_{1}^{T} & U_{2}^{T} \tag{30}
\end{array}\right)^{T}
$$

and we have $R^{\prime}=V_{1} R W_{1}$ and $R^{\prime \prime}=V_{2} R W_{2}$.
Proof. $1 \Rightarrow 2$. Since the first and the second horizontal exact sequences of 28) split, using 23), the matrices defined by $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T} \in D^{q \times q}, X:=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right) \in D^{q \times q}, U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right) \in D^{p \times p}$ and $W:=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right) \in D^{p \times p}$ satisfy $V X=X V=I_{q}$ and $U W=W U=I_{p}$, which shows that $V \in \operatorname{GL}_{q}(D)$, $X=V^{-1}, U \in \operatorname{GL}_{p}(D)$ and $W=U^{-1}$. Moreover, we have:

$$
V R W=\left(\begin{array}{cc}
V_{1} R W_{1} & V_{1} R W_{2}  \tag{31}\\
V_{2} R W_{1} & V_{2} R W_{2}
\end{array}\right)
$$

Using the commutativity of (28) in the both directions, we have the relations $V_{1} R=R^{\prime} U_{1}, V_{2} R=R^{\prime \prime} U_{2}$, $X_{1} R^{\prime}=R W_{1}$ and $X_{2} R^{\prime \prime}=R W_{2}$. Using the identities $U_{1} W_{1}=I_{m}, U_{2} W_{2}=I_{p-m}, U_{1} W_{2}=0$ and $U_{2} W_{1}=0$, we obtain

$$
\left\{\begin{array}{l}
V_{1} R W_{1}=R^{\prime} U_{1} W_{1}=R^{\prime}, \\
V_{2} R W_{2}=R^{\prime \prime} U_{2} W_{2}=R^{\prime \prime}, \\
V_{1} R W_{2}=R^{\prime} U_{1} W_{2}=0, \\
V_{2} R W_{1}=R^{\prime \prime} U_{2} W_{1}=0,
\end{array}\right.
$$

which finally proves 2 .
$2 \Rightarrow 1$. Using (23) and the notations $V=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T}$, where $V_{1} \in D^{l \times q}, V_{2} \in D^{(q-l) \times q}$, and $W=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right)$, where $W_{1} \in D^{p \times m}$ and $W_{2} \in D^{p \times(p-m)}$, the facts that $V \in \mathrm{GL}_{q}(D)$ and $W \in \mathrm{GL}_{p}(D)$ are equivalent to the first two horizontal splits exact sequences of (28), where $X:=V^{-1}=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right)$, $U:=W^{-1}=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T}, X_{1} \in D^{q \times l}, X_{2} \in D^{q \times(q-l)}, U_{1} \in D^{m \times p}$ and $U_{2} \in D^{(p-m) \times p}$. Using (29) and (31), we get $R^{\prime}=V_{1} R W_{1}, R^{\prime \prime}=V_{2} R W_{2}, V_{1} R W_{2}=0$ and $V_{2} R W_{1}=0$. Using the identity $W_{1} U_{1}+W_{2} U_{2}=I_{p}$, we get $R^{\prime} U_{1}=V_{1} R\left(W_{1} U_{1}\right)=V_{1} R\left(I_{p}-W_{2} U_{2}\right)=V_{1} R$. Similarly, we have $R^{\prime \prime} U_{2}=$ $V_{2} R\left(W_{2} U_{2}\right)=V_{2} R\left(I_{p}-W_{1} U_{1}\right)=V_{2} R$. Now, $V_{1} R W_{2}=0$ yields $X_{1} V_{1} R W_{2}=0$ which, combines
with the identity $X_{1} V_{1}+X_{2} V_{2}=I_{q}$, gives $R W_{2}=X_{2}\left(V_{2} R W_{2}\right)=X_{2} R^{\prime \prime}$. Similarly, $V_{2} R W_{1}=0$ yields $X_{2} V_{2} R W_{1}=0$ which, combines with the identity $X_{1} V_{1}+X_{2} V_{2}=I_{q}$, gives $R W_{1}=X_{1}\left(V_{1} R W_{1}\right)=$ $X_{1} R^{\prime}$, which shows that the following diagram

is formed by horizontal splits exact sequences and commutes in both direction.
Finally, let us define $M^{\prime}:=D^{1 \times m} /\left(D^{1 \times l} R^{\prime}\right), M:=D^{1 \times p} /\left(D^{1 \times q} R\right), M^{\prime \prime}:=D^{1 \times(p-m)} /\left(D^{1 \times(q-l)} R^{\prime \prime}\right)$, $\pi^{\prime}: D^{1 \times m} \longrightarrow M^{\prime}, \pi: D^{1 \times p} \longrightarrow M$ and $\pi^{\prime \prime}: D^{1 \times(p-m)} \longrightarrow M^{\prime \prime}$ the corresponding canonical projections, and the following well-defined homomorphisms:

$$
>\longmapsto \pi^{\prime}\left(\lambda W_{1}\right) .
$$

Using the identities $U_{1} W_{2}=0, U_{2} W_{1}=0, U_{1} W_{1}=I_{m}, U_{2} W_{2}=I_{p-m}$ and $W_{1} U_{1}+W_{2} U_{2}=I_{p}$, we get

$$
\left\{\begin{array}{l}
(g \circ f)\left(\pi^{\prime}\left(\lambda^{\prime}\right)\right)=\pi^{\prime \prime}\left(\lambda^{\prime}\left(U_{1} W_{2}\right)\right)=0 \\
(v \circ u)\left(\pi^{\prime \prime}\left(\lambda^{\prime \prime}\right)\right)=\pi^{\prime}\left(\lambda^{\prime \prime}\left(U_{2} W_{1}\right)\right)=0, \\
(v \circ f)\left(\pi^{\prime}\left(\lambda^{\prime}\right)\right)=\pi^{\prime}\left(\lambda^{\prime}\left(U_{1} W_{1}\right)\right)=\pi^{\prime}\left(\lambda^{\prime}\right), \\
(g \circ u)\left(\pi^{\prime \prime}\left(\lambda^{\prime \prime}\right)\right)=\pi^{\prime \prime}\left(\lambda^{\prime \prime}\left(U_{2} W_{2}\right)\right)=\pi^{\prime \prime}\left(\lambda^{\prime \prime}\right), \\
\left(\operatorname{id}_{M}-f \circ v-u \circ g\right)(\pi(\lambda))=\pi\left(\lambda\left(I_{p}-W_{1} U_{1}-W_{2} U_{2}\right)\right)=0
\end{array}\right.
$$

i.e., $g \circ f=0, v \circ u=0, v \circ f=\operatorname{id}_{M^{\prime}}, g \circ u=\operatorname{id}_{M^{\prime \prime}}$ and $f \circ v+u \circ g=\operatorname{id}_{M}$, which shows that $f$ and $u$ are injective, $g$ and $v$ are surjective, $\operatorname{im} f \subseteq \operatorname{ker} g$ and $\operatorname{im} u \subseteq \operatorname{ker} v$. If $m \in \operatorname{ker} g$ (resp., $m \in \operatorname{ker} v$ ), using the identity $f \circ v+u \circ g=\operatorname{id}_{M}$, we then get $m=f(v(m)) \in \operatorname{im} f$ (resp., $m=u(g(m)) \in \operatorname{im} u$ ), which shows that $\operatorname{ker} g=\operatorname{im} f$ and $\operatorname{ker} v=\operatorname{im} u$, and thus that 24 is a split exact sequence, which proves 1 .

Remark 3. If $D$ is a commutative ring and $M$ a decomposable $D$-module, then so is the $D$-module $\operatorname{end}_{D}(M)$. Indeed, if $D$ is a commutative ring and $M$ a decomposable $D$-module, i.e., $M=M_{1} \oplus M_{2}$ where $M_{1}$ and $M_{2}$ are two non-trivial $D$-modules, i.e., $M_{i} \neq 0$ for $i=1,2$, then we get

$$
\begin{aligned}
\operatorname{end}_{D}(M) & =\operatorname{hom}_{D}\left(M_{1} \oplus M_{2}, M_{1} \oplus M_{2}\right) \\
& =\operatorname{end}_{D}\left(M_{1}\right) \oplus \operatorname{end}_{D}\left(M_{2}\right) \oplus \operatorname{hom}_{D}\left(M_{1}, M_{2}\right) \oplus \operatorname{hom}_{D}\left(M_{2}, M_{1}\right)
\end{aligned}
$$

by the additivity property of the $\operatorname{hom}_{D}(\cdot, \cdot)$ bifunctor for the category of $D$-modules (Rotman (2009)). Since the rings $\operatorname{end}_{D}\left(M_{1}\right)$ and $\operatorname{end}_{D}\left(M_{2}\right)$ respectively contain $\operatorname{id}_{M_{1}}$ and id $M_{M_{2}}$, they are non-trivial, which shows that the $D$-module $\operatorname{end}_{D}(M)$ is decomposable. In other words, if $\operatorname{end}_{D}(M)$ is indecomposable as a $D$-module, then so is $M$. This result can sometimes be used to prove that a finitely generated module over a commutative ring $D$ is indecomposable.

### 5.2 The decomposition problem with an identity diagonal block

We now consider the case where one of the diagonal blocks of 27 ) is the identity matrix, say, for instance, $\bar{R}_{1}$. In this case, the linear system $\operatorname{ker}_{\mathcal{F}}(R$.$) is then equivalent to the linear system \operatorname{ker}_{\mathcal{F}}\left(\bar{R}_{2}.\right)$ defined by fewer unknowns and fewer equations. Such a reduction is called Serre's reduction of $\operatorname{ker}_{\mathcal{F}}(R$.) (Boudellioua and Quadrat (2010)). This problem will also be studied in Section 6 by means of different techniques than the ones developed in this section and we shall compare them.

Given a matrix $R \in D^{q \times p}$ and the left $D$-module $M$ finitely presented by $R$, the endomorphism ring $\operatorname{end}_{D}(M)$ always contains the two trivial idempotents, namely:

1. $f=\operatorname{id}_{M}$ defined by $P=I_{p}$ and $Q=I_{q}$,
2. $f=0_{M}$ defined by $P=0_{p}$ and $Q=0_{q}$.

Applying Lemma 5 to these trivial idempotents with $Z=0$ and $Z^{\prime}=0$ and considering $U=0, V=0$ and $\Delta_{2}=0$, we obtain the following corollary.

Corollary 1. We have the following results.

1. If $\Delta \in D^{p \times q}$ is a solution of $\Delta R \Delta=-\Delta$, then $\bar{P}:=I_{p}+\Delta R$ and $\bar{Q}:=I_{q}+R \Delta$ satisfy $R \bar{P}=\bar{Q} R$, $\bar{P}^{2}=\bar{P}, \bar{Q}^{2}=\bar{Q}$, and $f(\pi(\lambda))=\pi(\lambda \bar{P})=\pi(\lambda)$ for all $\lambda \in D^{1 \times p}$, i.e., $f=\operatorname{id}_{M}$.
2. If $\Delta \in D^{p \times q}$ is a solution of $\Delta R \Delta=\Delta$, then $\bar{P}:=\Delta R$ and $\bar{Q}:=R \Delta$ satisfy $R \bar{P}=\bar{Q} R, \bar{P}^{2}=\bar{P}$, $\bar{Q}^{2}=\bar{Q}$, and $f(\pi(\lambda))=0$ for all $\lambda \in D^{1 \times p}$, i.e., $f=0_{M}$.

Remark 4. If $\Delta \in D^{p \times q}$ satisfies $\Delta R \Delta=\Delta$, then $\Theta:=-\Delta$ satisfies $\Theta R \Theta=-\Theta$ and conversely. Thus, the idempotent matrices $\bar{P}_{1}:=\Delta R$ and $\bar{Q}_{1}:=R \Delta$ define the idempotent endomorphism $0_{M}$ if and only if the idempotent matrices $\bar{P}_{2}:=I_{p}-\Delta R$ and $\bar{Q}_{2}:=I_{q}-R \Delta$ define the idempotent id ${ }_{M}$. Moreover, we have $\bar{P}_{1}+\bar{P}_{2}=I_{p}$ and $\bar{Q}_{1}+\bar{Q}_{2}=I_{q}$.

The next two remarks will play an important role in what follows.
Remark 5. Let $\Delta \in D^{p \times q}$ satisfy $\Delta R \Delta=-\Delta$, i.e., $\Delta(-R) \Delta=\Delta$ and let us consider the following short exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{im}_{D}(. \Delta) \xrightarrow{i} D^{1 \times q} \xrightarrow{\gamma} \operatorname{coker}_{D}(. \Delta) \longrightarrow 0, \tag{32}
\end{equation*}
$$

where $i$ is the canonical inclusion and $\gamma$ the canonical projection. If $v \in \operatorname{hom}_{D}\left(D^{1 \times q}, \operatorname{im}_{D}(. \Delta)\right)$ is defined by $v(\mu)=-\mu R \Delta$ for all $\mu \in D^{1 \times q}$, then we get $(v \circ i)(\nu \Delta)=-\nu \Delta R \Delta=\nu \Delta$, i.e., $v \circ i=\operatorname{id}_{i_{D}(. \Delta)}$, which shows that the short exact sequence (32) splits by 2 of Proposition 2 . By 4 of Proposition 2 this yields $D^{1 \times q} \cong \operatorname{im}_{D}(. \Delta) \oplus \operatorname{coker}_{D}(. \Delta)$, which proves that $\operatorname{coker}_{D}(. \Delta)=D^{1 \times q} / \operatorname{im}_{D}(. \Delta)$ and $\operatorname{im}_{D}(. \Delta)$ are two finitely generated projective left $D$-modules by 3 of Definition 1 .

By 3 of Proposition 2, there exists $u \in \operatorname{hom}_{D}\left(\operatorname{coker}_{D}(. \Delta), D^{1 \times q}\right)$ such that $\operatorname{id}_{D^{1 \times q}}=i \circ v+u \circ \gamma$, which yields $(u \circ \gamma)(\mu)=\left(\operatorname{id}_{D^{1 \times q}}-i \circ v\right)(\mu)=\mu\left(I_{q}+R \Delta\right)=\mu \bar{Q}$, where $\bar{Q}:=I_{q}+R \Delta$. Using the fact that $\gamma \circ u=\operatorname{id}_{\text {coker }_{D}(. \Delta)}$ (see 1 of Proposition 22), $e:=u \circ \gamma$ satisfies $e^{2}=u \circ(\gamma \circ u) \circ \gamma=e$, i.e., $e$ is an idempotent of $\operatorname{end}_{D}\left(D^{1 \times q}\right) \cong D^{q \times q}$, i.e., $\bar{Q}^{2}=\bar{Q}$.

Applying Proposition 3 to the following canonical short exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{ker}_{D}(. \Delta) \xrightarrow{j} D^{1 \times p} \xrightarrow{. \Delta} \operatorname{im}_{D}(. \Delta) \longrightarrow 0, \tag{33}
\end{equation*}
$$

where $\operatorname{im}_{D}(. \Delta)$ is a projective left $D$-module, we get $D^{1 \times p} \cong \operatorname{ker}_{D}(. \Delta) \oplus \operatorname{im}_{D}(. \Delta)$, which shows that $\operatorname{ker}_{D}(. \Delta)$ is also a finitely generated projective left $D$-module by 3 of Definition 1 . Let us explicitly describe the splitting of the exact sequence (33). If $\alpha \in \operatorname{hom}_{D}\left(\operatorname{im}_{D}(. \Delta), D^{1 \times p}\right)$ is defined by $\alpha(\nu \Delta)=-(\nu \Delta) R$ for all $\nu \in D^{1 \times p}$, then we can check that $((. \Delta) \circ \alpha)(\nu \Delta)=-\nu \Delta R \Delta=\nu \Delta$, i.e., $(. \Delta) \circ \alpha=\operatorname{id}_{\text {im }}(. \Delta)$. By 3 of Proposition 2, there exists $\beta \in \operatorname{hom}_{D}\left(D^{1 \times p}, \operatorname{ker}_{D}(. \Delta)\right)$ such that $\operatorname{id}_{D^{1 \times p}}=j \circ \beta+\alpha \circ(. \Delta)$, which yields $(j \circ \beta)(\lambda)=\left(\operatorname{id}_{D^{1 \times p}}-\alpha \circ(. \Delta)\right)(\lambda)=\lambda\left(I_{p}+\Delta R\right)=\lambda \bar{P}$, where $\bar{P}:=I_{p}+\Delta R$. Using the fact that $\beta \circ j=\operatorname{id}_{\operatorname{ker}_{D}(. \Delta)}$ (see 2 of Proposition 2), $e^{\prime}:=j \circ \beta$ satisfies $\left(e^{\prime}\right)^{2}=j \circ(\beta \circ j) \circ \beta=e^{\prime}$, i.e., $e^{\prime}$ is an idempotent of $\operatorname{end}_{D}\left(D^{1 \times p}\right) \cong D^{p \times p}$, i.e., $\bar{P}^{2}=\bar{P}$.

Remark 6. Let $\Delta \in D^{p \times q}$ satisfy $\Delta R \Delta=\Delta$. Using the short exact sequences (32) and (33), if $v \in \operatorname{hom}_{D}\left(D^{1 \times q}, \operatorname{im}_{D}(. \Delta)\right)$ and $\alpha \in \operatorname{hom}_{D}\left(\operatorname{im}_{D}(. \Delta), D^{1 \times p}\right)$ are respectively defined by $v(\mu)=\mu R \Delta$ for all $\mu \in D^{1 \times q}$ and by $\alpha(\nu \Delta)=\nu \Delta R$ for all $\nu \in D^{1 \times p}$, then we can check that $v \circ i=\operatorname{id}_{\mathrm{im}_{D}(. \Delta)}$ and $((. \Delta) \circ \alpha)(\nu \Delta)=\operatorname{id}_{\operatorname{im}_{D}(. \Delta)}$. Then, we get that the projectors $\bar{P}:=\Delta R$ and $\bar{Q}:=R \Delta$ are such that $i \circ v=. \bar{Q}$ and $\alpha \circ(. \Delta)=\bar{P}$. Finally, the short exact sequences 32 and (33) split, which shows that $\operatorname{coker}_{D}(. \Delta), \operatorname{im}_{D}(. \Delta)$ and $\operatorname{ker}_{D}(. \Delta)$ are three finitely generated projective left $D$-modules.

Now, let us assume that $\bar{P}$ and $\bar{Q}$ define the endomorphism $\operatorname{id}_{M}$ (resp., $0_{M}$ ) and the projective left $D$-modules $\operatorname{ker}_{D}(. \bar{P}), \operatorname{im}_{D}(. \bar{P}), \operatorname{ker}_{D}(. \bar{Q})$ and $\operatorname{im}_{D}(. \bar{Q})$ are free of rank respectively $m, p-m, l$, and $q-l$ with $1 \leq m \leq p$ and $1 \leq l \leq q$. Then, Theorem 5 holds with $\operatorname{ker} f=0$ (resp., $\operatorname{im} f=0$ ). Moreover, let us assume that $R$ has full row rank. With the notations of Theorem 5 , since $R$ has full row rank, so are $V R U^{-1}, V_{1} R W_{1}$ and $V_{2} R W_{2}$, i.e., $\operatorname{ker}_{D}\left(.\left(V_{1} R W_{1}\right)\right)=0$ and $\operatorname{ker}_{D}\left(.\left(V_{2} R W_{2}\right)\right)=0$. Thus, the commutative split exact diagram (26) provides one of the following two results:

1. If $f=\mathrm{id}_{M}$, then we have the short exact sequence

$$
0 \longrightarrow D^{1 \times l} \xrightarrow{. V_{1} R W_{1}} D^{1 \times m} \longrightarrow 0
$$

which yields $m=l$ and $V_{1} R W_{1} \in \mathrm{GL}_{m}(D)$.
2. If $f=0_{M}$, then we have the short exact sequence

$$
0 \longrightarrow D^{1 \times(q-l)} \xrightarrow{. V_{2} R W_{2}} D^{1 \times(p-m)} \longrightarrow 0,
$$

which yields $p-m=q-l$ and $V_{2} R W_{2} \in \mathrm{GL}_{p-m}(D)$.
We thus obtain the following corollary of Theorem 5.
Corollary 2. Let $R \in D^{q \times p}$ be a full row rank matrix.

1. Let $\Delta \in D^{p \times q}$ satisfy $\Delta R \Delta=-\Delta$ and let us note $\bar{P}:=I_{p}+\Delta R$ and $\bar{Q}:=I_{q}+R \Delta$. If the projective left $D$-modules $\operatorname{ker}_{D}(. \bar{P}), \operatorname{im}_{D}(. \bar{P}), \operatorname{ker}_{D}(. \bar{Q})$ and $\operatorname{im}_{D}(. \bar{Q})$ are free of rank respectively $m, p-m, l$ and $q-l$, with $1 \leq m \leq p$ and $1 \leq l \leq q$, then we have $m=l$ and there exist $V \in \mathrm{GL}_{q}(D), W \in \mathrm{GL}_{p}(D)$ and $\overline{\bar{R}}_{2} \in \bar{D}^{(q-l) \times(p-l)}$ such that:

$$
V R W=\left(\begin{array}{cc}
I_{l} & 0 \\
0 & \bar{R}_{2}
\end{array}\right)
$$

2. Let $\Delta \in D^{p \times q}$ satisfy $\Delta R \Delta=\Delta$ and let us note $\bar{P}:=\Delta R$ and $\bar{Q}:=R \Delta$. If the projective left $D$-modules $\operatorname{ker}_{D}(. \bar{P}), \operatorname{im}_{D}(. \bar{P}), \operatorname{ker}_{D}(. \bar{Q})$ and $\operatorname{im}_{D}(. \bar{Q})$ are free of rank respectively $m, p-m$, $l$ and $q-l$, with $1 \leq m \leq p$ and $1 \leq l \leq q$, then we have $p-m=q-l$ and there exist $V \in \operatorname{GL}_{q}(D)$, $W \in \mathrm{GL}_{p}(D)$ and $\overline{\bar{R}}_{1} \in D^{l \times m}$ such that:

$$
V R W=\left(\begin{array}{cc}
\bar{R}_{1} & 0 \\
0 & I_{q-l}
\end{array}\right)
$$

Theorem 2 shows that Corollary 2 holds for the different rings $D$ of functional operators interesting for mathematical systems theory and for modules satisfying the possible rank conditions of Theorem 2,

In order to refine Corollary 2, let us now study the links between the left $D$-modules defined by the left kernels and the left images of the matrices $\Delta, \bar{P}$ and $\bar{Q}$.

Proposition 4. Let $\Delta \in D^{p \times q}$ satisfy $\Delta R \Delta=-\Delta$ and let us note $\bar{P}:=I_{p}+\Delta R$ and $\bar{Q}:=I_{q}+R \Delta$. Then, we have:

$$
\left\{\begin{array}{l}
\operatorname{im}_{D}(. \bar{P})=\operatorname{ker}_{D}(. \Delta) \\
\operatorname{ker}_{D}(\cdot \bar{Q})=\operatorname{im}_{D}(. \Delta) \\
\operatorname{ker}_{D}(. \bar{P})=\operatorname{im}_{D}(.(\Delta R)) \cong \operatorname{ker}_{D}(. \bar{Q})=\operatorname{im}_{D}(. \Delta) \\
\operatorname{im}_{D}(. \bar{Q})=\operatorname{ker}_{D}(.(R \Delta)) \cong \operatorname{coker}_{D}(. \Delta)
\end{array}\right.
$$

Hence, $\operatorname{ker}_{D}(. \bar{P})\left(\right.$ resp., $\left.\operatorname{im}_{D}(. \bar{P}), \operatorname{ker}_{D}(. \bar{Q}), \operatorname{im}_{D}(. \bar{Q})\right)$ is a free left $D$-module if and only if so is $\operatorname{im}_{D}(. \Delta)$ $\left(r e s p ., \operatorname{ker}_{D}(. \Delta), \operatorname{im}_{D}(. \Delta), \operatorname{coker}_{D}(. \Delta)\right)$.

If $\operatorname{ker}_{D}(. \Delta)$ is a free left $D$-module of rank $p-l$, i.e., if there exists a full row rank matrix $U_{2} \in D^{(p-l) \times p}$ such that $\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{2}\right)$, then we have $\operatorname{im}_{D}(. \bar{P})=\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{2}\right)$. In particular, there exists a unique matrix $Z \in D^{p \times(p-l)}$ such that:

$$
\begin{equation*}
\bar{P}=Z U_{2} . \tag{34}
\end{equation*}
$$

If $\operatorname{im}_{D}(. \Delta)$ is a free left $D$-module of rank l, i.e., if there exists a full row rank matrix $V_{1} \in D^{l \times q}$ such that $\operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}\left(. V_{1}\right)$, then there exists a unique matrix $Y \in D^{p \times l}$ such that

$$
\begin{equation*}
\Delta=Y V_{1}, \tag{35}
\end{equation*}
$$

and $V_{1} R \in D^{l \times p}$ defines a basis of $\operatorname{ker}_{D}(. \bar{P})$, i.e., $\operatorname{ker}_{D}(. \bar{P})=\operatorname{im}_{D}\left(.\left(V_{1} R\right)\right)$.
If $\operatorname{coker}_{D}(. \Delta)$ is a free left $D$-module of rank $q-l$ and $\Phi \in D^{(q-l) \times q}$ is a full row rank matrix such that $\left\{\gamma\left(\Phi_{i \bullet}\right)\right\}_{i=1, \ldots, q-l}$ is a basis of $\operatorname{coker}_{D}(. \Delta)$, then $\operatorname{im}_{D}(. \bar{Q})=\operatorname{im}_{D}(.(\Phi \bar{Q}))$, i.e., $\Phi \bar{Q} \in D^{(q-l) \times q}$ defines a basis of $\operatorname{im}_{D}(. \bar{Q})$. Finally, there exists $\Psi \in D^{q \times(q-l)}$ such that

$$
\begin{equation*}
\bar{Q}=\Psi \Phi \bar{Q}, \tag{36}
\end{equation*}
$$

and $\Psi$ can be chosen to be an injective parametrization of $\operatorname{coker}_{D}(. \Delta)$, namely:

$$
\operatorname{ker}_{D}(. \Psi)=\operatorname{im}_{D}(. \Delta), \quad \Phi \Psi=I_{q-l} .
$$

Proof. By Remark 5, we have $\bar{P}=j \circ \beta$ and $. \bar{Q}=u \circ \gamma$. Thus, we get $\operatorname{ker}_{D}(\bar{Q})=\operatorname{ker}(u \circ \gamma)=$ $\operatorname{ker} \gamma=\operatorname{im} i=\operatorname{im}_{D}(. \Delta)$ since $u$ is injective and $i$ is the canonical inclusion. We also have $\operatorname{ker}_{D}(. \bar{P})=$ $\operatorname{ker}(j \circ \beta)=\operatorname{ker} \beta=\operatorname{im} \alpha=\operatorname{im}_{D}(.(\Delta R))$ since $j$ is injective. Using the fact that $\alpha$ is injective, we have $\operatorname{im} \alpha \cong \operatorname{im}_{D}(. \Delta)=\operatorname{ker}_{D}(. \bar{Q})$, which shows that $\operatorname{ker}_{D}(. \bar{P}) \cong \operatorname{ker}_{D}(. \bar{Q})$, where the isomorphism $\phi: \operatorname{ker}_{D}(. \bar{Q}) \longrightarrow \operatorname{ker}_{D}(\bar{P})$ is defined by $\phi(\theta)=-\theta R$ and $\phi^{-1}: \operatorname{ker}_{D}(. \bar{P}) \longrightarrow \operatorname{ker}_{D}(. \bar{Q})$ is defined by $\phi^{-1}(\lambda)=\lambda \Delta$. Moreover, we have $\operatorname{im}_{D}(. \bar{P})=\operatorname{im}(j \circ \beta)=\operatorname{im} j=\operatorname{ker}_{D}(. \Delta)$ since $\beta$ is surjective and $j$ is the canonical inclusion. We also have $\operatorname{im}_{D}(. \bar{Q})=\operatorname{im}(u \circ \gamma)=\operatorname{im} u=\operatorname{ker} v=\operatorname{ker}_{D}(.(R \Delta))$ since $\gamma$ is surjective. Using the fact that $u$ is injective, we get $\operatorname{im} u \cong \operatorname{coker}_{D}(. \Delta)$, and thus we obtain $\operatorname{im}_{D}(. \bar{Q}) \cong \operatorname{coker}_{D}(. \Delta)$, where the isomorphism $u: \operatorname{coker}_{D}(. \Delta) \longrightarrow \operatorname{im}_{D}(. \bar{Q})$ is defined by $u(\gamma(\mu))=\mu \bar{Q}$ for all $\mu \in D^{1 \times q}$ (which is well-defined since $\gamma(\mu)=\gamma\left(\mu^{\prime}\right)$ yields $\mu=\mu^{\prime}+\lambda \Delta$ for a certain $\lambda \in D^{1 \times p}$ and thus $\mu \bar{Q}=\mu^{\prime} \bar{Q}+\lambda \Delta \bar{Q}=\mu \bar{Q}$ since $\left.\Delta \bar{Q}=0\right)$ and $u^{-1}: \operatorname{im}_{D}(. \bar{Q}) \longrightarrow \operatorname{coker}_{D}(. \Delta)$ is defined by $u^{-1}(\mu \bar{Q})=\gamma(\mu)$ for all $\mu \in D^{1 \times q}$.

The second point is just a straightforward consequence of the above results.
If $\operatorname{ker}_{D}(. \Delta)$ is a free left $D$-module of rank $p-l$, i.e., if there exists a full row rank matrix $U_{2} \in D^{(p-l) \times p}$ such that $\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{2}\right)$, then we have $\operatorname{im}_{D}(. \bar{P})=\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{2}\right)$, which shows that there exists a matrix $Z \in D^{p \times(p-l)}$ such that (34). The matrix $Z$ is unique since $U_{2}$ has full row rank.

If $\operatorname{im}_{D}(. \Delta)$ is a free left $D$-module of rank $l$, i.e., if there exists a full row rank matrix $V_{1} \in D^{l \times q}$ such that $\operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}\left(. V_{1}\right)$, then there exists a matrix $Y \in D^{p \times l}$ such that 355 . The matrix $Y$ is unique since $V_{1}$ has full row rank. Moreover, using $\phi$, we obtain that $V_{1} R \in D^{l \times p}$ is a basis of $\operatorname{ker}_{D}(. \bar{P})$.

If $\operatorname{coker}_{D}(. \Delta)$ is a free left $D$-module of rank $q-l$, then there exist $\Psi \in D^{q \times(q-l)}$ and $\Phi \in D^{(q-l) \times q}$ such that $\operatorname{ker}_{D}(. \Psi)=\operatorname{im}_{D}(. \Delta)$ and $\Phi \Psi=I_{q-l}$ (see Example 5), i.e., such that we have the following commutative exact sequence

where the isomorphism $\iota \in \operatorname{hom}_{D}\left(\operatorname{coker}_{D}(. \Delta), D^{1 \times(q-l)}\right)$ is defined by $\iota(\gamma(\mu))=\mu \Psi$ for all $\mu \in D^{1 \times q}$ and $\iota^{-1}(\theta)=\gamma(\theta \Phi)$ for all $\theta \in D^{1 \times(q-l)}$. The isomorphism $u \circ \iota^{-1}: D^{1 \times(q-l)} \longrightarrow \operatorname{im}_{D}(. \bar{Q})$ is then defined by $\left(u \circ \iota^{-1}\right)(\theta)=\theta(\Phi \bar{Q})$, which yields $\operatorname{im}_{D}(. \bar{Q})=\operatorname{im}_{D}(.(\Phi \bar{Q}))$, i.e., $\Phi \bar{Q}$ defines a basis of $\operatorname{im}_{D}(. \bar{Q})$. Finally, using $\Phi \Psi=I_{q-l}$ (see 37$)$, we have $\left(I_{q}-\Psi \Phi\right) \Psi=0$, which yields $\operatorname{im}_{D}\left(.\left(I_{q}-\Psi \Phi\right)\right) \subseteq \operatorname{ker}_{D}(. \Psi)=$ $\operatorname{im}_{D}(. \Delta)$, and thus there exists $\Omega \in D^{q \times p}$ such that $I_{q}-\Psi \Phi=\Omega \Delta$, i.e., $\Psi \Phi+\Omega \Delta=I_{q}$. Finally, combining this identity with the fact that $\Delta \bar{Q}=\Delta+\Delta R \Delta=0$, we get $\bar{Q}=(\Psi \Phi+\Omega \Delta) \bar{Q}=\Psi \Phi \bar{Q}$.

Similarly, we have the following results.
Proposition 5. Let $\Delta \in D^{p \times q}$ satisfy $\Delta R \Delta=\Delta$ and let us note $\bar{P}:=\Delta R$ and $\bar{Q}:=R \Delta$. Then, we have:

$$
\left\{\begin{array}{l}
\operatorname{ker}_{D}(. \bar{P})=\operatorname{ker}_{D}(. \Delta) \\
\operatorname{im}_{D}(\cdot \bar{Q})=\operatorname{im}_{D}(. \Delta) \\
\operatorname{im}_{D}(\cdot \bar{P})=\operatorname{im}_{D}(.(\Delta R)) \cong \operatorname{im}_{D}(\cdot \bar{Q})=\operatorname{im}_{D}(. \Delta) \\
\operatorname{ker}_{D}(. \bar{Q})=\operatorname{ker}_{D}(.(R \Delta)) \cong \operatorname{coker}_{D}(. \Delta)
\end{array}\right.
$$

Hence, $\operatorname{ker}_{D}(. \bar{P})\left(\right.$ resp., $\left.\operatorname{im}_{D}(. \bar{P}), \operatorname{ker}_{D}(. \bar{Q}), \operatorname{im}_{D}(. \bar{Q})\right)$ is a free left $D$-module if and only if so is $\operatorname{ker}_{D}(. \Delta)$ (resp., $\operatorname{im}_{D}(. \Delta), \operatorname{coker}_{D}(. \Delta), \operatorname{im}_{D}(. \Delta)$ ).

If $\operatorname{ker}_{D}(. \Delta)$ is a free left $D$-module of rank $m=p-q+l$, i.e., if there exists a full row rank matrix $U_{1} \in D^{m \times p}$ such that $\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{1}\right)$, there exists exists a unique matrix $Z \in D^{p \times m}$ such that:

$$
I_{p}-\bar{P}=Z U_{1}
$$

If $\operatorname{im}_{D}(. \Delta)$ is a free left $D$-module of rank $q-l$, i.e., if there exists a full row rank matrix $V_{2} \in D^{(q-l) \times q}$ such that $\operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}\left(. V_{2}\right)$, then there exists a unique matrix $Y \in D$ such that

$$
\Delta=Y V_{2}
$$

and $V_{2} R \in D^{(q-l) \times p}$ defines a basis of $\operatorname{im}_{D}(. \bar{P})$, i.e., $\operatorname{im}_{D}(. \bar{P})=\operatorname{im}_{D}\left(.\left(V_{2} R\right)\right)$.
If $\operatorname{coker}_{D}(. \Delta)$ is a free left $D$-module of rank $l$ and $\Phi \in D^{l \times q}$ is a full row rank matrix such that $\left\{\gamma\left(\Phi_{i \bullet}\right)\right\}_{i=1, \ldots, l}$ is a basis of $\operatorname{coker}_{D}(. \Delta)$, then $\operatorname{ker}_{D}(. \bar{Q})=\operatorname{im}_{D}\left(.\left(\Phi\left(I_{q}-\bar{Q}\right)\right)\right)$, i.e., $\Phi\left(I_{q}-\bar{Q}\right)$ defines a basis of $\operatorname{ker}_{D}(. \bar{Q})$. Finally, there exists $\Psi \in D^{q \times l}$ such that

$$
I_{q}-\bar{Q}=\Psi \Phi\left(I_{q}-\bar{Q}\right)
$$

and $\Psi$ can be chosen to be an injective parametrization of $\operatorname{coker}_{D}(. \Delta)$, namely:

$$
\operatorname{ker}_{D}(. \Psi)=\operatorname{im}_{D}(. \Delta), \quad \Phi \Psi=I_{l}
$$

Proof. By Remark 6, we have $\cdot \bar{P}=\alpha \circ . \Delta$ and $. \bar{Q}=i \circ v$. Thus, we get $\operatorname{ker}_{D}(. \bar{P})=\operatorname{ker}(\alpha \circ . \Delta)=\operatorname{ker}_{D}(. \Delta)$ since $\alpha$ is injective and $v$ is surjective. Moreover, we have $\operatorname{im}_{D}(. \bar{Q})=\operatorname{im}(i \circ v)=\operatorname{im} v=\operatorname{im}_{D}(. \Delta)$ since $i$ is an inclusion. We also have $\operatorname{im}_{D}(. \bar{P})=\operatorname{im}(\alpha \circ . \Delta)=\operatorname{im} \alpha=\operatorname{im}_{D}(.(\Delta R))$ since.$\Delta$ is surjective. Using the fact that $\alpha$ is injective, we get $\operatorname{im} \alpha \cong \operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}(. \bar{Q})$, which shows that $\operatorname{im}_{D}(. \bar{P}) \cong$ $\operatorname{im}_{D}(. \bar{Q})$, where the isomorphism $\alpha: \operatorname{im}_{D}(. \bar{Q}) \longrightarrow \operatorname{im}_{D}(. \bar{P})$ is defined by $\alpha(\mu R \Delta)=(\mu R \Delta) R=(\mu R) \bar{P}$ and $\alpha^{-1}: \operatorname{im}_{D}(\bar{P}) \longrightarrow \operatorname{im}_{D}(. \bar{Q})$ is defined by $\alpha^{-1}(\lambda \Delta R)=(\lambda \Delta R) \Delta=(\lambda \Delta) \bar{Q}$. We also have $\operatorname{ker}_{D}(. \bar{Q})=\operatorname{ker}(i \circ v)=\operatorname{ker} v=\operatorname{ker}_{D}(.(R \Delta))$. Using $\operatorname{ker} v=\operatorname{im} u \cong \operatorname{coker}_{D}(. \Delta)$ since $u$ is injective, we get that $\operatorname{ker}_{D}(. \bar{Q}) \cong \operatorname{coker}_{D}(. \Delta)$, where the isomorphism $u: \operatorname{coker}_{D}(. \Delta) \longrightarrow \operatorname{ker}_{D}(. \bar{Q})$ is defined by $u(\gamma(\mu))=\mu\left(I_{q}-\bar{Q}\right)$ for all $\mu \in D^{1 \times q}$, and $u^{-1}: \operatorname{ker}_{D}(. \bar{Q}) \longrightarrow \operatorname{coker}_{D}(. \Delta)$ is defined by $u^{-1}(\mu)=\gamma(\mu)$ for all $\mu \in D^{1 \times q}$.

The second point is a straightforward consequence of the above results. Finally, the last points can be proved as in Proposition 4 where the matrix $\bar{P}$ (resp., $\bar{Q}$ ) is replaced by $I_{p}-\bar{P}$ (resp., $I_{q}-\bar{Q}$ ).

Remark 7. One interesting application of the results stated in Propositions 4 and 5 is the following. If we want to compute a presentation matrix of the left $D$-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ of minimal size, using the equality $m=l$ (resp., $p-m=q-l$ ) of 1 (resp., 2) of Corollary 2 , we then have to seek for the solutions $\Delta \in D^{p \times q}$ of the equation $\Delta R \Delta=-\Delta$ (resp., $\Delta R \Delta=\Delta$ ) which are such that the projective left $D$-modules $\operatorname{im}_{D}(. \Delta)$ (resp., $\operatorname{ker}_{D}(. \Delta)$ ) are free with maximal (resp., minimal) rank.

Using Proposition 4 we then obtain the following theorem which is a refinement of 1 of Corollary 2
Theorem 8. Let $R \in D^{q \times p}$ have full row rank. If there exists a matrix $\Delta \in D^{p \times q}$ such that:

1. $\Delta R \Delta=-\Delta$.
2. The projective left $D$-modules $\operatorname{ker}_{D}(. \Delta), \operatorname{im}_{D}(. \Delta)$ and $\operatorname{coker}_{D}(. \Delta)$ are free of rank respectively $p-l$, $l$ and $q-l$.

Then, there exist $V \in \mathrm{GL}_{q}(D), W \in \mathrm{GL}_{p}(D)$ and $\bar{R}_{2} \in D^{(q-l) \times(p-l)}$ such that:

$$
V R W=\left(\begin{array}{cc}
I_{l} & 0  \tag{38}\\
0 & \bar{R}_{2}
\end{array}\right)
$$

The matrices $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T}, V_{1} \in D^{l \times q}, V_{2} \in D^{(q-l) \times q}$, and $W^{-1}=U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T}, U_{1} \in D^{l \times p}$, $U_{2} \in D^{(p-l) \times p}$, can be chosen such as

$$
\left\{\begin{array}{l}
\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{2}\right)  \tag{39}\\
\operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}\left(. V_{1}\right) \\
U_{1}:=V_{1} R \\
V_{2}:=\Phi\left(I_{q}+R \Delta\right)
\end{array}\right.
$$

where the full row rank matrices $U_{2}, V_{1}$ and $\Phi$ define a basis of $\operatorname{ker}_{D}(. \Delta), \operatorname{im}_{D}(. \Delta)$ and $\operatorname{coker}_{D}(. \Delta)$.
Moreover, if $Y \in D^{p \times l}$ and $Z \in D^{p \times(p-l)}$ are the unique matrices defined by (35) and (34), and $\Psi \in D^{p \times(p-l)}$ is an injective parametrization of $\operatorname{coker}_{D}(. \Delta)$, i.e., we have $\operatorname{ker}_{D}(. \Psi)=\operatorname{im}_{D}(. \Delta)$ and $\Phi \Psi=I_{p-l}\left(\right.$ see (37)), then the matrices $X:=V^{-1}=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right), X_{1} \in D^{q \times l}, X_{2} \in D^{q \times(q-l)}$, and $W:=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right), W_{1} \in D^{p \times l}$ and $W_{2} \in D^{p \times(p-l)}$, are defined by:

$$
\left\{\begin{array}{l}
X_{1}:=-R Y  \tag{40}\\
X_{2}:=\Psi \\
W_{1}:=-Y \\
W_{2}:=Z
\end{array}\right.
$$

Finally, we have $\bar{R}_{2}=\Phi\left(I_{q}+R \Delta\right) R Z=\Phi R Z$.
Proof. (38) is a direct consequence of 1 of Corollary 2 and of Proposition 4 .
Now, using 39), let us consider the matrices $U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T}$ and $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T}$. If we note $\bar{P}:=I_{p}+\Delta R$ and $Q:=I_{q}+R \Delta$, then using the identities $\bar{Q} R=R \bar{P}$ and $\bar{P}=Z U_{2}$ (see Proposition 44, we obtain:
$V R=\binom{V_{1}}{\Phi \bar{Q}} R=\binom{V_{1} R}{\Phi \bar{Q} R}=\binom{V_{1} R}{\Phi R Z U_{2}}=\left(\begin{array}{cc}I_{l} & 0 \\ 0 & \Phi R Z\end{array}\right)\binom{V_{1} R}{U_{2}}=\left(\begin{array}{cc}I_{l} & 0 \\ 0 & \Phi R Z\end{array}\right) U$.
By Theorem 5, we have $U \in \operatorname{GL}_{p}(D)$ and $V \in \mathrm{GL}_{q}(D)$, which proves the second result.
Finally, let us now compute $V^{-1}$ and $W^{-1}$. Combining the short exact sequence

$$
0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0
$$

with (33) and (32), and using the notations of Remark 5e get the following commutative exact diagram

where $\delta \in \operatorname{hom}_{D}\left(\operatorname{coker}_{D}(. \Delta), \operatorname{ker}_{D}(. \Delta)\right)$ is defined by $\delta(\gamma(\mu))=\beta(-\mu R)=-\mu R \bar{P}$ for all $\mu \in D^{1 \times q}$, since $\beta \in \operatorname{hom}_{D}\left(D^{1 \times p}, \operatorname{ker}_{D}(. \Delta)\right)$ is defined by $\beta(\lambda)=\lambda \bar{P}$. By 35 , we have $\Delta=Y V_{1}$ for a unique $Y \in D^{p \times l}$. Combining these results with (37) and using the notations of the proof of Proposition 4 we get the following exact diagram:


The left $D$-homomorphism $i \circ\left(. V_{1}\right): D^{1 \times l} \longrightarrow D^{1 \times q}$ is defined by $i \circ\left(. V_{1}\right)(\theta)=\theta V_{1}$ for all $\theta \in D^{1 \times l}$ and $\iota \circ \gamma: D^{1 \times q} \longrightarrow D^{1 \times(q-l)}$ is defined by $(\iota \circ \gamma)(\mu)=\mu \Psi$ for all $\mu \in D^{1 \times q}$. Moreover, using $\Delta=Y V_{1}$, we have $v(\mu)=-\mu R \Delta=(-\mu R Y) V_{1}$ for all $\mu \in D^{1 \times q}$, which shows that the left $D$-homomorphism $\rho: D^{1 \times q} \longrightarrow D^{1 \times l}$ defined by $\rho(\mu)=-\mu R Y$ for all $\mu \in D^{1 \times q}$ is such that $v=. V_{1} \circ \rho$. Now the left $D$-homomorphism $u \circ \iota^{-1}: D^{1 \times(q-l)} \longrightarrow D^{1 \times q}$ is defined by $\left(u \circ \iota^{-1}\right)(\xi)=\xi \Phi \bar{Q}$ for all $\xi \in D^{1 \times(q-l)}$. Hence, we obtain the following diagram which commutes in both directions and is formed by horizontal split exact sequences:


Similarly, using Remark 5 $\operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}\left(. V_{1}\right)$ and $\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{2}\right)$, where $V_{1}$ and $U_{2}$ are two
full row rank matrices, we get the following exact diagram:


The left $D$-homomorphism $\alpha \circ . V_{1}: D^{1 \times l} \longrightarrow D^{1 \times p}$ is defined by $\left(\alpha \circ . V_{1}\right)(\theta)=-\theta V_{1} R$ for all $\theta \in D^{1 \times l}$, and the identity $\Delta=Y V_{1}$ implies that the left $D$-homomorphism $. Y: D^{1 \times p} \longrightarrow D^{1 \times l}$ is such that $. \Delta=. V_{1} \circ . Y$. By (34), we have $\bar{P}=Z U_{2}$ for a unique $Z \in D^{p \times(p-l)}$. The left $D$-homomorphism $. Z: D^{1 \times p} \longrightarrow D^{1 \times(p-l)}$ is such that $\beta=. \bar{P}=. U_{2} \circ . Z$. Hence, we obtain the following diagram which commutes in both directions and is formed by horizontal split exact sequences:


Let $\bar{R}_{2}:=\Phi \bar{Q} R Z \in D^{(q-l) \times(p-l)}$. The identities $\bar{Q} R=R \bar{P}, \bar{P}=Z U_{2}$ and $U_{2} Z=I_{p-l}$ yield:

$$
\bar{R}_{2}=\Phi(\bar{Q} R) Z=\Phi(R \bar{P}) Z=\Phi R Z\left(U_{2} Z\right)=\Phi R Z
$$

Then, combining this identity with $\Phi \Psi=I_{q-l}$, we get:

$$
\begin{equation*}
\Psi \bar{R}_{2}=(\Psi \Phi) R Z=R Z \tag{44}
\end{equation*}
$$

Moreover, the identities $\bar{P}=Z U_{2}, R \bar{P}=\bar{Q} R$ and $\bar{Q}^{2}=\bar{Q}$ yield:

$$
\begin{equation*}
\bar{R}_{2} U_{2}=\Phi \bar{Q} R Z U_{2}=\Phi \bar{Q}(R \bar{P})=\Phi \bar{Q}^{2} R=\Phi \bar{Q} R \tag{45}
\end{equation*}
$$

Hence, combining (41), (42), (43), (44) and 45), we obtain the following diagram which commutes in both directions and is formed by horizontal split exact sequences:

where $L:=D^{1 \times(p-l)} /\left(D^{1 \times(q-l)} \bar{R}_{2}\right)$ is the left $D$-module finitely presented by $\bar{R}_{2}$ and the left $D$ isomorphism $\varphi \in \operatorname{hom}_{D}(M, L)$ is defined by $\varphi(\pi(\lambda))=\kappa(\lambda Z)$ for all $\lambda \in D^{1 \times p}$. Now, changing signs in the above diagram, we get the following one

which finally proves the result (see also Theorem 7).
Remark 8. Using matrix computations, let us check again 46).
Using $\Phi \Psi=I_{q-l}$ (see 37), we have $\left(I_{q}-\Psi \Phi\right) \Psi=0$, which yields $\operatorname{im}_{D}\left(.\left(I_{q}-\Psi \Phi\right)\right) \subseteq \operatorname{ker}_{D}(. \Psi)=$ $\operatorname{im}_{D}(. \Delta)$, and thus there exists $\Omega \in D^{q \times p}$ such that $I_{q}-\Psi \Phi=\Omega \Delta$, i.e., $\Psi \Phi+\Omega \Delta=I_{q}$. Now, using $\Delta=Y V_{1}$, we get $I_{q}-\bar{Q}=-R \Delta=-R Y V_{1}$, which combined with 36 yields:

$$
\begin{equation*}
\Psi(\Phi \bar{Q})+(-R Y) V_{1}=I_{q} \tag{47}
\end{equation*}
$$

Now, multiplying (47) by $V_{1}$ and using the fact that $V_{1} \Psi=0$ since $\operatorname{ker}_{D}(. \Psi)=\operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}\left(. V_{1}\right)$, we get $\left(I_{l}+V_{1} R Y\right) V_{1}=0$, which yields $-V_{1} R Y=I_{l}$ since $V_{1}$ has full row rank. In particular, we get that the projector $I_{q}-\bar{Q}$ of $D^{q \times q}$ is such that:

$$
I_{q}-\bar{Q}=(-R Y) V_{1}, \quad V_{1}(-R Y)=I_{l}
$$

Now, using $\Delta \Psi=0$ and $\Phi \Psi=I_{q-l}$, we obtain $\Phi \bar{Q} \Psi=\Phi\left(I_{q}+R \Delta\right) \Psi=\Phi \Psi=I_{q-l}$. Multiplying 47 by $\Phi \bar{Q}$ and using $\Phi \bar{Q} \Psi=I_{q-l}$, we get $\Phi \bar{Q} R Y V_{1}=0$, and thus we obtain $\Phi \bar{Q} R Y=0$ since $V_{1}$ has full row rank, which shows that $\operatorname{im}_{D}(.(\Phi \bar{Q})) \subseteq \operatorname{ker}_{D}(.(R Y))$. Finally, if $\mu \in \operatorname{ker}_{D}(.(R Y))$, using 47), we have $\mu=(\mu \Psi)(\Phi \bar{Q}) \in \operatorname{im}_{D}(.(\Phi \bar{Q}))$, which shows that $\operatorname{ker}_{D}(.(R Y))=\operatorname{im}_{D}(.(\Phi \bar{Q}))$ and finally proves that the first horizontal sequence of (46) is a split short exact sequence.

Now, using $\bar{P}=I_{p}+\Delta R=Z U_{2}$ and $\Delta=Y V_{1}$, we first get the identity:

$$
\begin{equation*}
Z U_{2}+(-Y)\left(V_{1} R\right)=I_{p} \tag{48}
\end{equation*}
$$

Using $\operatorname{im}_{D}(. \bar{P})=\operatorname{im}_{D}\left(. U_{2}\right)$, there exists $Z^{\prime} \in D^{(p-l) \times p}$ such that $U_{2}=Z^{\prime} \bar{P}$. Combining this identity with $\bar{P}=Z U_{2}$, we obtain $\left(I_{p-l}-Z^{\prime} Z\right) U_{2}=0$, which yields $Z^{\prime} Z=I_{p-l}$ since the matrix $U_{2}$ has full row rank. In particular, the left $D$-homomorphim . $Z$ is surjective. Using $\bar{P}=Z U_{2}$ and $\bar{P}^{2}=\bar{P}$, we get $\left(Z U_{2} Z-Z\right) U_{2}=0$, which yields $Z U_{2} Z=Z$ since $U_{2}$ has full row rank. Thus, we obtain $Z\left(I_{p-l}-U_{2} Z\right)=0$, which yields $U_{2} Z=I_{p-l}$ since.$Z$ is surjective. The projector $\bar{P}$ of $D^{p \times p}$ satisfies:

$$
\bar{P}=Z U_{2}, \quad U_{2} Z=I_{p-l} .
$$

Multiplying (48) by $Z$ and using $Z U_{2} Z=Z$, we get $Y V_{1} R Z=0$, and thus $V_{1} R Z=0$ since.$Y$ is surjective. Thus, we have $\operatorname{im}_{D}\left(.\left(-V_{1} R\right)\right) \subseteq \operatorname{ker}_{D}(. Z)$. If $\lambda \in \operatorname{ker}_{D}(. Z)$, then using 48), we obtain $\lambda=$ $(\lambda Y)\left(-V_{1} R\right) \in \operatorname{im}_{D}\left(.\left(-V_{1} R\right)\right)$, which shows that $\operatorname{ker}_{D}(. Z)=\operatorname{im}_{D}\left(.\left(-V_{1} R\right)\right)$ and proves the exactness of the second horizontal sequence of 46). Multiplying (48) by $U_{2}$ and using $U_{2} Z=I_{p-l}$, we get $\left(U_{2} Y\right)\left(-V_{1} R\right)=0$, which yields $U_{2} Y=0$ since $-V_{1} R$ has full row rank due to the identity $-V_{1} R Y=I_{l}$, which shows that $\operatorname{im}_{D}\left(. U_{2}\right) \subseteq \operatorname{ker}_{D}(. Y)$. If $\lambda \in \operatorname{ker}_{D}(. Y)$, then 48) yields $\lambda=(\lambda Z) U_{2} \in \operatorname{im}_{D}\left(. U_{2}\right)$, which shows that $\operatorname{ker}_{D}(. Y)=\operatorname{im}_{D}\left(. U_{2}\right)$ and proves that the second horizontal short exact sequence splits.

Finally, the commutativity of (46) in both directions is proved in 44) and 45.
Similarly, using Proposition 5, we have the following refinement of 2 of Corollary 2.
Theorem 9. Let $R \in D^{q \times p}$ have full row rank. If there exists a matrix $\Delta \in D^{p \times q}$ such that:

## 1. $\Delta R \Delta=\Delta$.

2. The projective left $D$-modules $\operatorname{ker}_{D}(. \Delta), \operatorname{im}_{D}(. \Delta)$ and $\operatorname{coker}_{D}(. \Delta)$ are free of rank respectively $m=$ $p-q+l, q-l$ and $l$.

Then, there exist $V \in \mathrm{GL}_{q}(D), W \in \mathrm{GL}_{p}(D)$ and $\bar{R}_{1} \in D^{l \times m}$ such that:

$$
V R W=\left(\begin{array}{cc}
\bar{R}_{1} & 0 \\
0 & I_{q-l}
\end{array}\right)
$$

The matrices $V:=\left(V_{1}^{T} \quad V_{2}^{T}\right)^{T} \in \mathrm{GL}_{q}(D), V_{1} \in D^{l \times q}, V_{2} \in D^{(q-l) \times q}$, and $W^{-1}=U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T}$, $U_{1} \in D^{m \times p}, U_{2} \in D^{(q-l) \times p}$, can be chosen such as

$$
\left\{\begin{array}{l}
\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{1}\right), \\
\operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}\left(. V_{2}\right), \\
U_{2}:=V_{2} R \\
V_{1}:=\Phi\left(I_{q}-R \Delta\right)
\end{array}\right.
$$

where the full row rank matrices $U_{1}, V_{2}$ and $\Phi$ define a basis of $\operatorname{ker}_{D}(. \Delta), \operatorname{im}_{D}(. \Delta)$ and $\operatorname{coker}_{D}(. \Delta)$.
Moreover, if $Y \in D^{p \times(p-l)}$ and $Z \in D^{p \times m}$ are the unique matrices defined by

$$
\left\{\begin{array}{l}
\Delta=Y V_{2} \\
I_{p}-\bar{P}=Z U_{1}
\end{array}\right.
$$

and $\Psi \in D^{q \times l}$ is an injective parametrization of $\operatorname{coker}_{D}(. \Delta)$, i.e., we have $\operatorname{ker}_{D}(. \Psi)=\operatorname{im}_{D}(. \Delta)$ and $\Phi \Psi=I_{l}$ (see (37)), then the matrices $X:=V^{-1}=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right), X_{1} \in D^{q \times l}, X_{2} \in D^{(q-l) \times q}$, and $W:=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right), W_{1} \in D^{p \times m}$ and $W_{2} \in D^{p \times(p-l)}$, are defined by:

$$
\left\{\begin{array}{l}
X_{1}:=\Psi  \tag{49}\\
X_{2}:=R Y \\
W_{1}:=Z \\
W_{2}:=Y
\end{array}\right.
$$

Finally, we have $\bar{R}_{1}=\Phi\left(I_{q}-R \Delta\right) R Z=\Phi R Z$ and the following diagram which commutes in both directions and is formed by horizontal split exact sequences:


In Section 6.2, we shall prove that the converse of Theorem 8 holds, i.e., if there exist $V \in \mathrm{GL}_{q}(D)$, $W \in \mathrm{GL}_{p}(D)$ and $\bar{R}_{2} \in D^{(q-l) \times(p-l)}$ satisfying 38), then there exists $\Delta \in D^{p \times q}$ satisfying the conditions 1 and 2 of Theorem 8, A similar result holds for Theorem 9 ,

Example 6. Let us consider the wind tunnel model studied in Manitius (1984) described by a linear OD time-delay system defined by the following matrix of functional operators

$$
R:=\left(\begin{array}{cccc}
d+a & k a \delta & 0 & 0 \\
0 & d & -1 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2}
\end{array}\right)
$$

where $d y(t)=\dot{y}(t)$ is the OD operator, $\delta y(t)=y(t-1)$ is the time-delay operator and $\zeta, k, \omega$ and $a$ are constant parameters of the system. If $D=\mathbb{Q}(\zeta, k, \omega, a)[d, \delta]$ is the commutative polynomial ring of OD time-delay operators with coefficients in the field $\mathbb{Q}(\zeta, k, \omega, a)$, using Algorithm 4.1 of Cluzeau and Quadrat (2008), we obtain that the following matrix

$$
\Delta:=\left(\begin{array}{ccc}
0 & -1 & 0  \tag{50}\\
0 & 0 & 0 \\
0 & 1 & 0 \\
\omega^{-2} & 2 \zeta \omega^{-1}-a \omega^{-2} & \omega^{-2}
\end{array}\right) \in D^{4 \times 3}
$$

satisfies the algebraic Riccati equation $\Delta R \Delta=-\Delta$. Then, $\bar{P}:=I_{4}+\Delta R$ and $\bar{Q}:=I_{3}+R \Delta$ defined by

$$
\begin{aligned}
& \bar{P}:=\left(\begin{array}{cccc}
1 & -d & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & d & 0 & 0 \\
\omega^{-2}(d+a) & \omega^{-2}((2 \zeta \omega-a) d+k a \delta)+1 & \omega^{-2}(d+a) & 0
\end{array}\right), \\
& \bar{Q}:=\left(\begin{array}{ccc}
1 & -d-a & 0 \\
0 & 0 & 0 \\
-1 & d+a & 0
\end{array}\right),
\end{aligned}
$$

satisfy $R \bar{P}=\bar{Q} R, \bar{P}^{2}=\bar{P}$ and $\bar{Q}^{2}=\bar{Q}$, i.e., they define $f=\operatorname{id}_{M}$, where $M=D^{1 \times 4} /\left(D^{1 \times 3} R\right)$. Since the entries of $\Delta$ belong to the field $\mathbb{Q}(\zeta, k, \omega, a)$, the $D$-modules $\operatorname{ker}_{D}(. \Delta), \operatorname{im}_{D}(. \Delta)$ and $\operatorname{coker}_{D}(. \Delta)$ are free. Hence, by Theorem 8 , the matrix $R$ is equivalent to a block diagonal matrix with a first identity block. Let us compute the unimodular matrices $V, W, U$ and $X$. We have $\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{2}\right)$, where

$$
U_{2}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

and $\operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}\left(. V_{1}\right)$, where $V_{1}=T_{2} \Delta$ and $T_{2}$ is a left inverse of a minimal parametrization $Q_{2}$ of $\operatorname{coker}_{D}\left(. U_{2}\right) \cong \operatorname{im}_{D}(. \Delta)$ (see Chyzak et al. (2005)), i.e.:

$$
Q_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0 \\
-1 & 0 \\
0 & 1
\end{array}\right), \quad T_{2}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad V_{1}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
\omega^{-2} & \omega^{-2}(2 \zeta \omega-a) & \omega^{-2}
\end{array}\right) .
$$

Computing a minimal parametrization of $\operatorname{coker}_{D}(. \Delta)=\operatorname{coker}_{D}\left(. V_{1}\right)$, we obtain that $\operatorname{ker}_{D}(. \Psi)=\operatorname{im}_{D}(. \Delta)$ and $\Phi \in D^{1 \times 3}$ such that $\Phi \Psi=1$, where:

$$
\Psi=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad \Phi=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)
$$

Then, we obtain:

$$
\begin{aligned}
& U_{1}:=V_{1} R=\left(\begin{array}{cccc}
0 & -d & 1 & 0 \\
\omega^{-2}(d+a) & \omega^{-2}\left((2 \zeta \omega-a) d+k a \delta+\omega^{2}\right) & \omega^{-2}(d+a) & -1
\end{array}\right), \\
& V_{2}:=\Phi \bar{Q}=\left(\begin{array}{lll}
1 & -d-a & 0
\end{array}\right) .
\end{aligned}
$$

Let $Y \in D^{4 \times 2}$ and $Z \in D^{4 \times 2}$ be the unique matrices defined by $\Delta=Y V_{1}$ and $\bar{P}=Z U_{2}$, i.e.,

$$
Y=\left(\begin{array}{cc}
1 & 0 \\
0 & 0 \\
-1 & 0 \\
0 & 1
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & -d \\
0 & 1 \\
0 & d \\
\omega^{-2}(d+a) & \omega^{-2}\left((2 \zeta \omega-a) d+k a \delta+\omega^{2}\right)
\end{array}\right)
$$

and let us define the matrices $X_{2}=\Psi, W_{1}=-Y, W_{2}=Z$ and:

$$
X_{1}:=-R Y=\left(\begin{array}{cc}
-d-a & 0 \\
-1 & 0 \\
d+2 \zeta \omega & \omega^{2}
\end{array}\right)
$$

Then, we have $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T} \in \operatorname{GL}_{3}(D), U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{4}(D), U^{-1}:=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right)$ and $V^{-1}:=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right)$. Finally, we obtain $\bar{R}:=V R U^{-1}=\operatorname{diag}\left(I_{2}, \bar{R}_{2}\right)$, where:

$$
\bar{R}_{2}:=\Phi R Z=\left(d+a \quad-\left(d^{2}+a d-k a \delta\right)\right) .
$$

Similarly, if we consider the following first-order solution of the Riccati equation $\Delta R \Delta=-\Delta$

$$
\Delta=\left(\begin{array}{ccc}
0 & 0 & 0  \tag{51}\\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & \omega^{-2}(d+2 \zeta \omega) & \omega^{-2}
\end{array}\right)
$$

then we obtain

$$
\begin{aligned}
& \bar{P}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & \omega^{-2}\left(d^{2}+2 \zeta \omega d+\omega^{2}\right) & 0 & 0
\end{array}\right), \quad \bar{Q}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& U_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad Q_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right), \quad T_{2}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& V_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & \omega^{-2}(d+2 \zeta \omega) & \omega^{-2}
\end{array}\right), \quad U_{1}=V_{1} R=\left(\begin{array}{cccc}
0 & d & -1 & 0 \\
0 & \omega^{-2}\left(d^{2}+2 \zeta \omega d+\omega^{2}\right) & 0 & -1
\end{array}\right), \\
& \Psi=X_{2}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}, \quad \Phi=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right), \quad V_{2}=\Phi \bar{Q}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right), \\
& X_{1}=-R Y=\left(\begin{array}{cc}
0 & 0 \\
1 & 0 \\
-d-2 \zeta \omega & \omega^{2}
\end{array}\right), \quad W_{1}=-Y=\left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
-1 & 0 \\
0 & -1
\end{array}\right) \text {, } \\
& Z=W_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & d \\
0 & \omega^{-2}\left(d^{2}+2 \zeta \omega d+\omega^{2}\right)
\end{array}\right),
\end{aligned}
$$

which shows that $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{3}(D), W:=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right) \in \mathrm{GL}_{4}(D)$ and $V R W=\operatorname{diag}\left(I_{2}, \bar{R}_{2}\right)$, where $\bar{R}_{2}=\Phi R Z=\left(\begin{array}{ll}d+a & k a \delta\end{array}\right)$.

## 6 Serre's reduction problem as a particular decomposition problem

We now study Serre's reduction of linear functional systems, i.e., the possibility to define an equivalent system by fewer equations and fewer unknowns. This problem can be seen as a particular decomposition problem where one of the two diagonal blocs of the matrix $\bar{R}$ defined by 27 is the identity matrix.

### 6.1 Serre's reduction

Let us first state again the main theorems of Boudellioua and Quadrat 2010) concerning Serre's reduction of linear functional systems.
Theorem 10 (Boudellioua and Quadrat (2010)). Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ be the left $D$-module finitely presented by a full row rank matrix $R \in D^{q \times p}$. For $0 \leq r \leq q-1$, let $\Lambda \in D^{q \times(q-r)}, P=(R-\Lambda) \in$ $D^{q \times(p+q-r)}$ and $E=D^{1 \times(p+q-r)} /\left(D^{1 \times q} P\right)$ be the left $D$-module finitely presented by $P$. Then, the following results are equivalent:

1. The left $D$-module $E$ is stably free of rank $p-r$.
2. The matrix $P$ admits a right inverse, i.e., there exists $S \in D^{(p+q-r) \times q}$ such that $P S=I_{q}$.
3. $\operatorname{ext}_{D}^{1}(E, D):=D^{q} /\left(P D^{(p+q-r)}\right)=0$.
4. $\left\{\tau\left(\Lambda_{\bullet}\right)\right\}_{i=1, \ldots, q-r}$ generates the right $D$-module $\operatorname{ext}_{D}^{1}(M, D):=D^{q} /\left(R D^{p}\right)$, where the right $D$ homomorphism $\tau: D^{q} \longrightarrow D^{q} /\left(R D^{p}\right)$ is the canonical projection onto $\operatorname{ext}_{D}^{1}(M, D)$ and $\Lambda_{\bullet i}$ denotes the $i^{\text {th }}$ column of the matrix $\Lambda$.

The above results depend only on the residue class $\rho(\Lambda)$ of $\Lambda \in D^{q \times(q-r)}$ in the right $D$-module

$$
\begin{equation*}
\operatorname{ext}_{D}^{1}\left(M, D^{1 \times(q-r)}\right):=D^{q \times(q-r)} /\left(R D^{p \times(q-r)}\right), \tag{52}
\end{equation*}
$$

i.e., they depend only on $\left(\tau\left(\Lambda_{\bullet}\right) \ldots \tau\left(\Lambda_{\bullet(q-r)}\right)\right) \in \operatorname{ext}_{D}^{1}(M, D)^{1 \times(q-r)}$.

If the conditions of Theorem 10 are satisfied, then the existence of a Serre's reduction for $M$, i.e., the possibility to define $M$ by fewer than $p$ generators and fewer than $q$ relations, relies on the fact that the stably free left $D$-module $E$ is free. Using Theorem 3, we obtain the following result.

Theorem 11 (Boudellioua and Quadrat (2010)). Let $R \in D^{q \times p}$ be a full row rank matrix, $0 \leq r \leq q-1$ and $\Lambda \in D^{q \times(q-r)}$ such that there exists $Z \in \mathrm{GL}_{p+q-r}(D)$ satisfying

$$
(R-\Lambda) Z=\left(\begin{array}{ll}
I_{q} & 0 \tag{53}
\end{array}\right),
$$

i.e., such that the left $D$-module $E=D^{1 \times(p+q-r)} /\left(D^{1 \times q}(R-\Lambda)\right)$ is free of rank $p-r$. If we note

$$
Z:=\left(\begin{array}{ll}
S_{1} & Q_{1}  \tag{54}\\
S_{2} & Q_{2}
\end{array}\right)
$$

where $S_{1} \in D^{p \times q}, S_{2} \in D^{(q-r) \times q}, Q_{1} \in D^{p \times(p-r)}$ and $Q_{2} \in D^{(q-r) \times(p-r)}$, then we have:

$$
\begin{equation*}
M=D^{1 \times p} /\left(D^{1 \times q} R\right) \cong L:=D^{1 \times(p-r)} /\left(D^{1 \times(q-r)} Q_{2}\right) \tag{55}
\end{equation*}
$$

Conversely, if $M$ is isomorphic to the finitely presented left D-module $L:=D^{1 \times(p-r)} /\left(D^{1 \times(q-r)} Q_{2}\right)$, then there exist $\Lambda \in D^{q \times(q-r)}$ and $Z \in \operatorname{GL}_{p+q-r}(D)$ such that 53) holds, i.e., such that the left $D$-module $E=D^{1 \times(p+q-r)} /\left(D^{1 \times q}(R-\Lambda)\right)$ is free of rank $p-r$.

Corollary 3 (Boudellioua and Quadrat (2010). With the notations of Theorem 11, the isomorphism (55) given in Theorem 11 is defined by

$$
\begin{aligned}
M=D^{1 \times p} /\left(D^{1 \times q} R\right) & \longrightarrow \quad L=D^{1 \times(p-r)} /\left(D^{1 \times(q-r)} Q_{2}\right) \\
\pi(\lambda) & \longmapsto
\end{aligned}
$$

and its inverse $\varphi^{-1}: L \longrightarrow M$ is defined by $\varphi^{-1}(\kappa(\mu))=\pi\left(\mu T_{1}\right)$, where $T_{1}$ is defined by:

$$
Z^{-1}=\left(\begin{array}{cc}
R & -\Lambda  \tag{56}\\
T_{1} & -T_{2}
\end{array}\right) \in \mathrm{GL}_{p+q-r}(D), \quad T_{1} \in D^{(p-r) \times p}, \quad T_{2} \in D^{(p-r) \times(q-r)} .
$$

The above results depend only on the residue class $\rho(\Lambda)$ of $\Lambda \in D^{q \times(q-r)}$ in the right $D$-module $\operatorname{ext}_{D}^{1}\left(M, D^{1 \times(q-r)}\right)$ defined by (52).

The next theorem gives a necessary and sufficient condition for Serre's reduction problem to be equivalent to a decomposition problem where one of the diagonal blocks is equal to an identity matrix. It is a slight reformulation of a result obtained in Boudellioua and Quadrat (2010) which is given in Cluzeau and Quadrat (2013).

Theorem 12 (Cluzeau and Quadrat (2013). If $R \in D^{q \times p}$ has full row rank and $0 \leq r \leq q-1$, then the following assertions are equivalent:

1. There exist $V \in \mathrm{GL}_{q}(D), W \in \mathrm{GL}_{p}(D)$ and $Q_{2} \in D^{(q-r) \times(p-r)}$ such that:

$$
\bar{R}:=V R W=\left(\begin{array}{cc}
I_{r} & 0  \tag{57}\\
0 & Q_{2}
\end{array}\right)
$$

2. There exists a matrix $\Lambda \in D^{q \times(q-r)}$ such that:
(a) A matrix $\Gamma \in D^{(q-r) \times q}$ exists and satisfies $\Gamma \Lambda=I_{q-r}$.
(b) The stably free left $D$-module $\operatorname{ker}_{D}(. \Lambda)$ is free of rank $r$.
(c) The left $D$-module $E=D^{1 \times(p+q-r)} /\left(D^{1 \times q}(R-\Lambda)\right)$ is free of rank $p-r$.

Proof. In Corollaries 4.10 and 4.14 of Boudellioua and Quadrat (2010), it is proved that 1 is equivalent to 2.a, 2.c and to the condition 2.b' defined by the fact that the stably free left $D$-module $\operatorname{ker}_{D}\left(. Q_{1}\right)$ is free of rank $r$, where $Q_{1} \in D^{p \times(p-r)}$ is a matrix defined by 54 and $Z \in \mathrm{GL}_{p+q-r}(D)$ satisfies the condition (53) (which is equivalent to 2.c (see 3 of Theorem 3)). Let us now show that 2.a, 2.b and 2.c are equivalent to 2.a, 2.b' and 2.c. To do that, we show that $\operatorname{ker}_{D}(. \Lambda) \cong \operatorname{ker}_{D}\left(. Q_{1}\right)$. Using $2 . c$ and 3 of Theorem 3. there exists $Z \in \mathrm{GL}_{p+q-r}(D)$ which satisfies (53) so that Theorem 11 and Corollary 3 hold. Using (54), we get the relation $R Q_{1}=\Lambda Q_{2}$ which yields the following commutative exact diagram:


Since $\varphi$ is an isomorphism, the standard snake lemma in homological algebra (see, e.g., Rotman (2009)) then shows that $\operatorname{ker}_{D}(. \Lambda) \cong \operatorname{ker}_{D}\left(. Q_{1}\right)$ (and $\left.\operatorname{coker}_{D}(. \Lambda) \cong \operatorname{coker}_{D}\left(. Q_{1}\right)\right)$, which proves the result.

Remark 9. Let $\Lambda \in D^{q \times(q-r)}$ be such that $\Gamma \Lambda=I_{q-r}$ for a certain $\Gamma \in D^{(q-r) \times q}$. If $D$ is the ring defined in 1 or 2 of Theorem 2 or in 3 and 4 of Theorem 2 and $r \geq 2$, then the stably free left $D$-module $\operatorname{ker}_{D}(. \Lambda)$ of rank $r$ is free.

In Theorem 12, the conditions 2.a and 2.b on $\Lambda$ mean that we are searching for a particular splitting $D^{1 \times q} \cong D^{1 \times r} \oplus D^{1 \times(q-r)}$ of $D^{1 \times q}$, i.e., for a splitting short exact sequence of the form:

$$
\begin{equation*}
0 \longrightarrow D^{1 \times r} \underset{. \Xi}{\stackrel{. \Theta}{\rightleftarrows}} D^{1 \times q} \underset{. \Gamma}{\stackrel{. \Lambda}{\rightleftarrows}} D^{1 \times(q-r)} \quad 0 . \tag{59}
\end{equation*}
$$

In other words, the conditions 2.a and 2.b are equivalent to the existence of $V:=\left(\Theta^{T} \quad \Gamma^{T}\right)^{T} \in \mathrm{GL}_{q}(D)$ with $X:=V^{-1}=\left(\begin{array}{ll}\Xi & \Lambda\end{array}\right) \in \mathrm{GL}_{q}(D)($ see 23$)$. Condition 2.c asserts that we have 55) and thus 58 holds.

Remark 10. We note that the condition 2.c is also equivalent to the fact that the pushout of the two left $D$-homomorphisms . $\Lambda: D^{1 \times q} \longrightarrow D^{1 \times(q-r)}$ and $. R: D^{1 \times q} \longrightarrow D^{1 \times p}$ (see, e.g., Rotman (2009)), i.e., the finitely presented left $D$-module $E=D^{1 \times(p+q-r)} /\left(D^{1 \times q}(R-\Lambda)\right)$ is free of rank $p-r$. A property of the pushout (see, e.g., Rotman (2009)) shows that we have the following commutative exact diagram

where $\delta: D^{1 \times(p+q-r)} \longrightarrow E$ denotes the canonical projection onto $E$ and $i_{1}: D^{1 \times p} \longrightarrow D^{1 \times(p+q-r)}$ and $i_{2}: D^{1 \times(q-r)} \longrightarrow D^{1 \times(p+q-r)}$ are the two canonical injections. Hence, if $E \cong D^{1 \times(p-r)}$, then we can easily show that the above commutative exact diagram becomes (58) (Boudellioua and Quadrat (2010)).

Let us now develop the links between Theorem 12 and Theorem 7 . The exact sequence (59) shows that $\operatorname{ker}_{D}(. \Lambda)=\operatorname{im}_{D}(. \Theta)$ and $\operatorname{coker}_{D}(. \Lambda)=0$ since.$\Lambda$ is a surjective left $D$-homomorphism. Then, (58) implies that $\operatorname{ker}_{D}\left(. Q_{1}\right)=\operatorname{ker}_{D}(. \Lambda) R=\operatorname{im}_{D}(. \Theta) R=\operatorname{im}_{D}(.(\Theta R))$ and $\operatorname{coker}_{D}\left(. Q_{1}\right) \cong \operatorname{coker}_{D}(. \Lambda)=0$. Since both $R$ and $\Theta$ have full row rank so has $U_{1}:=\Theta R \in D^{r \times p}$. Thus, 588 yields the following commutative exact diagram:


Hence, the second horizontal exact sequence of 60) splits (see Proposition 3), i.e.

$$
\begin{equation*}
0 \longrightarrow D^{1 \times r} \underset{. W_{1}}{\stackrel{. U_{1}}{\rightleftarrows}} D^{1 \times p} \stackrel{. Q_{1}}{\underset{U_{2}}{\longleftrightarrow}} D^{1 \times(p-r)} \longrightarrow 0, \tag{61}
\end{equation*}
$$

which yields $D^{1 \times p}=\operatorname{im}_{D}\left(. U_{1}\right) \oplus \operatorname{im}_{D}\left(. U_{2}\right) \cong D^{1 \times r} \oplus D^{1 \times(p-r)}$. Equivalently, using (23), we obtain $U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{p}(D)$ and $W:=U^{-1}=\left(\begin{array}{ll}W_{1} & Q_{1}\end{array}\right) \in \mathrm{GL}_{p}(D)$. We point out that $\Gamma R$ is not necessarily equal to $Q_{2} U_{2}$, and thus we cannot yet conclude that 2 of Theorem 7 does necessarily hold.

From the identity $U W=I_{p}$, we get $U_{1}\left(\begin{array}{ll}W_{1} & Q_{1}\end{array}\right)=\left(\begin{array}{ll}I_{r} & 0\end{array}\right)$ which combined with $U_{1}=\Theta R$ yields

$$
\binom{\Theta}{\Gamma} R\left(\begin{array}{ll}
W_{1} & Q_{1}
\end{array}\right)=\binom{\Theta R}{\Gamma R}\left(\begin{array}{ll}
W_{1} & Q_{1}
\end{array}\right)=\left(\begin{array}{cc}
I_{r} & 0 \\
\Gamma R W_{1} & \Gamma R Q_{1}
\end{array}\right)
$$

and thus we get:

$$
\left(\begin{array}{cc}
I_{r} & 0 \\
-\Gamma R W_{1} & I_{q-r}
\end{array}\right)\binom{\Theta}{\Gamma} R\left(\begin{array}{ll}
W_{1} & Q_{1}
\end{array}\right)=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & \Gamma R Q_{1}
\end{array}\right)
$$

Hence, if we consider $V^{\prime}:=\left(\Theta^{T} \quad\left(\Gamma\left(I_{q}-R W_{1} \Theta\right)\right)^{T}\right)^{T} \in \mathrm{GL}_{q}(D)$, whose inverse is defined by

$$
\left.\begin{array}{rl}
V^{\prime-1} & :=\left(\begin{array}{ll}
\Xi & \Lambda
\end{array}\right)\left(\begin{array}{cc}
I_{r} & 0 \\
\Gamma R W_{1} & I_{q-r}
\end{array}\right)=\left(\begin{array}{ll}
\Xi+\Lambda \Gamma R W_{1} & \Lambda
\end{array}\right) \\
& =\left(\Xi+\left(I_{q}-\Xi \Theta\right) R W_{1}\right. \\
\Lambda
\end{array}\right)=\left(\Xi\left(I_{r}-\Theta R W_{1}\right)+R W_{1} \quad \Lambda\right)=\left(\begin{array}{ll}
R W_{1} & \Lambda
\end{array}\right), ~ \$
$$

since $U_{1} W_{1}=\Theta R W_{1}=I_{r}$, then we get:

$$
V^{\prime} R W=\operatorname{diag}\left(I_{r}, \Gamma R Q_{1}\right)
$$

Finally, pre-multiplying $R Q_{1}=\Lambda Q_{2}$ by $\Gamma$ and using $\Gamma \Lambda=I_{q-r}$, we obtain $Q_{2}=\Gamma R Q_{1}$, which shows that $V^{\prime} R W=\operatorname{diag}\left(I_{r}, Q_{2}\right)$, where $V^{\prime} \in \mathrm{GL}_{q}(D)$ and $W \in \mathrm{GL}_{p}(D)$.

Let us note $\Gamma^{\prime}:=\Gamma\left(I_{q}-R W_{1} \Theta\right)$ and $\Xi^{\prime}:=R W_{1}$. Using the identities $W_{1} U_{1}+Q_{1} U_{2}=I_{p}, U_{1}=\Theta R$ and $U_{1} W_{1}=I_{r}$, we get $\Gamma^{\prime} R=\Gamma\left(I_{q}-R W_{1} \Theta\right) R=\Gamma R\left(I_{p}-W_{1} U_{1}\right)=\left(\Gamma R Q_{1}\right) U_{2}=Q_{2} U_{2}$, which shows that following diagram is formed by horizontal split exact sequences and commutes in both directions:


Note that if $\Gamma R=Q_{2} U_{2}$, then we get $\Gamma R W_{1} \Theta=Q_{2} U_{2} W_{1} \Theta=0$ since $U_{2} W_{1}=0$, which then yields $\Gamma^{\prime}:=\Gamma\left(I_{q}-R W_{1} \Theta\right)=\Gamma$.

In particular, Theorem 7 holds with the following matrices

$$
\left\{\begin{array}{l}
V:=\left(\Theta^{T} \quad\left(\Gamma\left(I_{q}-R W_{1} \Theta\right)\right)^{T}\right)^{T} \in \mathrm{GL}_{q}(D)  \tag{62}\\
X:=V^{-1}=\left(R W_{1} \quad \Lambda\right) \\
U:=\left((\Theta R)^{T} \quad U_{2}^{T}\right)^{T} \in \operatorname{GL}_{p}(D) \\
W:=U^{-1}=\left(\begin{array}{ll}
W_{1} & Q_{1}
\end{array}\right) \\
R^{\prime}=I_{r} \\
R^{\prime \prime}=Q_{2}=\Gamma R Q_{1}
\end{array}\right.
$$

where the matrices $\Theta$ and $\Gamma$ are defined by the split exact sequence 59 and the matrices $W_{1}$ and $U_{2}$ are defined by the split exact sequence 61. We have the following commutative exact diagram:


To compute the matrices defined in (62), we first compute a basis of the free left $D$-module $\operatorname{ker}_{D}(. \Lambda)$ to obtain a full row rank matrix $\Theta \in D^{r \times q}$ such that $\operatorname{ker}_{D}(. \Lambda)=\operatorname{im}_{D}(. \Theta)$. Then, we can define the matrix $U_{1}:=\Theta R$ and compute a right inverse $W_{1} \in D^{p \times r}$ of $U_{1}$. Finally, we can define the matrices $X:=\left(\begin{array}{ll}R W_{1} & \Lambda\end{array}\right)$ and $W:=\left(\begin{array}{ll}W_{1} & Q_{1}\end{array}\right)$ and finally compute $V:=X^{-1}\left(\right.$ and $\left.U=W^{-1}\right)$.

Let us write $\sqrt[62]{ }$ in a different form. The identities $U_{1}=\Theta R, R S_{1}-\Lambda S_{2}=I_{q}$ and $\Theta \Lambda=0$ yield:

$$
U_{1} S_{1}=\Theta R S_{1}=\Theta\left(I_{q}+\Lambda S_{2}\right)=\Theta
$$

Using this identity, $W_{1} U_{1}+Q_{1} U_{2}=I_{p}, R S_{1}-\Lambda S_{2}=I_{q}, Q_{2}=\Gamma R Q_{1}$ and $\Gamma \Lambda=I_{q-r}$, we get:

$$
\begin{aligned}
\Gamma^{\prime}=\Gamma\left(I_{q}-R W_{1} \Theta\right) & =\Gamma\left(I_{q}-R W_{1} U_{1} S_{1}\right)=\Gamma\left(I_{q}-R\left(I_{p}-Q_{1} U_{2}\right) S_{1}\right) \\
& =\Gamma\left(I_{q}-R S_{1}+R Q_{1} U_{2} S_{1}\right)=-\Gamma \Lambda S_{2}+\left(\Gamma R Q_{1}\right) U_{2} S_{1}=-S_{2}+Q_{2} U_{2} S_{1} .
\end{aligned}
$$

Hence, we can rewrite 62 in a form where $\Theta$ is replaced by $U_{1}$ :

$$
\left\{\begin{array}{l}
V:=\left(\left(U_{1} S_{1}\right)^{T} \quad\left(-S_{2}+Q_{2} U_{2} S_{1}\right)^{T}\right)^{T} \in \mathrm{GL}_{q}(D)  \tag{64}\\
X:=V^{-1}=\left(R W_{1} \quad \Lambda\right.
\end{array}\right), ~ 子 \begin{array}{ll}
U:=\left(U_{1} \quad U_{2}^{T}\right)^{T} \in \mathrm{GL}_{p}(D) \\
W:=U^{-1}=\left(\begin{array}{ll}
W_{1} & Q_{1}
\end{array}\right) \\
R^{\prime}=I_{r} \\
R^{\prime \prime}=Q_{2}=\Gamma R Q_{1}
\end{array}
$$

The above expressions are the ones obtained in Boudellioua and Quadrat (2010) in which the condition that $\operatorname{ker}_{D}\left(. Q_{1}\right)$ is a free left $D$-module of rank $r$ (i.e., $\operatorname{ker}_{D}\left(. Q_{1}\right)=\operatorname{im}_{D}\left(. U_{1}\right)$ for a full row rank matrix $U_{1} \in D^{r \times p}$ ) is used instead of 2 .b of Theorem 12 (i.e., $\operatorname{ker}_{D}(. \Lambda)=\operatorname{im}_{D}(. \Theta)$ for a full row rank $\Theta \in D^{r \times q}$ ).

Let check again the result. Using $V X=I_{q}$, where $X=\left(\begin{array}{ll}\Xi^{\prime} & \Lambda\end{array}\right)=\left(\begin{array}{ll}R W_{1} & \Lambda\end{array}\right)$, we get $V\left(R W_{1}\right)=$ $\left(\begin{array}{ll}I_{r}^{T} & 0^{T}\end{array}\right)^{T}$. Using this identity, $R Q_{1}=\Lambda Q_{2}, \Theta \Lambda=0, \Gamma^{\prime}:=\Gamma\left(I_{q}-R W_{1} \Theta\right)$ and $Q_{2}=\Gamma R Q_{1}$, we get:

$$
\begin{aligned}
V R W & =\binom{\Theta}{\Gamma^{\prime}} R\left(\begin{array}{ll}
W_{1} & Q_{1}
\end{array}\right)=\binom{\Theta}{\Gamma^{\prime}}\left(\begin{array}{ll}
R W_{1} & R Q_{1}
\end{array}\right)=\left(\begin{array}{cc}
I_{r} & \Theta R Q_{1} \\
0 & \Gamma^{\prime} R Q_{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
I_{r} & \Theta \Lambda Q_{2} \\
0 & \Gamma R Q_{1}-\Gamma R W_{1} \Theta \Lambda Q_{2}
\end{array}\right)=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & \Gamma R Q_{1}
\end{array}\right)=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & Q_{2}
\end{array}\right) .
\end{aligned}
$$

Finally, the matrices $V$ and $W$ can be obtained as follows. We first compute a basis of the free left $D$-module $\operatorname{ker}_{D}\left(. Q_{1}\right)$ to get a full row rank matrix $U_{1} \in D^{r \times p}$ such that $\operatorname{ker}_{D}\left(. Q_{1}\right)=\operatorname{im}_{D}\left(. U_{1}\right)$. Then, we compute a right inverse $W_{1} \in D^{p \times r}$ of $U_{1}$ and define the matrices $W:=\left(\begin{array}{ll}W_{1} & Q_{1}\end{array}\right)$ and $X:=\left(\begin{array}{ll}R & W_{1}\end{array} \quad \Lambda\right)$ and finally compute $V=X^{-1}$ (and $U=W^{-1}$ ). See Boudellioua and Quadrat (2010).

We summarize the above results in the following corollary.
Corollary 4. We have the following results:

1. If 2 of Theorem 12 holds, then with the notations (54) and 56), the matrices

$$
\left\{\begin{array}{lll}
V=\left(\begin{array}{ll}
V_{1}^{T} & V_{2}^{T}
\end{array}\right)^{T}, & V_{1} \in D^{r \times q}, & V_{2} \in D^{(q-r) \times q},  \tag{65}\\
V^{-1}=\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right), & X_{1} \in D^{q \times r}, & X_{2} \in D^{q \times(q-r)}, \\
W=\left(\begin{array}{ll}
W_{1} & W_{2}
\end{array}\right), & W_{1} \in D^{p \times r}, & W_{2} \in D^{p \times(p-r)}, \\
W^{-1}=\left(\begin{array}{ll}
U_{1}^{T} & U_{2}^{T}
\end{array}\right)^{T}, & U_{1} \in D^{r \times p}, & U_{2} \in D^{(p-r) \times p}
\end{array}\right.
$$

defined in 1 of Theorem 12 can be chosen as follows

$$
\left\{\begin{array} { l } 
{ V _ { 1 } = \Theta , }  \tag{66}\\
{ V _ { 2 } = \Gamma ( I _ { q } - R W _ { 1 } \Theta ) , } \\
{ W _ { 2 } = Q _ { 1 } , }
\end{array} \quad \left\{\begin{array}{l}
X_{1}=R W_{1} \\
X_{2}=\Lambda, \\
U_{1}=\Theta R,
\end{array}\right.\right.
$$

where $\Theta \in D^{r \times q}$ is a full row rank matrix such that $\operatorname{ker}_{D}(. \Lambda)=\operatorname{im}_{D}(. \Theta), W_{1} \in D^{p \times r}$ is a right inverse of $U_{1}=\Theta R$, i.e., $U_{1} W_{1}=I_{r}, U_{2} \in D^{(p-r) \times p}$ satisfies

$$
\begin{equation*}
I_{p}-W_{1} U_{1}=Q_{1} U_{2} \tag{67}
\end{equation*}
$$

and $Q_{2}=\Gamma R Q_{1}$, where $\Gamma \in D^{(q-r) \times q}$ is a left inverse of $\Lambda$, i.e., $\Gamma \Lambda=I_{q-r}$.
Equivalently, the matrices defined in 1 of Theorem 12 can be defined by

$$
\left\{\begin{array} { l } 
{ V _ { 1 } = U _ { 1 } S _ { 1 } , }  \tag{68}\\
{ V _ { 2 } = - S _ { 2 } + Q _ { 2 } U _ { 2 } S _ { 1 } , } \\
{ W _ { 2 } = Q _ { 1 } , }
\end{array} \left\{\begin{array}{l}
X_{1}=R W_{1} \\
X_{2}=\Lambda
\end{array}\right.\right.
$$

where $U_{1} \in D^{r \times p}$ is a full row rank matrix such that $\operatorname{ker}_{D}\left(. Q_{1}\right)=\operatorname{im}_{D}\left(. U_{1}\right), W_{1} \in D^{p \times r}$ is a right inverse of $U_{1}$, i.e., $U_{1} W_{1}=I_{r}, U_{2} \in D^{(p-r) \times p}$ satisfies 67) and $Q_{2}=\Gamma R Q_{1}$, where $\Gamma \in D^{(q-r) \times q}$ is a left inverse of $\Lambda$, i.e., $\Gamma \Lambda=I_{q-r}$.
2. If 1 of Theorem 12 holds, then, with the notations of (65), the matrices of 2 of Theorem 12 can be chosen as follows:

$$
\Lambda=X_{2}, \quad \Gamma=V_{2}, \quad \Theta=V_{1}, \quad Z=\left(\begin{array}{cc}
W_{1} V_{1} & W_{2} \\
-V_{2} & Q_{2}
\end{array}\right), \quad Z^{-1}=\left(\begin{array}{cc}
R & -\Lambda \\
U_{2} & 0
\end{array}\right)
$$

Proof. 1 has been proved above and 2 is proved in Corollary 4.14 of Boudellioua and Quadrat (2010) by using the isomorphism $\operatorname{ker}_{D}(. \Lambda) \cong \operatorname{ker}_{D}\left(. Q_{1}\right)$ given by (58).

Let us give a proof of 2 based on the results obtained above. By Theorem 7, 2 is equivalent to (28) with $R^{\prime}=I_{r}, R^{\prime \prime}=Q_{2}$ and $l=m=r$. Comparing (28) with 63), and considering $\Lambda:=X_{2}$, $\Theta:=V_{1}, \Gamma^{\prime}:=V_{2}, \Xi^{\prime}:=X_{1}$ and $Q_{1}:=W_{2}$, the relations $X_{1} V_{1}+X_{2} V_{2}=I_{q}$ and $X_{1}=R W_{1}$ yield $R\left(W_{1} V_{1}\right)-X_{2}(-\Lambda)=I_{q}$. Using the relations $R W_{2}-X_{2} Q_{2}=0, U_{2} W_{2}=I_{q-r}$ and $U_{2} W_{1}=0$, we get:

$$
\left(\begin{array}{cc}
R & -\Lambda \\
U_{2} & 0
\end{array}\right)\left(\begin{array}{cc}
W_{1} V_{1} & W_{2} \\
-V_{2} & Q_{2}
\end{array}\right)=I_{p+q-r}
$$

The relations $W_{1} U_{1}+W_{2} U_{2}=I_{p}, U_{1}=V_{1} R, V_{2} R=Q_{2} U_{2}, V_{1} X_{2}=0$ and $V_{2} X_{2}=I_{q-r}$ yield

$$
\left(\begin{array}{cc}
W_{1} V_{1} & W_{2} \\
-V_{2} & Q_{2}
\end{array}\right)\left(\begin{array}{cc}
R & -\Lambda \\
U_{2} & 0
\end{array}\right)=I_{p+q-r}
$$

which proves 2.c of Theorem 12 . Finally, $V_{2} X_{2}=I_{q-r}$ yields 2.b of Theorem 12 and the fact that $\operatorname{ker}_{D}\left(. X_{2}\right)=\operatorname{im}_{D}\left(. V_{1}\right) \cong D^{1 \times r}$ since $V_{1}$ has full row rank gives 2.a of Theorem 12 .

Example 7. Let us consider again the wind tunnel model studied in Example 6. Let $\operatorname{ext}_{D}^{1}(M, D):=$ $D^{3} /\left(R D^{4}\right)$ be the $D=\mathbb{Q}(\zeta, k, \omega, a)[d, \delta]$-module defined by 52$)$ with $r=q-1=2$. Computing a Gröbner basis of $\operatorname{ext}_{D}^{1}(M, D)$, we obtain that this $D$-module is a finite-dimensional $\mathbb{Q}(\zeta, k, \omega, a)$-vector space of dimension 1 defined by the basis $\tau(\Lambda)$, where $\Lambda:=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ and $\tau: D^{3} \longrightarrow \operatorname{ext}_{D}^{1}(M, D)$ is the canonical projection. We can check that the matrix $P:=\left(\begin{array}{ll}R & -\Lambda\end{array}\right)$ admits the right inverse $S=\left(\begin{array}{ll}S_{1}^{T} & S_{2}^{T}\end{array}\right)^{T}$, where

$$
S_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & -\omega^{-2}(d+2 \zeta \omega) & -\omega^{-2}
\end{array}\right), \quad S_{2}=\left(\begin{array}{lll}
-1 & 0 & 0
\end{array}\right)
$$

which shows that the $D$-module $E:=\operatorname{coker}_{D}(. P)$ is stably free (see Theorem 10), and thus free of rank 2 by the Quillen-Suslin theorem (see 2 of Theorem 2 or Remark 9 ). Computing a basis of the free $D$-module $E$ (see Fabiańska and Quadrat (2007)), we obtain that the following matrices

$$
\begin{array}{ll}
Q_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \omega^{2} \\
0 & \omega^{2} d \\
0 & d^{2}+2 \zeta \omega d+\omega^{2}
\end{array}\right), & Q_{2}=\left(\begin{array}{ll}
d+a & k a \omega^{2} \delta
\end{array}\right), \\
T_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \omega^{-2} & 0 & 0
\end{array}\right), & T_{2}=\binom{0}{0},
\end{array}
$$

are such that the matrix $Z$ defined by (54) satisfies $Z \in \mathrm{GL}_{5}(D)$ and $P Z=\left(\begin{array}{ll}I_{3} & 0\end{array}\right)$. By Theorem 11, we obtain that $M=D^{1 \times 4} /\left(D^{1 \times 3} R\right) \cong L:=D^{1 \times 2} /\left(D Q_{2}\right)$, i.e., the wind tunnel model can be defined by a single OD time-delay equation in two unknown functions, i.e., $\dot{z}(t)+a z(t)+k a \omega^{2} v(t-1)=0$.

We note that $\Gamma:=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$ is a left inverse of $\Lambda$. Hence, by 2 of Theorem $12, R$ is equivalent to the diagonal matrix $\operatorname{diag}\left(I_{2}, Q_{2}\right)$. Using 1 of Corollary 4 let us compute the matrices $V \in \operatorname{GL}_{3}(D)$ and $W \in \mathrm{GL}_{4}(D)$ such that $V R W=\operatorname{diag}\left(I_{2}, Q_{2}\right)$ as well as $X=V^{-1}$ and $U=W^{-1}$. Computing first a basis of $\operatorname{ker}_{D}(. \Lambda)$, we obtain that $\operatorname{ker}_{D}(. \Lambda)=\operatorname{im}_{D}\left(. V_{1}\right)$, where the full row rank matrix $V_{1}$ is defined by:

$$
V_{1}=\Theta:=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Using (66), we obtain that the following matrices

$$
\begin{array}{ll}
U_{1}:=\Theta R=\left(\begin{array}{ccc}
0 & d & -1 \\
0 & \omega^{2} & d+2 \zeta \omega \\
-\omega^{2}
\end{array}\right), & W_{1}=\left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
-1 & 0 \\
-\omega^{-2}(d+2 \zeta \omega) & -\omega^{-2}
\end{array}\right), \\
U_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \omega^{-2} & 0 & 0
\end{array}\right), & X_{1}=R W_{1}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right), \\
V_{2}=\Gamma\left(I_{3}-R W_{1} \Theta\right)=\left(\begin{array}{ccc}
1 & 0 & 0
\end{array}\right), & X_{2}=\Lambda=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}, \\
W_{2}=Q_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \omega^{2} \\
0 & \omega^{2} d \\
0 & d^{2}+2 \zeta \omega d+\omega^{2}
\end{array}\right), & Q_{2}=\Gamma R Q_{1}=\left(\begin{array}{ll}
d+a & k a \omega^{2} \delta
\end{array}\right)
\end{array}
$$

where $W_{1}$ is a right inverse of $U_{1}$, are such that $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{3}(D), W=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right) \in \mathrm{GL}_{4}(D)$, $X=V^{-1}, U=W^{-1}$ and $V R W=\operatorname{diag}\left(I_{2}, Q_{2}\right)$. Equivalently, these matrices can also be obtained by (68), where the matrix $U_{1} \in D^{2 \times 4}$, which defines a basis of $\operatorname{ker}_{D}\left(. Q_{1}\right)$, can be taken as above.

In the forthcoming Example 8, we shall illustrate Serre's reduction techniques with an interesting class of examples. To do that, we first need to introduce the concept of the Fitting ideals of a finitely presented module over a commutative ring and state a few standard results. For more details, see, e.g., Eisenbud (1995).

Definition 4 (Eisenbud (1995)). Let $D$ be a commutative ring, $R \in D^{q \times p}$ and $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$. Then, the $i^{\text {th }}$ Fitting ideal $\operatorname{Fitt}_{i}(M)$ of $M$ is the ideal of $D$ generated by the $(p-i) \times(p-i)$ minors of $R$, with the conventions that $\operatorname{Fitt}_{i}(M)=0$ if $p-i>q$, i.e., if $i<p-q$, and $\operatorname{Fitt}_{i}(M)=D$ for $i \geq p$.

Theorem 13 (Eisenbud 1995)). Let $D$ be a commutative ring, $R \in D^{q \times p}$ and $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$. The Fitting ideals $\operatorname{Fitt}_{i}(M)$ 's depend only on $M$ and not on the presentation matrix $R$ of $M$.

If the $D$-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ can be generated by $r$ elements with $r \leq p$, i.e., $M$ admits a finite presentation of the form $D^{1 \times s} \xrightarrow{. Q} D^{1 \times r} \xrightarrow{\sigma} M \longrightarrow 0$, then using Theorem 13 and Definition 4 , we obtain that $\operatorname{Fitt}_{r}(M)=D$. Hence, we have the following corollary.

Corollary 5 (Eisenbud (1995)). Let $D$ be a commutative ring, $R \in D^{q \times p}$ and $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$. If $M$ can be generated by $r$ elements, then we have $\operatorname{Fitt}_{r}(M)=D$.

The above corollary will be used in Section 7 . Let us now state two results that will be used below.
Proposition $6($ Eisenbud $\sqrt{1995)})$. Let $D$ be a commutative ring, $R \in D^{q \times p}$ and $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$. Then, $M$ is a projective $D$-module of rank $r$ if and only if $\operatorname{Fitt}_{i}(M)=0$ for $i=0, \ldots, r-1$, and $\operatorname{Fitt}_{r}(M)=D$.

Proposition 7 (Eisenbud (1995)). Let $D$ be a commutative ring, $R \in D^{q \times p}, M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ and $E$ a commutative ring which is a $D$-module. Then, we have $\operatorname{Fitt}_{i}\left(E \otimes_{D} M\right) \cong E \otimes_{D} \operatorname{Fitt}_{i}(M)$ for $i \geq 0$.

Example 8. If $D=k\left[x_{1}, \ldots, x_{n}\right]$ is a commutative polynomial ring over a field $k$, in Lin et al. (2006), it is shown that every matrix $R \in D^{p \times p}$ whose determinant $\operatorname{det}(R)$ is of the form $x_{1}-f\left(x_{2}, \ldots, x_{n}\right)$, where $f \in k\left[x_{2}, \ldots, x_{n}\right]$, admits Serre's reduction. Let us prove this using the above results. We first characterize $\operatorname{Fitt}_{0}(M)$ and $\operatorname{Fitt}(M)$. We clearly have $\operatorname{Fitt}_{0}(M)=(\operatorname{det}(R))$ and

$$
1=\frac{\partial \operatorname{det}(R)}{\partial x_{1}}=\sum_{i=1}^{p} \operatorname{det}\left(R_{\bullet} \ldots \frac{\partial R_{\bullet} i}{\partial x_{1}} \ldots R_{\bullet p}\right),
$$

where $R_{\bullet i}$ denotes the $i^{\text {th }}$ column of $R$. If we develop each determinant in the last above sum with respect to the column which is differentiated, then we get that the corresponding determinant is a polynomial combination of $(p-1) \times(p-1)$ minors of $R$, i.e., is an element of $\operatorname{Fitt}_{1}(M)$. This proves that $\operatorname{Fitt}_{1}(M)=D$.

Now, if $E:=D / \operatorname{Fitt}_{0}(M) \cong A:=k\left[x_{2}, \ldots, x_{n}\right]$, then applying the covariant right exact functor $E \otimes_{D} \cdot$ (see, e.g., Rotman (2009) to the finite presentation of the $D$-module $N:=D^{p} /\left(R D^{p}\right)$, i.e., to the following short exact sequence of $D$-modules

$$
0<N \leftarrow^{\kappa} D^{p} \leftarrow_{R .}^{R .} D^{p} \longleftarrow 0,
$$

we get the following exact sequence of $E$-modules

$$
\begin{equation*}
0 \longleftarrow E \otimes_{D} N \leftharpoonup E^{p} \longleftarrow \bar{R} . \tag{69}
\end{equation*}
$$

where $\bar{R}:=R\left(f\left(x_{2}, \ldots, x_{n}\right), x_{2}, \ldots, x_{n}\right)$ and $\operatorname{tor}_{1}^{D}(N, E) \cong \operatorname{ker}_{E}(\bar{R}$. $)$. For more details, see, e.g., Rotman (2009). Similarly as before with $R^{T}$ instead of $R$, we get $\operatorname{Fitt}_{0}\left(E \otimes_{D} N\right)=0$ and $\operatorname{Fitt}_{1}\left(E \otimes_{D} N\right)=E$, which shows that $E \otimes_{D} N$ is a projective $E$-module by Proposition 6, and thus a free $E$-module of rank 1 by the Quillen-Suslin theorem (see 2 of Theorem 22). Thus, the above long exact sequence splits by Proposition 3, which shows that $\operatorname{im}_{E}\left(\bar{R}\right.$.) (resp., $\left.\operatorname{ker}_{E}(\bar{R}).\right)$ is a stably free, i.e., a free $E$-module of rank $p-1$ (resp., 1 ) by the Quillen-Suslin theorem. Computing a basis of $\operatorname{ker}_{E}\left(\bar{R}\right.$.), we get $\bar{R}_{2} \in E^{p}$ such that $\operatorname{ker}_{E}(\bar{R})=.\bar{R}_{2} E$ and $\bar{S}_{2} \bar{R}_{2}=1$ for a certain $\bar{S}_{2} \in E^{1 \times p}$. See Fabiańska and Quadrat (2007) for a way to compute these two matrices based only on the fact that $E \otimes_{D} N$ is free of rank 1 over a commutative ring $E$. Now, computing a basis of the free $E$-module $\operatorname{coker}_{E}\left(\bar{R}_{2}.\right) \cong \operatorname{im}_{E}(\bar{R}$.) of rank $p-1$, we obtain two matrices $\bar{Q}_{2} \in E^{(p-1) \times p}$ and $\bar{T}_{2} \in E^{p \times(p-1)}$ such that

$$
\left(\begin{array}{ll}
\bar{T}_{2} & \bar{R}_{2}
\end{array}\right)\binom{\bar{Q}_{2}}{\bar{S}_{2}}=I_{p}, \quad\binom{\bar{Q}_{2}}{\bar{S}_{2}}\left(\begin{array}{ll}
\bar{T}_{2} & \bar{R}_{2} \tag{70}
\end{array}\right)=I_{p},
$$

i.e., $W:=\left(\bar{T}_{2} \bar{R}_{2}\right) \in \mathrm{GL}_{p}(E)$. For more details, see Fabiańska and Quadrat (2007); Quadrat and Robertz (2007a). Since the entries of the matrices $\bar{T}_{2}$ and $R_{2}$ can be chosen in $A$, we have $W \in \mathrm{GL}_{p}(A)$. Then, the identity $\bar{R} \bar{R}_{2}=0$ yields $R \bar{R}_{2}=\Lambda \operatorname{det}(R)$ for a certain $\Lambda \in D^{p}$, and thus we have:

$$
R W=R\left(\begin{array}{ll}
\bar{T}_{2} & \bar{R}_{2}
\end{array}\right)=\left(\begin{array}{ll}
R \bar{T}_{2} & \Lambda \operatorname{det}(R)
\end{array}\right)=\left(\begin{array}{ll}
R \bar{T}_{2} & \Lambda
\end{array}\right)\left(\begin{array}{cc}
I_{p-1} & 0 \\
0 & \operatorname{det}(R)
\end{array}\right) .
$$

Since $\operatorname{det}(W)$ can be chosen to be 1 , the above identity yields $\operatorname{det}\left(R \bar{T}_{2} \quad \Lambda\right)=1$, i.e., $X:=\left(\begin{array}{ll}R & \left.\bar{T}_{2} \quad \Lambda\right) \in\end{array}\right.$ $\operatorname{GL}_{p}(D)$, and we obtain that $V R W=\operatorname{diag}\left(I_{p-1}, \operatorname{det}(R)\right)$, where $V:=X^{-1} \in \mathrm{GL}_{p}(D)$.

Finally, let us add a few more comments. Since $E \otimes_{D} N$ is a free $E$-module of rank 1 , 69) yields the following split long exact sequence

$$
0 \longleftarrow E \underset{\bar{R}_{0} .}{\stackrel{\bar{S}_{0}}{\rightleftarrows}} E^{p} \underset{\bar{R}_{1} .}{\stackrel{\bar{S}_{1}}{\rightleftarrows}} E^{p} \underset{\bar{R}_{2} .}{\stackrel{\bar{S}_{2} .}{\rightleftarrows}} E \longleftarrow 0,
$$

with the notation $\bar{R}_{1}=\bar{R}$, which can be rewritting as follows:


Now, 70) is equivalent to the following split short exact sequence:

$$
0 \longrightarrow E^{p-1} \underset{\bar{Q}_{2} .}{\stackrel{\bar{T}_{2} .}{\rightleftarrows}} E^{p} \underset{\bar{R}_{2} .}{\stackrel{\bar{S}_{2} .}{\rightleftarrows}} E \ll 0 .
$$

Using the fact that $\operatorname{ker}_{E}\left(\bar{R}_{0}.\right)=\operatorname{im}_{E}\left(\bar{R}_{1}.\right)$, we get $\operatorname{im}_{E}\left(\left(\bar{R}_{1} \bar{T}_{2}\right).\right) \subseteq \operatorname{ker}_{E}\left(\bar{R}_{0}.\right)$. If $\lambda \in \operatorname{ker}_{E}\left(\bar{R}_{0}.\right)$, there exists $\mu \in E^{p}$ such that $\lambda=\bar{R}_{1} \mu$. Now, using $\bar{T}_{2} \bar{Q}_{2}+\bar{R}_{2} \bar{S}_{2}=I_{p}$ and $\operatorname{ker}_{E}\left(\bar{R}_{1}.\right)=\operatorname{im}_{E}\left(\bar{R}_{2}.\right)$, we obtain

$$
\lambda=\left(\bar{R}_{1} \bar{T}_{2}\right)\left(\bar{Q}_{2} \mu\right)+\left(\bar{R}_{1} \bar{R}_{2}\right)\left(\bar{S}_{2} \mu\right)=\left(\bar{R}_{1} \bar{T}_{2}\right)\left(\bar{Q}_{2} \mu\right) \in \operatorname{im}_{E}\left(\left(\bar{R}_{1} \bar{T}_{2}\right) .\right)
$$

which shows that $\operatorname{ker}_{E}\left(\bar{R}_{0}.\right)=\operatorname{im}_{E}\left(\left(\bar{R}_{1} \bar{T}_{2}\right)\right.$.). Let us now compute $\operatorname{ker}_{E}\left(\left(\bar{R}_{1} \bar{T}_{2}\right)\right.$.). If $\nu \in \operatorname{ker}_{E}\left(\left(\bar{R}_{1} \bar{T}_{2}\right)\right.$. $)$, then there exists $\theta \in E$ such that $\bar{T}_{2} \nu=\bar{R}_{2} \theta$, i.e., $\nu=\bar{Q}_{2} \bar{R}_{2} \theta=0$ since $\bar{Q}_{2} \bar{T}_{2}=I_{p-1}$ and $\bar{Q}_{2} \bar{R}_{2}=0$. Hence, the matrix $\bar{R}_{1} \bar{T}_{2}$ has full column rank, and thus it defines a basis of $\operatorname{ker}_{E}\left(\bar{R}_{0}.\right)$, i.e., $\operatorname{ker}_{E}\left(\bar{R}_{0}.\right)=$ $\operatorname{im}_{E}\left(\bar{Q}_{0}.\right)$, with the notation $\bar{Q}_{0}=\bar{R}_{1} \bar{T}_{2}$. In particular, there exists a matrix $\bar{T}_{0} \in E^{(p-1) \times p}$ such that $\bar{T}_{0} \bar{Q}_{0}=I_{p-1}$, i.e., $\bar{T}_{0} \bar{R}_{1} \bar{T}_{2}=I_{p-1}$.

If we note $\bar{Q}_{2}^{\prime}=\bar{T}_{0} \bar{R}_{1}$, then we have $\bar{Q}_{2}^{\prime} \bar{T}_{2}=\bar{T}_{0} \bar{R}_{1} \bar{T}_{2}=I_{p-1}$. If $\bar{R}_{2}^{\prime} \in E^{p}$ is a matrix such that $I_{p}-\bar{T}_{2} \bar{Q}_{2}^{\prime}=\bar{R}_{2}^{\prime} \bar{S}_{2}$ and $\bar{S}_{0}^{\prime} \in E^{p}$ is such that $I_{p}-\bar{Q}_{0} \bar{T}_{0}=\bar{S}_{0}^{\prime} \bar{R}_{0}$, then we obtain the following diagram which is formed by horizontal split short exact sequences and commutes in both directions:


Then, Theorem 7 shows that $\bar{R}_{1}$ is equivalent to $\operatorname{diag}\left(I_{p-1}, 0\right)$, which proves again that $\operatorname{coker}_{E}\left(\bar{R}_{1}.\right) \cong E$. More precisely, if $Y=\left(\begin{array}{ll}\bar{T}_{2} & \bar{R}_{2}^{\prime}\end{array}\right) \in \mathrm{GL}_{p}(E)$ and $Z=\left(\begin{array}{cc}\bar{T}_{0}^{T} & \bar{R}_{0}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{p}(E)$, then we have

$$
Z \bar{R}_{1} Y=\left(\begin{array}{cc}
I_{p-1} & 0 \\
0 & 0
\end{array}\right)
$$

where $Y^{-1}=\left(\begin{array}{cc}\bar{Q}_{2}^{T} & \bar{S}_{2}^{T}\end{array}\right)^{T}$ and $Z^{-1}=\left(\begin{array}{ll}\bar{Q}_{0} & \bar{S}_{0}^{\prime}\end{array}\right)$.

### 6.2 From Serre's reduction problem to the decomposition problem and vice versa

The purpose of this section is to show how to go from Theorem 12 (which deals with Serre's reduction problem) to Theorem 8 or Corollary 2 (which deals with the decomposition problem for the trivial idempotents $\operatorname{id}_{M}$ and $0_{M}$ ) and vice versa.

We have the following first result.
Theorem 14. Let $R \in D^{q \times p}$ be a full row rank matrix and $\Lambda \in D^{q \times(q-r)}$ satisfy the conditions 2 of Theorem 12. With the notations (54), (56) and (66) or (68), we have:

1. $\Delta:=-W_{1} V_{1} \in D^{p \times q}$ satisfies $\Delta R \Delta=-\Delta$.
2. The matrices $\bar{P}:=Q_{1} U_{2}=I_{p}+\Delta R \in D^{p \times p}$ and $\bar{Q}:=X_{2} V_{2}=I_{q}+R \Delta \in D^{q \times q}$ are two idempotents, i.e., $\bar{P}^{2}=\bar{P}$ and $\bar{Q}^{2}=\bar{Q}$, and they satisfy $R \bar{P}=\bar{Q} R$.
3. The left $D$-modules $\operatorname{ker}_{D}(. \bar{P}), \operatorname{im}_{D}(. \bar{P}), \operatorname{ker}_{D}(. \bar{Q})$ and $\operatorname{im}_{D}(. \bar{Q})$ are defined by $\operatorname{ker}_{D}(. \bar{P})=\operatorname{im}_{D}\left(. U_{1}\right)$, $\operatorname{im}_{D}(. \bar{P})=\operatorname{im}_{D}\left(. U_{2}\right), \operatorname{ker}_{D}(. \bar{Q})=\operatorname{im}_{D}\left(. V_{1}\right)$ and $\operatorname{im}_{D}(. \bar{Q})=\operatorname{im}_{D}\left(. V_{2}\right)$ i.e., they are free of rank respectively $r, p-r, r$ and $q-r$.

Hence, the hypotheses of 1 of Corollary 2 are satisfied, i.e., 1 of Corollary 2 holds.
Proof. 1. Using $U_{1}=V_{1} R$ and $U_{1} W_{1}=I_{r}$, we get $\Delta R \Delta=W_{1} V_{1} R W_{1} V_{1}=W_{1} U_{1} W_{1} V_{1}=W_{1} V_{1}=$ $-\Delta$.
2. Since $W_{1} U_{1}+Q_{1} U_{2}=I_{p}$ and $U_{1}=V_{1} R$, we get $\bar{P}:=Q_{1} U_{2}=I_{p}-W_{1} U_{1}=I_{p}-W_{1} V_{1} R$, i.e., $\bar{P}=I_{p}+\Delta R$. Using 66), we have $X_{1} V_{1}+X_{2} V_{2}=I_{q}$, where $X_{1}=R W_{1}$. Thus, we get
$\bar{Q}:=X_{2} V_{2}=I_{q}-X_{1} V_{1}=I_{q}-R W_{1} V_{1}=I_{q}+R \Delta$. Finally, we have $\bar{P}^{2}=\bar{P}, \bar{Q}^{2}=\bar{Q}$ and $R \bar{P}=\bar{Q} R$ since $\Delta R \Delta=-\Delta$.
3. $U W=I_{p}$ yields $\operatorname{ker}_{D}\left(. Q_{1}\right)=\operatorname{im}_{D}\left(. U_{1}\right)$, where $U_{1}=V_{1} R, U_{1} W_{1}=I_{r}$ and $U_{2} Q_{1}=I_{p-r}$. The identity $U_{1} W_{1}=I_{r}$ shows that.$U_{1}$ is injective, i.e., that $U_{1}$ has full row rank. The identity $U_{2} Q_{1}=I_{p-r}$ shows that.$Q_{1}$ is surjective and.$U_{2}$ is injective, i.e., that $U_{2}$ has full row rank. Thus, we obtain

$$
\left\{\begin{array}{l}
\operatorname{ker}_{D}(\cdot \bar{P})=\operatorname{ker}_{D}\left(\cdot\left(Q_{1} U_{2}\right)\right)=\operatorname{ker}_{D}\left(\cdot Q_{1}\right)=\operatorname{im}_{D}\left(. U_{1}\right) \cong D^{1 \times r}, \\
\operatorname{im}_{D}(. \bar{P})=\operatorname{im}_{D}\left(\cdot\left(Q_{1} U_{2}\right)\right)=\operatorname{im}_{D}\left(. U_{2}\right) \cong D^{1 \times(p-r)},
\end{array}\right.
$$

which proves that $\operatorname{ker}_{D}(. \bar{P})$ and $\operatorname{im}_{D}(. \bar{P})$ are free left $D$-modules of rank respectively $r$ and $p-r$.
The identity $V X=I_{q}$ yields $\operatorname{ker}_{D}\left(. X_{2}\right)=\operatorname{im}_{D}\left(. V_{1}\right), V_{1} X_{1}=I_{r}$ and $V_{2} X_{2}=I_{q-r}$. The identity $V_{1} X_{1}=I_{r}$ shows that.$V_{1}$ is injective, i.e., that $V_{1}$ has full row rank. The identity $V_{2} X_{2}=I_{q-r}$ shows that.$X_{2}$ is surjective and.$V_{2}$ is injective, i.e., $V_{2}$ has full row rank. Using $\bar{Q}=X_{2} V_{2}$, we then obtain

$$
\left\{\begin{array}{l}
\operatorname{ker}_{D}(\cdot \bar{Q})=\operatorname{ker}_{D}\left(\cdot\left(X_{2} V_{2}\right)\right)=\operatorname{ker}_{D}\left(. X_{2}\right)=\operatorname{im}_{D}\left(. V_{1}\right) \cong D^{1 \times r}, \\
\operatorname{im}_{D}(\cdot \bar{Q})=\operatorname{im}_{D}\left(.\left(X_{2} V_{2}\right)\right)=\operatorname{im}_{D}\left(. V_{2}\right) \cong D^{1 \times(q-r)},
\end{array}\right.
$$

which proves that $\operatorname{ker}_{D}(. \bar{Q})$ and $\operatorname{im}_{D}(\cdot \bar{Q})$ are free left $D$-modules of rank respectively $r$ and $q-r$.
Example 9. We consider again Example 7. According to 1 of Theorem 14 we can check again that

$$
\Delta:=-W_{1} V_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & \omega^{-2}(d+2 \zeta \omega) & \omega^{-2}
\end{array}\right)
$$

satisfies the equation $\Delta R \Delta=-\Delta$. With the notations of Example 7, we can check that

$$
\begin{aligned}
& \bar{P}:=Q_{1} U_{2}=I_{p}+\Delta R=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & \omega^{-2}\left(d^{2}+2 \zeta \omega d+\omega^{2}\right) & 0 & 0
\end{array}\right), \\
& \bar{Q}:=X_{2} V_{2}=I_{q}+R \Delta=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

are two idempotents, i.e., $\bar{P}^{2}=\bar{P}$ and $\bar{Q}^{2}=\bar{Q}$, satisfying $R \bar{P}=\bar{Q} R$. Finally, we can check that $\operatorname{ker}_{D}(. \bar{P})=\operatorname{im}_{D}\left(. U_{1}\right)$ and $\operatorname{im}_{D}(. \bar{P})=\operatorname{ker}_{D}\left(.\left(I_{4}-\bar{P}\right)\right)=\operatorname{im}_{D}\left(. U_{2}\right), \operatorname{ker}_{D}(. \bar{Q})=\operatorname{im}_{D}\left(. V_{1}\right)$ and $\operatorname{im}_{D}(. \bar{Q})=$ $\operatorname{ker}_{D}\left(.\left(I_{3}-\bar{Q}\right)\right)=\operatorname{im}_{D}\left(. V_{2}\right)$, where the full row rank matrices $U_{1}, U_{2}, V_{1}$ and $V_{2}$ are defined in Example 7 , i.e., $\operatorname{ker}_{D}(. \bar{P})\left(\right.$ resp., $\left.\operatorname{im}_{D}(. \bar{P}), \operatorname{ker}_{D}(. \bar{Q}), \operatorname{im}_{D}(. \bar{Q})\right)$ is a free $D$-module of rank 2 (resp., 2, 2, 1), which shows that the hypotheses of 1 of Corollary 2 are satisfied.

Conversely, we have the following result.
Theorem 15. Let $R \in D^{q \times p}$ be a full row rank matrix, $\Delta \in D^{p \times q}$ a matrix satisfying $\Delta R \Delta=-\Delta$ and which is such that the projective left $D$-modules $\operatorname{ker}_{D}(. \Delta), \operatorname{im}_{D}(. \Delta)$ and $\operatorname{coker}_{D}(. \Delta)$ are free of rank respectively $p-l, l$ and $q-l$. Let the full row rank matrix $U_{2} \in D^{(p-l) \times p}$ (resp., $V_{1} \in D^{l \times q}$ and $\left.\Phi \in D^{(q-l) \times q}\right)$ define a basis of $\operatorname{ker}_{D}(. \Delta)\left(r e s p ., \operatorname{im}_{D}(. \Delta)\right.$ and $\left.\operatorname{coker}_{D}(. \Delta)\right)$, i.e.,

$$
\left\{\begin{array}{l}
\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{2}\right), \\
\operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}\left(. V_{1}\right)
\end{array}\right.
$$

and $\left\{\gamma\left(\Phi_{i \bullet}\right)\right\}_{i=1, \ldots, q-l}$ is a basis of $\operatorname{coker}_{D}(. \Delta)$, where $\gamma: D^{1 \times q} \longrightarrow \operatorname{coker}_{D}(. \Delta)=D^{1 \times q} / \operatorname{im}_{D}(. \Delta)$ is the canonical projection. Then, the following full row rank matrices

$$
U_{1}:=V_{1} R \in D^{l \times p}, \quad V_{2}:=\Phi\left(I_{q}+R \Delta\right) \in D^{(q-l) \times q}
$$

are such that $U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{p}(D)$ and $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{q}(D)$.
Moreover, with the notations (40), we have

$$
\left(\begin{array}{cc}
R & -X_{2}  \tag{71}\\
U_{2} & 0
\end{array}\right)\left(\begin{array}{cc}
W_{1} V_{1} & W_{2} \\
-V_{2} & V_{2} R W_{2}
\end{array}\right)=I_{q+p-l}
$$

which shows that Theorem 12 holds with the matrix $\Lambda:=X_{2} \in D^{q \times(q-l)}$ which admits the left inverse $V_{2} \in D^{(q-l) \times q}$ and $\operatorname{ker}_{D}\left(. X_{2}\right)=\operatorname{im}_{D}\left(. V_{1}\right) \cong D^{1 \times l}$ is a free left $D$-module of rank $l$.

Proof. The fact that $U:=\left(U_{1}^{T} \quad U_{2}^{T}\right)^{T} \in \mathrm{GL}_{p}(D)$ and $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{q}(D)$ is proved in Theorem 8 (see also Remark 8 or Proposition 4.3 of Cluzeau and Quadrat (2008). Theorem 8 yields

$$
V R W=\left(\begin{array}{cc}
I_{l} & 0 \\
0 & V_{2} R W_{2}
\end{array}\right) \quad \Longleftrightarrow \quad R W=X\left(\begin{array}{cc}
I_{l} & 0 \\
0 & V_{2} R W_{2}
\end{array}\right)
$$

which is equivalent to:

$$
\left\{\begin{array}{l}
R W_{1}=X_{1}  \tag{72}\\
R W_{2}=X_{2}\left(V_{2} R W_{2}\right)
\end{array}\right.
$$

Combining $X_{1}=R W_{1}$ with $X_{1} V_{1}+X_{2} V_{2}=I_{q}$, we obtain:

$$
\begin{equation*}
R\left(W_{1} V_{1}\right)-X_{2}\left(-V_{2}\right)=I_{q} . \tag{73}
\end{equation*}
$$

Moreover, the identity $U W=I_{p}$ yields:

$$
\begin{equation*}
U_{2} W_{1}=0, \quad U_{2} W_{2}=I_{p-l} . \tag{74}
\end{equation*}
$$

Combining $\sqrt{73}$, the second identity of $(72$, and $\sqrt[74]{7}$, we obtain 71 . Since $D$ is a noetherian domain, it is stably finite, namely, for any $r \in \mathbb{Z}_{\geq 0}$ and for all $A, B \in D^{r \times r}$ satisfying $A B=I_{r}$, we have $B A=I_{r}$, i.e., $A \in \mathrm{GL}_{r}(D)$ and $B=A^{-1}$ (see, e.g., Lam (1999)). Hence, both square matrices in the left-hand side of 71 belong to $\mathrm{GL}_{q+p-l}(D)$. Let us check again this result by direct computation. Using the identities $V_{1} R W_{2}=0, W_{1} U_{1}+W_{2} U_{2}=I_{p}$ and $V_{1} R W_{1}=I_{l}$, we first get $V_{1} R=V_{1} R\left(W_{1} U_{1}+W_{2} U_{2}\right)=U_{1}$. Combining this identity with $V_{1} X_{2}=0, V_{2} X_{2}=I_{q-l}, W_{1} U_{1}+W_{2} U_{2}=I_{p}$ and $V_{2} R W_{1}=0$, we obtain:

$$
\left(\begin{array}{cc}
W_{1} V_{1} & W_{2} \\
-V_{2} & V_{2} R W_{2}
\end{array}\right)\left(\begin{array}{cc}
R & -X_{2} \\
U_{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
W_{1}\left(V_{1} R\right)+W_{2} U_{2} & -W_{1}\left(V_{1} X_{2}\right) \\
V_{2} R\left(W_{2} U_{2}-I_{p}\right) & V_{2} X_{2}
\end{array}\right)=I_{p+q-l} .
$$

Using $V X=I_{q}$, we get $V_{2} X_{2}=V_{2} \Lambda=I_{q-l}$. Moreover, we have $\operatorname{ker}_{D}\left(. X_{2}\right)=\operatorname{im}_{D}\left(. V_{1}\right) \cong D^{1 \times l}$ since the matrix $V_{1}$ has full row rank. Hence, Theorem 12 holds.

Remark 11. We note that the matrix $\Lambda:=X_{2}$ of Theorem 15 is an injective parametrization of the free left $D$-module $\operatorname{coker}_{D}(. \Delta)$ and the residue classes of the rows of $V_{2}$ defines a basis of $\operatorname{coker}_{D}(. \Delta)$.

Example 10. We consider again Example 6. First considering the matrix $\Delta$ defined by (50), we can
check again that (71) holds, i.e.:

Moreover, we have $\operatorname{ker}_{D}\left(. X_{2}\right)=\operatorname{im}_{D}\left(. V_{1}\right)$, where $V_{1}$ is the full row rank matrix defined in Example 6 , i.e., $\operatorname{ker}_{D}\left(. X_{2}\right)$ is a free $D$-module of rank 2. Finally, $X_{2}$ admits the left inverse $V_{2}$, where $V_{2}$ is defined in Example 6, which shows that Theorem 12 holds with $\Lambda=X_{2}=\left(\begin{array}{lll}1 & 0 & -1\end{array}\right)^{T}$.

Now, if we consider the matrix $\Delta$ defined by (51), we can check again that (71) holds, i.e.:

$$
\begin{gathered}
\left(\begin{array}{ccccc}
d+a & k a \delta & 0 & 0 & -1 \\
0 & d & -1 & 0 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2} & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \\
\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 \\
0 & 0 & 0 & 0 \\
0 & 1 \\
0 & -1 & 0 & 0 \\
d \\
0 & -\omega^{-2}(d+2 \zeta \omega) & -\omega^{-2} & 0 \\
-1 & 0 & d+a & \omega^{-2}\left(d^{2}+2 \zeta \omega d+\omega^{2}\right) \\
-1 & 0 & 0 a \delta
\end{array}\right)=I_{5} .
\end{gathered}
$$

Moreover, we have $\operatorname{ker}_{D}\left(. X_{2}\right)=\operatorname{im}_{D}\left(. V_{1}\right)$, where $V_{1}$ is the full row rank matrix defined at the end of Example 6, i.e., $\operatorname{ker}_{D}\left(. X_{2}\right)$ is a free $D$-module of rank 2. Finally, $X_{2}$ admits the left inverse $V_{2}$, where $V_{2}$ is defined at the end of Example 6, which shows that Theorem 12 holds with $\Lambda=X_{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)^{T}$.

Similarly, we have the following two results.
Theorem 16. Let $R \in D^{q \times p}$ be a full row rank matrix and $\Lambda \in D^{q \times(q-r)}$ satisfy the conditions 2 of Theorem (12. With the notations (54), (56) and (66), we have:

1. $\Delta:=W_{1} V_{1} \in D^{p \times q}$ satisfies $\Delta R \Delta=\Delta$.
2. The matrices $\bar{P}:=W_{1} U_{1}=\Delta R \in D^{p \times p}$ and $\bar{Q}:=X_{1} V_{1}=R \Delta \in D^{q \times q}$ are two idempotents, i.e., $\bar{P}^{2}=\bar{P}$ and $\bar{Q}^{2}=\bar{Q}$, and they satisfy $R \bar{P}=\bar{Q} R$.
3. The left $D$-modules $\operatorname{ker}_{D}(. \bar{P}), \operatorname{im}_{D}(. \bar{P})$, $\operatorname{ker}_{D}(. \bar{Q})$ and $\operatorname{im}_{D}(. \bar{Q})$ are defined by $\operatorname{ker}_{D}(. \bar{P})=\operatorname{im}_{D}\left(. U_{2}\right)$, $\operatorname{im}_{D}(. \bar{P})=\operatorname{im}_{D}\left(. U_{1}\right), \operatorname{ker}_{D}(. \bar{Q})=\operatorname{im}_{D}\left(. V_{2}\right)$ and $\operatorname{im}_{D}(. \bar{Q})=\operatorname{im}_{D}\left(. V_{1}\right)$ i.e., they are free of rank respectively $p-r, r, q-r$ and $r$.

Hence, the hypotheses of 1 of Corollary 2 are satisfied, i.e., 2 of Corollary 2 holds.
Theorem 17. Let $R \in D^{q \times p}$ be a full row rank matrix, $\Delta \in D^{p \times q}$ a matrix satisfying $\Delta R \Delta=\Delta$ and which is such that the projective left $D$-modules $\operatorname{ker}_{D}(. \Delta), \operatorname{im}_{D}(. \Delta)$ and $\operatorname{coker}_{D}(. \Delta)$ are free of rank
respectively $p-q+l, q-l$ and $l$. Let the full row rank matrix $U_{1} \in D^{(p-q+l) \times p}$ (resp., $V_{2} \in D^{(q-l) \times q}$ and $\left.\Phi \in D^{l \times q}\right)$ define a basis of $\operatorname{ker}_{D}(. \Delta)\left(\right.$ resp., $\operatorname{im}_{D}(. \Delta)$ and $\operatorname{coker}_{D}(. \Delta)$ ), i.e.,

$$
\left\{\begin{array}{l}
\operatorname{ker}_{D}(. \Delta)=\operatorname{im}_{D}\left(. U_{1}\right) \\
\operatorname{im}_{D}(. \Delta)=\operatorname{im}_{D}\left(. V_{2}\right)
\end{array}\right.
$$

and $\left\{\gamma\left(\Phi_{i \bullet}\right)\right\}_{i=1, \ldots, l}$ is a basis of $\operatorname{coker}_{D}(. \Delta)$, where $\gamma: D^{1 \times q} \longrightarrow \operatorname{coker}_{D}(. \Delta)=D^{1 \times q} / \operatorname{im}_{D}(. \Delta)$ is the canonical projection. Then, the following full row rank matrices

$$
U_{2}:=V_{2} R \in D^{(q-l) \times p}, \quad V_{1}:=\Phi\left(I_{q}-R \Delta\right) \in D^{l \times q}
$$

are such that $U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T} \in \mathrm{GL}_{p}(D)$ and $V:=\left(V_{1}^{T} \quad V_{2}^{T}\right)^{T} \in \mathrm{GL}_{q}(D)$.
Moreover, with the notations (49), we have

$$
\left(\begin{array}{cc}
R & -X_{1} \\
U_{1} & 0
\end{array}\right)\left(\begin{array}{cc}
W_{2} V_{2} & W_{1} \\
-V_{1} & V_{1} R W_{1}
\end{array}\right)=I_{q+p-l}
$$

which shows that Theorem 12 holds with the matrix $\Lambda:=X_{1} \in D^{q \times l}$ which admits the left inverse $V_{1} \in D^{l \times q}$ and $\operatorname{ker}_{D}\left(. X_{1}\right)=\operatorname{im}_{D}\left(. V_{2}\right) \cong D^{1 \times(q-l)}$ is a free left $D$-module of rank $q-l$.

## 7 Applications to linear PD systems studied in hydrodynamics

In this last section, we illustrate how Serre's reduction techniques can be applied to study the decomposability of standard linear PD systems.

### 7.1 Oseen equations

Let us consider the Oseen equations in $\mathbb{R}^{2}$ defined by

$$
\left\{\begin{array}{l}
d_{t} \vec{u}-\nu \Delta \vec{u}+(\vec{b} \cdot \vec{\nabla}) \vec{u}+\vec{\nabla} p=0  \tag{75}\\
\vec{\nabla} \cdot \vec{u}=0
\end{array}\right.
$$

where $\vec{u}$ is the velocity, $p$ the pressure, $\nu$ the viscosity, $\vec{b}=\left(\begin{array}{ll}b_{1} & b_{2}\end{array}\right)^{T}$ a steady velocity, $\vec{\nabla}=\left(\begin{array}{ll}d_{x} & d_{y}\end{array}\right)^{T}$ the gradient operator in $\mathbb{R}^{2}$ and $\Delta=d_{x}^{2}+d_{y}^{2}$ the Laplacian operator in $\mathbb{R}^{2}$. The Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers (linearization of the incompressible Navier-Stokes equations at a steady state). See, e.g., Dolean et al. (2005). Let $D=\mathbb{Q}\left(\nu, b_{1}, b_{2}\right)\left[d_{t}, d_{x}, d_{y}\right]$ be the commutative polynomial ring of PD operators with coefficients in the field $\mathbb{Q}\left(\nu, b_{1}, b_{2}\right)$,

$$
R=\left(\begin{array}{ccc}
d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta & 0 & d_{x}  \tag{76}\\
0 & d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta & d_{y} \\
d_{x} & d_{y} & 0
\end{array}\right) \in D^{3 \times 3}
$$

$M=D^{1 \times 3} /\left(D^{1 \times 3} R\right)$ the $D$-module finitely presented by $R$ and $\pi: D^{1 \times 3} \longrightarrow M$ the canonical projection. Using Algorithm 2.1 of Cluzeau and Quadrat (2008) and its implementation in the Oremorphisms package (Cluzeau and Quadrat (2009)), we find that the endomorphism ring end ${ }_{D}(M)$ of $M$ is defined by the family of generators $\left\{f_{i}\right\}_{i=1, \ldots, 5}$, where $f_{i}(\pi(\lambda))=\pi\left(\lambda P_{i}\right)$ for all $\lambda \in D^{1 \times 3}$, and:

$$
\begin{gathered}
P_{1}=I_{3}, \quad P_{2}=\left(\begin{array}{ccc}
0 & -d_{y} & 0 \\
0 & d_{x} & 0 \\
0 & 0 & d_{x}
\end{array}\right), \quad P_{3}=\left(\begin{array}{ccc}
0 & 0 & d_{x} \\
0 & 0 & d_{y} \\
0 & 0 & -\left(d_{t}+b_{1} d_{x}+b_{2} d_{y}\right)
\end{array}\right), \\
P_{4}=\left(\begin{array}{ccc}
0 & \nu d_{x} d_{y} & 0 \\
0 & -\left(d_{t}+b_{1} d_{x}+b_{2} d_{y}-\nu d_{y}^{2}\right) & -d_{y} \\
0 & 0 & \nu d_{y}^{2}
\end{array}\right), \quad P_{5}=\left(\begin{array}{ccc}
0 & d_{y}\left(d_{t}+b_{2} d_{y}-\nu d_{y}^{2}\right) & d_{y}^{2} \\
0 & -d_{x}\left(d_{t}+b_{2} d_{y}-\nu d_{y}^{2}\right) & -d_{x} d_{y} \\
0 & 0 & d_{y}^{2}\left(\nu d_{x}-b_{1}\right)
\end{array}\right) .
\end{gathered}
$$

For more details, see Section 8.3. If $\left(u_{1} u_{2} p\right)^{T}$ is a solution of $R\left(u_{1} u_{2} p\right)^{T}=0$ then so is $P_{i}\left(u_{1} u_{2} p\right)^{T}$ for $i=1, \ldots, 5$, i.e., the $P_{i}$ 's send a solution of $R\left(u_{1} u_{2} p\right)^{T}=0$ to another solution of the same system. The generators $f_{i}$ 's of the $D$-module $\operatorname{end}_{D}(M)$ satisfy $D$-linear relations. Using the results explained at the end of Section 3, we obtain that a generating set of $D$-linear relations among the generators $f_{i}$ 's of $\operatorname{end}_{D}(M)$ is defined by $L\left(f_{1} \ldots f_{5}\right)^{T}=0$ where:

$$
L=\left(\begin{array}{cccc}
d_{x} & -1 & 0 & 0 \\
0 \\
-d_{t}-b_{2} d_{y}+\nu d_{y}^{2} & -b_{1} & -1 & -1 \\
0 & -\nu d_{x} & 0 & -1 \\
0 & -\nu\left(d_{t}+b_{1} d_{x}+b_{2} d_{y}-\nu d_{y}^{2}\right) & -\nu d_{x} & -b_{1} \\
0 & -\nu^{2} d_{x} d_{y}^{2} & -\nu d_{y}^{2} & -\left(d_{t}+b_{2} d_{y}\right) \\
\nu d_{x} \\
0 & 0 & 0 & \nu d_{x}-b_{1} \\
0 & -\nu
\end{array}\right) \in D^{6 \times 5}
$$

For more details, see Section 8.3 .
Using Serre's reduction, let us state a first result.
Proposition 8. The $D$-module $\operatorname{end}_{D}(M)=D^{1 \times 5} /\left(D^{1 \times 6} L\right)$, finitely presented by the matrix $L$ defined above, is cyclic and is generated by $\mathrm{id}_{M}$.
Proof. If $\Lambda=\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0\end{array}\right) \in D^{1 \times 5}$ and $P=\left(\begin{array}{ll}L^{T} & \Lambda^{T}\end{array}\right)^{T} \in D^{7 \times 5}$, then we can check that $P$ admits a left inverse $X=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right) \in D^{5 \times 7}$ where:

$$
\begin{aligned}
& X_{1}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
-b_{1} \nu d_{x} & -1 & 1 & 0 & 0 & 0 \\
\nu d_{x} & 0 & -1 & 0 & 0 & 0 \\
-d_{x}\left(b_{1}-\nu d_{x}\right) & 0 & \nu^{-1}\left(b_{1}-\nu d_{x}\right) & 0 & 0 & -\nu^{-1}
\end{array}\right), \\
& \left.X_{2}=\left(\begin{array}{cccc}
1 & d_{x} & -\left(d_{t}+b_{1} d_{x}+b_{2} d_{y}-\nu \Delta\right) & -\nu d_{x}^{2}
\end{array}\right]-d_{x}^{2}\left(\nu d_{x}-b_{1}\right)\right)^{T} .
\end{aligned}
$$

We get $D^{1 \times 5}=D^{1 \times 7} P$, which yields $\operatorname{end}_{D}(M)=D^{1 \times 5} /\left(D^{1 \times 6} L\right)=\left(D^{1 \times 7} P\right) /\left(D^{1 \times 6} L\right)$ and shows that the $D$-module $\operatorname{end}_{D}(M)=D^{1 \times 5} /\left(D^{1 \times 6} L\right)$ is cyclic and is generated by the residue class of $\Lambda$ in $\operatorname{end}_{D}(M)$. Moreover, we have $X_{1} L+X_{2} \Lambda=I_{5}, L f=0$, where $f=\left(f_{1} \ldots f_{5}\right)^{T}$, and $\Lambda f=f_{1}=\operatorname{id}_{M}$, which yields:

$$
f=X_{1}(L f)+X_{2}(\Lambda f)=X_{2} f_{1} \Leftrightarrow\left\{\begin{array}{l}
f_{1}=f_{1} \\
f_{2}=d_{x} f_{1} \\
f_{3}=-\left(d_{t}+b_{1} d_{x}+b_{2} d_{y}-\nu \Delta\right) f_{1} \\
f_{4}=-\nu d_{x}^{2} f_{1} \\
f_{5}=-d_{x}^{2}\left(\nu d_{x}-b_{1}\right) f_{1}
\end{array}\right.
$$

Hence, for every $f \in \operatorname{end}_{D}(M)$, there exist $d_{1}, \ldots, d_{5} \in D$ such that $f=\sum_{i=1}^{5} d_{i} f_{i}=\left(\sum_{i=1}^{5} d_{i} X_{2 i}\right) f_{1}$, where $X_{2 i}$ is the $i^{\text {th }}$ entry of the column vector $X_{2}$, which shows that $\operatorname{end}_{D}(M)$ is generated by $f_{1}=\operatorname{id}_{M}$ as a $D$-module, i.e., $\operatorname{end}_{D}(M)=D f_{1}$ is a cyclic $D$-module (see Definition 11).

Theorem 18. The $D$-module $M$ finitely presented by the matrix $R$ defined by (76), i.e., defined by the Oseen equations 75), is indecomposable.
Proof. Let us determine the annihilator of $f_{1}=\operatorname{id}_{M} \in \operatorname{end}_{D}(M)$, i.e., $\operatorname{ann}_{D}\left(f_{1}\right):=\left\{d \in D \mid d f_{1}=0\right\}$. Using Gröbner basis techniques, we can compute $\operatorname{ker}_{D}(. P)$, where $P$ is the matrix given in the proof of Proposition 8, and we obtain $\operatorname{ker}_{D}(. P)=D^{1 \times 2}\left(T_{1} \quad T_{2}\right)$, where $T_{1} \in D^{2 \times 6}$ is a certain matrix and $\left.T_{2}=\left(\begin{array}{ll}0 & -\nu^{2} \Delta\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right.\end{array}\right)\right)^{T} \in D^{2}$. Moreover, we have $L=\left(\begin{array}{ll}I_{6} & 0\end{array}\right) P$. Using Lemma 3.1 of Cluzeau and Quadrat (2008), we then obtain

$$
\begin{aligned}
\operatorname{end}_{D}(M) & =D^{1 \times 5} /\left(D^{1 \times 6} L\right)=\left(D^{1 \times 7} P\right) /\left(D^{1 \times 6} L\right) \cong D^{1 \times 7} /\left(D^{1 \times 8}\left(\begin{array}{cc}
T_{1} & T_{2} \\
I_{6} & 0
\end{array}\right)\right) \\
& \cong D /\left(D^{1 \times 2} T_{2}\right)=D /\left(D\left(\Delta\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)\right)\right)
\end{aligned}
$$

i.e., $\operatorname{end}_{D}(M)=D f_{1} \cong D / \operatorname{ann}_{D}\left(f_{1}\right)$ and $\operatorname{ann}_{D}\left(f_{1}\right)=D\left(\Delta\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)\right)$. We recall that the decomposability of $M$ is equivalent to the existence of non-trivial idempotent in $\operatorname{end}_{D}(M)$. Hence, to study whether or not the $D$-module $M$ is decomposable, let us search for non-trivial idempotents of $\operatorname{end}_{D}(M)=D \operatorname{id}_{M}$. If $\alpha \in D$, then $e=\alpha \operatorname{id}_{M}$ is an idempotent of $\operatorname{end}_{D}(M)$ if and only if $e^{2}-e=$ $\left(\alpha^{2}-\alpha\right) \operatorname{id}_{M}=0$, i.e., if and only if there exists $\beta \in D$ such that:

$$
\begin{equation*}
\alpha(\alpha-1)=\beta \Delta\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right) \tag{77}
\end{equation*}
$$

We first show that the two simple solutions of 777 lead to the trivial idempotents 0 and $\operatorname{id}_{M}$ of $\operatorname{end}_{D}(M)$. If $\Delta\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)$ divides $\alpha$, i.e., if there exists $\gamma \in D$ such that $\alpha=\gamma \Delta\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)$, then $e=\alpha \operatorname{id}_{M}=0$. If $\Delta\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)$ divides $\alpha-1$, i.e., $\alpha=1+\gamma \Delta\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)$ for a certain $\gamma \in D$, then $e=\alpha \operatorname{id}_{M}=\operatorname{id}_{M}$.

We can check that $\Delta$ and $d_{t}+\vec{b} . \vec{\nabla}-\nu \Delta$ are two irreducible polynomials over the field $\mathbb{Q}\left(\nu, b_{1}, b_{2}\right)$, their greatest common divisor is 1 and $\alpha$ and $\alpha-1$ are coprime. Hence, the only two remaining possibilities for $\sqrt{77}$ to hold are:

1. $\Delta$ divides $\alpha$ and $d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta$ divides $\alpha-1$, i.e., $\alpha=\gamma \Delta$ and $\alpha=1+\gamma^{\prime}\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)$ for certain $\gamma, \gamma^{\prime} \in D$. This then leads to $\gamma \Delta-\gamma^{\prime}\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)=1$ which is clearly impossible since $1 \notin\left(\Delta, d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)=\left(\Delta, d_{t}+\vec{b} \cdot \vec{\nabla}\right)$.
2. $\Delta$ divides $\alpha-1$ and $d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta$ divides $\alpha$, i.e., $\alpha=1+\gamma \Delta$ and $\alpha=\gamma^{\prime}\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)$ for certain $\gamma, \gamma^{\prime} \in D$. This then leads to $\gamma^{\prime}\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right)-\gamma \Delta=1$ which is also impossible as shown above.
Thus, $\operatorname{end}_{D}(M)$ does not admit any non-trivial idempotent element so that $M$ is an indecomposable $D$-module.

Finally, from the above computations, the endomorphisms of $M$ defined by $g_{1}=\Delta \operatorname{id}_{M}$ and $g_{2}=$ $\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right) \operatorname{id}_{M}$ are not injective since we have $\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right) g_{1}=0$ and $\Delta g_{2}=0$ and thus $g_{1}\left(\left(d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta\right) m\right)=0$ and $g_{2}(\Delta m)=0$ for all $m \in M$. Then, $R$ admits the two strict factorizations $R=L_{1} S_{1}$ and $R=L_{2} S_{2}$ defined by:

$$
\begin{gathered}
L_{1}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right), \quad S_{1}=\left(\begin{array}{ccc}
\nu d_{x} & \nu d_{y} & -1 \\
d_{x} & d_{y} & 0 \\
d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta & 0 & d_{x} \\
0 & d_{t}+\vec{b} \cdot \vec{\nabla}-\nu \Delta & d_{y}
\end{array}\right), \\
L_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
b_{1}-\nu d_{x} & -1 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right), \quad S_{2}=\left(\begin{array}{ccc}
-d_{y} & d_{x} & 0 \\
\left(\nu d_{x}-b_{1}\right) d_{y} & -b_{2} d_{y}-d_{t}+\nu d_{y}^{2} & -d_{y} \\
-d_{x} & -d_{y} & 0 \\
\nu \Delta-d_{t}-\vec{b} \cdot \vec{\nabla} & 0 & -d_{x}
\end{array}\right)
\end{gathered}
$$

Using the factorization $R=L_{i} S_{i}$ for $i=1,2$, we get $\operatorname{ker}_{\mathcal{F}}\left(S_{i}.\right) \subseteq \operatorname{ker}_{\mathcal{F}}(R$.) for $i=1$, 2, i.e., the solutions of the PD systems defined by $S_{1}$ and $S_{2}$ are particular solutions of 75 . Computing a Gröbner basis of the $D$-module $D^{1 \times 4} S_{i}$ for $i=1,2$, we obtain that:

$$
\begin{aligned}
S_{1} \eta=0 & \Longleftrightarrow\left\{\begin{array}{l}
p=0 \\
d_{t} \vec{u}-\nu \Delta \vec{u}+(\vec{b} \cdot \vec{\nabla}) \vec{u}=0 \\
\vec{\nabla} \cdot \vec{u}=0
\end{array}\right. \\
S_{2} \eta=0 & \Longleftrightarrow\left\{\begin{array}{l}
d_{x} u_{1}+d_{y} u_{2}=0 \\
d_{y} u_{1}-d_{x} u_{2}=0 \\
\left(d_{t}+b_{1} d_{x}\right) u_{1}+b_{2} d_{x} u_{2}+d_{x} p=0 \\
b_{1} d_{y} u_{1}+\left(d_{t}+b_{2} d_{y}\right) u_{2}+d_{y} p=0
\end{array}\right.
\end{aligned}
$$

We note that the last PD system yields $\Delta u_{i}=0$ for $i=1,2$ and $\Delta p=0$, i.e., the components of the velocity $\vec{u}$ and the pressure $p$ are harmonic functions.

### 7.2 Implicit scheme for the Oseen equations and Stokes equations

Within implicit schemes of the time dependent Oseen equations, the term $d_{t} \vec{u}$ in $\sqrt[75]{ }$ is replaced by $c \vec{u}$, where the constant $c$ corresponds to the inverse of the time step. Let $E=\mathbb{Q}\left(\nu, b_{1}, b_{2}, c\right)\left[d_{x}, d_{y}\right]$ and $N$ be the $E$-module finitely presented by the matrix obtained by replacing $d_{t}$ by $c$ in 76 . Then we can redo the computations of the previous section and prove that the endomorphism ring end ${ }_{E}(N)$ is a cyclic $E$-module generated by $\operatorname{id}_{N}$ and $\operatorname{end}_{E}(N)=E \operatorname{id}_{N} \cong E / \operatorname{ann}_{E}\left(\operatorname{id}_{N}\right) \cong E /(\Delta(\nu \Delta-\vec{b} \cdot \vec{\nabla}-c))$. In particular, this result also holds when $b_{1}=0$ or $b_{2}=0$.

Proposition 9. If $\vec{b} \neq \overrightarrow{0}$, then the E-module $N$ is indecomposable.
Proof. As in the proof of Theorem $18, e=\alpha \operatorname{id}_{N} \in \operatorname{end}_{E}(N)$, where $\alpha \in E$, is an idempotent of end ${ }_{E}(N)$ if and only if there exists $\beta \in D$ such that:

$$
\begin{equation*}
\alpha(\alpha-1)=\beta \Delta(\nu \Delta-\vec{b} \cdot \vec{\nabla}-c) . \tag{78}
\end{equation*}
$$

The two trivial solutions $\alpha=0$ or $\alpha=1$ and $\beta=0$ of 78 lead to the trivial idempotents 0 and $\mathrm{id}_{N}$ of $\operatorname{end}_{E}(N)$. Now, since $\Delta$ and $\nu \Delta-\vec{b} \cdot \vec{\nabla}-c$ are irreducible over $\left.\mathbb{Q}\left(\nu, b_{1}, b_{2}, c\right), 78\right)$ can hold only if:

1. $\Delta$ divides $\alpha$ and $\nu \Delta-\vec{b} \cdot \vec{\nabla}-c$ divides $\alpha-1$, i.e., $\alpha=\gamma \Delta$ and $\alpha=1+\gamma^{\prime}(\nu \Delta-\vec{b} \cdot \vec{\nabla}-c)$ for certain $\gamma, \gamma^{\prime} \in E$. We then get $\gamma \Delta=1+\gamma^{\prime}(\nu \Delta-\vec{b} \cdot \vec{\nabla}-c)$. In particular, we must have $\operatorname{deg} \gamma=\operatorname{deg} \gamma^{\prime}$ and $\left(\gamma-\nu \gamma^{\prime}\right) \Delta+\gamma^{\prime} \vec{b} . \vec{\nabla}+\gamma^{\prime} c-1=0$. Moreover, $\gamma^{\prime}$ must be a constant as if $\operatorname{deg} \gamma^{\prime}>0$, then the constant 1 cannot be cancelled. Then, we obtain $\gamma=\nu \gamma^{\prime}, \gamma^{\prime} b_{1}=0, \gamma^{\prime} b_{2}=0$ and $\gamma^{\prime} c=1$, i.e., $\gamma^{\prime}=1 / c$ which yields $\gamma^{\prime} b_{i}=b_{i} / c=0$, i.e., $b_{i}=0$, for $i=1,2$.
2. $\Delta$ divides $\alpha-1$ and $\nu \Delta-\vec{b} \cdot \vec{\nabla}-c$ divides $\alpha$, i.e., $\alpha=1+\gamma \Delta$ and $\alpha=\gamma^{\prime}(\nu \Delta-\vec{b} \cdot \vec{\nabla}-c)$ for certain $\gamma, \gamma^{\prime} \in E$. We then get $1+\gamma \Delta=\gamma^{\prime}(\nu \Delta-\vec{b} \cdot \vec{\nabla}-c)$. In particular, we must have $\operatorname{deg} \gamma=\operatorname{deg} \gamma^{\prime}$ and $\left(\gamma-\nu \gamma^{\prime}\right) \Delta+\gamma^{\prime} \vec{b} \cdot \vec{\nabla}+\gamma^{\prime} c+1=0$, and thus $\operatorname{deg} \gamma^{\prime}=0$ and $\gamma^{\prime} c=-1, \gamma=\nu \gamma^{\prime}, \gamma^{\prime} b_{1}=0$ and $\gamma^{\prime} b_{2}=0$, i.e., $\gamma^{\prime}=-1 / c$, which yields $\gamma^{\prime} b_{i}=-b_{i} / c=0$, i.e., $b_{1}=b_{2}=0$.

Let us now consider the case $\vec{b}=\overrightarrow{0}$ which corresponds to an implicit scheme of the time dependent Stokes equations, namely:

$$
\left\{\begin{array}{l}
c u-\nu \Delta \vec{u}+\vec{\nabla} p=0  \tag{79}\\
\vec{\nabla} \cdot \vec{u}=0
\end{array}\right.
$$

The matrix of PD operators associated with $\sqrt[79 p]{ }$ is then defined by:

$$
R^{\prime}=\left(\begin{array}{ccc}
c-\nu \Delta & 0 & d_{x}  \tag{80}\\
0 & c-\nu \Delta & d_{y} \\
d_{x} & d_{y} & 0
\end{array}\right) \in E^{3 \times 3}
$$

Let $M^{\prime}=E^{1 \times 3} /\left(E^{1 \times 3} R^{\prime}\right)$ be the $E$-module finitely presented by $R^{\prime}$.
From the proof of Proposition 9, we obtain the following result.
Corollary 6. The E-module $M^{\prime}$ finitely presented by $R^{\prime}$ is decomposable.
Proof. From the proof of Proposition 9, in Case 1, we get that $\alpha=(\nu / c) \Delta$ is a non-trivial solution of 78 and thus $e=(\nu / c) \Delta \mathrm{id}_{M}$ is a non-trivial idempotent of $\operatorname{end}_{E}\left(M^{\prime}\right)$. Similarly, in Case $2, \alpha=1-(\nu / c) \Delta$ is a non-trivial solution of (78) and thus $e=\alpha \mathrm{id}_{M}$ is a non-trivial idempotent of end ${ }_{E}\left(M^{\prime}\right)$. We have then found non-trivial idempotents of $\operatorname{end}_{E}\left(M^{\prime}\right)$ which proves that the $E$-module $M^{\prime}$ is decomposable.

This result is used to compute a parametrization of the solutions of 79). From the latter proof, we know that the matrices $P=Q=\left(1-\frac{\nu}{c} \Delta\right) I_{3} \in E^{3 \times 3}$ yield an endomorphism $f \in \operatorname{end}_{E}\left(M^{\prime}\right)$ defined
by $f(\pi(\lambda))=\pi(\lambda P)$ for all $\lambda \in E^{1 \times 3}$, where $\pi: E^{1 \times 3} \longrightarrow M^{\prime}$ is the canonical projection. Then, using Lemma 2, we get coim $f=E^{1 \times 3} /\left(E^{1 \times 4} S\right)$, where

$$
S=\left(\begin{array}{ccc}
-c d_{y} & c d_{x} & 0 \\
\nu c d_{x} d_{y} & c\left(\nu d_{y}^{2}-c\right) & -c d_{y} \\
-c d_{x} & -c d_{y} & 0 \\
c(\nu \Delta-c) & 0 & -c d_{x}
\end{array}\right) \in E^{4 \times 3}
$$

and ker $f \cong E^{1 \times 4} /\left(E^{1 \times 4}\left(L^{T} \quad S_{2}^{T}\right)^{T}\right)$, where the matrix $L$ is defined by

$$
L=-\frac{1}{c}\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
\nu d_{x} & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \in E^{3 \times 4}
$$

and $S_{2}=\left(\begin{array}{llll}\nu d_{y}^{2}-c & -d_{x} & 0 & d_{y}\end{array}\right) \in E^{1 \times 4}$. Using a Gröbner basis computation, we obtain:

$$
S \zeta=0 \Longleftrightarrow\left\{\begin{array} { l } 
{ \Delta \zeta _ { 3 } = 0 }  \tag{81}\\
{ c \zeta _ { 2 } + d _ { y } \zeta _ { 3 } = 0 , } \\
{ c \zeta _ { 1 } + d _ { x } \zeta _ { 3 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\zeta_{1}=-\frac{1}{c} d_{x} \zeta_{3} \\
\zeta_{2}=-\frac{1}{c} d_{y} \zeta_{3} \\
\zeta_{3}=\zeta_{3} \\
\Delta \zeta_{3}=0
\end{array}\right.\right.
$$

Moreover, we have:

$$
\binom{L}{S_{2}} \tau=0 \Longleftrightarrow\left\{\begin{array}{l}
\tau_{2}=-\nu d_{x} \tau_{1}  \tag{82}\\
\tau_{3}=0 \\
\tau_{4}=0 \\
(\nu \Delta-c) \tau_{1}=0
\end{array}\right.
$$

Using the factorization $R^{\prime}=L S$ of $R^{\prime}$ and the notation $\eta:=\left(\begin{array}{lll}u_{1} & u_{2} & p\end{array}\right)^{T}$, we then get:

$$
R^{\prime} \eta=0 \Longleftrightarrow\left\{\begin{array}{l}
S \eta=\tau  \tag{83}\\
L \tau=0 \\
S_{2} \tau=0
\end{array}\right.
$$

Since $f$ is an idempotent, we have $M^{\prime} \cong \operatorname{ker} f \oplus \operatorname{coim} f$, which shows that the short exact sequence $0 \longrightarrow \operatorname{ker} f \xrightarrow{i} M^{\prime} \xrightarrow{\rho} \operatorname{coim} f \longrightarrow 0$ splits by 4 of Proposition 2 By Quadrat and Robertz (2007b), there exist matrices $U_{1} \in E^{4 \times 3}, U_{2} \in E^{4}$ and $V \in E^{3 \times 4}$ such that $U_{1} L+U_{2} S_{2}+S V=I_{4}$. We can take:

$$
U_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
d_{x} & d_{y} & -c \\
0 & 0 & 0
\end{array}\right), \quad U_{2}=\frac{1}{c}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
\nu d_{y}
\end{array}\right), \quad V=-\frac{1}{c^{2}}\left(\begin{array}{cccc}
\nu d_{y} & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
\nu^{2} d_{x} d_{y} & \nu d_{y} & 0 & \nu d_{x}
\end{array}\right)
$$

Using $U_{1} L+U_{2} S_{2}+S V=I_{4}$, we get that $\eta^{\star}:=V \tau$ is a particular solution of $S \eta=\tau$, where $\tau$ satisfies (82). The general solution of $S \eta=\tau$ is then of the form $\eta=\eta^{\star}+\zeta$, where $\zeta$ satisfies $S \zeta=0$, i.e., $\zeta$ is defined by 81 , and we obtain the following parametrization of the solutions of 79 )

$$
\left\{\begin{array}{l}
u_{1}=-\frac{1}{c}\left(d_{x} \zeta_{3}+\frac{\nu}{c} d_{y} \tau_{1}\right) \\
u_{2}=\frac{1}{c}\left(-d_{y} \zeta_{3}+\frac{\nu}{c} d_{x} \tau_{1}\right) \\
p=\zeta_{3}
\end{array}\right.
$$

where $\zeta_{3}$ (resp., $\tau_{1}$ ) satisfies the PD equation $\Delta \zeta_{3}=0$ (resp., $(\nu \Delta-c) \tau_{1}=0$ ).
Let us now compute a decomposition of the matrix $R^{\prime}$ defined by 80). The matrices $P=Q=$ $\left(1-\frac{\nu}{c} \Delta\right) I_{3}$ considered above define an idempotent $e \in \operatorname{end}_{E}\left(M^{\prime}\right)$. Moreover, we have $P^{2}=P+Z R$, where $Z \in E^{3 \times 3}$ is defined by:

$$
Z=\frac{\nu}{c^{2}}\left(\begin{array}{ccc}
-d_{y}^{2} & d_{x} d_{y} & d_{x}(\nu \Delta-c) \\
d_{x} d_{y} & -d_{x}^{2} & d_{y}(\nu \Delta-c) \\
d_{x}(\nu \Delta-c) & d_{y}(\nu \Delta-c) & (\nu \Delta-c)^{2}
\end{array}\right) .
$$

From Lemma 5, we can consider the algebraic Riccati equation $\Lambda R^{\prime} \Lambda+\left(P-I_{3}\right) \Lambda+\Lambda Q+Z=0$. For instance, we can check that we have the following solution

$$
\Lambda=\frac{1}{c}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
\nu d_{x} & \nu d_{y} & \nu(\nu \Delta-c)
\end{array}\right)
$$

which yields the following two idempotent matrices

$$
\begin{aligned}
& \bar{P}:=P+\Lambda R^{\prime}=-\frac{1}{c}\left(\begin{array}{ccc}
0 & 0 & d_{x} \\
0 & 0 & d_{y} \\
0 & 0 & -c
\end{array}\right), \\
& \bar{Q}:=Q+R^{\prime} \Lambda=\frac{\nu}{c}\left(\begin{array}{ccc}
d_{x}^{2} & d_{x} d_{y} & d_{x}(\nu \Delta-c) \\
d_{x} d_{y} & d_{y}^{2} & d_{y}(\nu \Delta-c) \\
-d_{x} & -d_{y} & -\nu \Delta+c
\end{array}\right),
\end{aligned}
$$

i.e., $\bar{P}^{2}=\bar{P}$ and $\bar{Q}^{2}=\bar{Q}$, which satisfy the relation $R^{\prime} \bar{P}=\bar{Q} R^{\prime}$. Thus, the idempotent $e$ can be defined by means of the idempotent matrices $\bar{P}$ and $\bar{Q}$. Since $\bar{P}^{2}=\bar{P}$ and $\bar{Q}^{2}=\bar{Q}, \operatorname{ker}_{E}(. \bar{P}), \operatorname{im}_{E}(. \bar{P})$, $\operatorname{ker}_{E}(. \bar{Q})$ and $\operatorname{im}_{E}(. \bar{Q})$ are then finitely generated projective $E$-modules (see 22 ), and thus free by the Quillen-Suslin theorem (see 2 of Theorem 22. Syzygy module computations yield $\operatorname{ker}_{E}(. \bar{P})=\operatorname{im}_{E}(. X)$ and $\operatorname{ker}_{E}(. \bar{Q})=\operatorname{im}_{E}(. Y)$, where the matrices $X$ and $Y$ are defined by:

$$
X=\left(\begin{array}{ccc}
c & 0 & d_{x} \\
-d_{y} & d_{x} & 0 \\
0 & c & d_{y}
\end{array}\right), Y=\left(\begin{array}{ccc}
1 & 0 & \nu d_{x} \\
-d_{y} & d_{x} & 0 \\
0 & 1 & \nu d_{y}
\end{array}\right)
$$

Moreover, we have $\operatorname{im}_{E}(. \bar{P})=\operatorname{ker}_{E}\left(.\left(I_{3}-\bar{P}\right)\right)=E\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$ and $\operatorname{im}_{E}(. \bar{Q})=\operatorname{ker}_{E}\left(.\left(I_{3}-\bar{Q}\right)\right)=$ $E\left(\begin{array}{lll}d_{x} & d_{y} & \nu \Delta-c\end{array}\right)$. The matrix $X$ does not define a basis of $\operatorname{ker}_{E}(. \bar{P})$ since $\operatorname{rank}_{E}\left(\operatorname{ker}_{E}(. \bar{P})\right) \leq 2$ and $X$ has three rows. A similar comment holds for the matrix $Y$ and $\operatorname{ker}_{E}(. \bar{Q})$. Thus, the rows of $X$ and $Y$ are $E$-linearly dependent, i.e.:

$$
\left.\left\{\begin{array}{lll}
\operatorname{ker}_{E}(. X) & =E\left(-d_{y}\right. & -c
\end{array} \quad d_{x}\right), ~ 子 \begin{array}{lll}
\operatorname{ker}_{E}(. Y) & =E\left(-d_{y}\right. & -1
\end{array} d_{x}\right) .
$$

If $X_{i}$ • denotes the $i^{\text {th }}$ row of $X$, then we have:

$$
\left\{\begin{array}{l}
c X_{2 \bullet}=-d_{y} X_{1 \bullet}+d_{x} X_{3 \bullet} \\
Y_{2 \bullet}=-d_{y} Y_{1 \bullet}+d_{x} Y_{3 \bullet}
\end{array}\right.
$$

Consequently, a basis of $\operatorname{ker}_{E}(. \bar{P})$ (resp., $\operatorname{ker}_{E}(. \bar{Q})$ ) is defined by the first and third rows of $X$ (resp., Y), i.e., $\operatorname{ker}_{E}(. \bar{P})=\operatorname{im}_{E}\left(. U_{1}\right)$ and $\operatorname{ker}_{E}(. \bar{Q})=\operatorname{im}_{E}\left(. V_{1}\right)$, where the matrices $U_{1}$ and $V_{1}$ are defined by:

$$
U_{1}=\left(\begin{array}{ccc}
c & 0 & d_{x} \\
0 & c & d_{y}
\end{array}\right), \quad V_{1}=\left(\begin{array}{ccc}
1 & 0 & \nu d_{x} \\
0 & 1 & \nu d_{y}
\end{array}\right)
$$

These results can directly be obtained by means of a constructive version of the Quillen-Suslin theorem implemented in the QuillenSuslin package (Fabiańska and Quadrat $(2007)$ ).

Now, from Theorem 5, if we define the following unimodular matrices

$$
U=\left(\begin{array}{ccc}
c & 0 & d_{x} \\
0 & c & d_{y} \\
0 & 0 & 1
\end{array}\right) \in \mathrm{GL}_{3}(E), \quad V=\left(\begin{array}{ccc}
1 & 0 & \nu d_{x} \\
0 & 1 & \nu d_{y} \\
d_{x} & d_{y} & \nu \Delta-c
\end{array}\right) \in \mathrm{GL}_{3}(E)
$$

then the matrix $R^{\prime}$ defined by 80 is equivalent to the following block diagonal matrix:

$$
\bar{R}:=V R^{\prime} U^{-1}=\left(\begin{array}{ccc}
-\frac{\nu}{c} d_{y}^{2}+1 & \frac{\nu}{c} d_{x} d_{y} & 0 \\
\frac{\nu}{c} d_{x} d_{y} & -\frac{\nu}{c} d_{x}^{2}+1 & 0 \\
0 & 0 & \Delta
\end{array}\right)
$$

Let us finally prove that the $E$-module $O:=E^{1 \times 2} /\left(E^{1 \times 2} T\right)$ finitely presented by the first $2 \times 2$ diagonal block $T$ of $\bar{R}$ is indecomposable. Applying Algorithm 2.1 of Cluzeau and Quadrat (2008), we obtain that $\operatorname{end}_{E}(O)$ is finitely generated by $\left\{g_{i}\right\}_{i=1, \ldots, 4}$, where the $g_{i}$ 's are defined by $g_{i}(\kappa(\lambda))=\kappa\left(\lambda P_{i}\right)$ for all $\lambda \in E^{1 \times 2}$, the matrices $P_{i}$ 's are defined by

$$
P_{1}=\left(\begin{array}{cc}
0 & \nu d_{x} d_{y} \\
0 & \nu d_{y}^{2}-c
\end{array}\right), \quad P_{2}=I_{2}, \quad P_{3}=\left(\begin{array}{cc}
0 & -\nu d_{y}^{2} \\
0 & \nu d_{x} d_{y}
\end{array}\right), \quad P_{4}=\left(\begin{array}{cc}
0 & c d_{y} \\
0 & -c d_{x}
\end{array}\right)
$$

and $\kappa: E^{1 \times 2} \longrightarrow O$ is the canonical projection onto $N$. The $g_{i}$ 's satisfy the following $E$-linear relations:

$$
\left(\begin{array}{cccc}
-1 & \nu d_{y}^{2}-c & 0 & 0 \\
-c & 0 & 0 & \nu d_{x} \\
-d_{x} & 0 & d_{y} & 1 \\
0 & c d_{x} & 0 & 1 \\
0 & 0 & c & \nu d_{y}
\end{array}\right)\left(\begin{array}{c}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4}
\end{array}\right)=0
$$

These $E$-linear relations yield $g_{1}=\left(\nu d_{y}^{2}-c\right) g_{2}, g_{4}=-c d_{x} g_{2}$ and $g_{3}=-\frac{\nu}{c} g_{4}=\nu d_{x} d_{y} g_{2}$, where $g_{2}$ satisfies $(\nu \Delta-c) g_{2}=0$, which shows that $\operatorname{end}_{E}(O)$ is a cyclic $E$-module generated by $g_{2}=\operatorname{id}_{O}$ and:

$$
\operatorname{end}_{E}(O)=E g_{2} \cong E /(\nu \Delta-c)
$$

Now, $e=\alpha g_{2}$ is an idempotent of $\operatorname{end}_{E}(O)$, where $\alpha \in E$, if and only if $e^{2}=e$, i.e., if and only if there exists $\beta \in E$ such that $\alpha(\alpha-1)=\beta(\nu \Delta-c)$. Since the polynomial $\nu \Delta-c$ is irreducible over $\mathbb{Q}(\nu, c)$, then $\nu \Delta-c$ either divides $\alpha$ or $\alpha-1$, i.e., $\alpha=\gamma(\nu \Delta-c)$ or $\alpha=1+\gamma^{\prime}(\nu \Delta-c)$ for certain $\gamma, \gamma^{\prime} \in E$, which shows that we either have $e=\gamma(\nu \Delta-c) g_{2}=0$ or $e=\left(1+\gamma^{\prime}(\nu \Delta-c)\right) g_{2}=g_{2}=\operatorname{id}_{O}$. Therefore, $\operatorname{end}_{E}(O)$ admits only the trivial idempotents 0 and $\operatorname{id}_{O}$, which proves that $O$ is an indecomposable $E$-module. Consequently, $T$ is not equivalent to a diagonal matrix over $E$.

### 7.3 Fluid dynamics

In Sections 7.1 and 7.2 . Serre's reduction techniques were used to prove the (in)decomposability of finitely presented differential modules associated with 2-dimensional linear PD systems studied in hydrodynamics. The approach is based on the fact that end $D(M)$ can be proved to be a cyclic $D$-module. Unfortunately, for the 3-dimensional case, we are not able to prove that $\operatorname{Fitt}_{1}\left(\operatorname{end}_{D}(M)\right)=D$ so that Corollary 5 cannot be used to conclude that the endomorphism ring of the corresponding linear PD systems is cyclic.

In this section, we develop a slightly different approach using Serre's reduction to prove the indecomposabilty of a 3-dimensional linear PD system also studied in fluid dynamics.

The movement of an incompressible fluid rotating with a small velocity around the axis lying along the $x_{3}$ axis can be defined by

$$
\left\{\begin{array}{l}
\rho_{0} \frac{\partial u_{1}}{\partial t}-2 \rho_{0} \Omega_{0} u_{2}+\frac{\partial p}{\partial x_{1}}=0  \tag{84}\\
\rho_{0} \frac{\partial u_{2}}{\partial t}+2 \rho_{0} \Omega_{0} u_{1}+\frac{\partial p}{\partial x_{2}}=0 \\
\rho_{0} \frac{\partial u_{3}}{\partial t}+\frac{\partial p}{\partial x_{3}}=0 \\
\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}}=0
\end{array}\right.
$$

where $\vec{u}=\left(\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right)^{T}$ is the local rate of velocity, $p$ the pressure, $\rho_{0}$ the constant fluid density and $\Omega_{0}$ the constant angle speed (Landau and Lifschitz (1989)). Let $D=\mathbb{Q}\left(\rho_{0}, \Omega_{0}\right)\left[d_{t}, d_{1}, d_{2}, d_{3}\right]$ be the commutative polynomial ring of PD operators with coefficients in the field $\mathbb{Q}\left(\rho_{0}, \Omega_{0}\right)$,

$$
R=\left(\begin{array}{cccc}
\rho_{0} d_{t} & -2 \rho_{0} \Omega_{0} & 0 & d_{1}  \tag{85}\\
2 \rho_{0} \Omega_{0} & \rho_{0} d_{t} & 0 & d_{2} \\
0 & 0 & \rho_{0} d_{t} & d_{3} \\
d_{1} & d_{2} & d_{3} & 0
\end{array}\right) \in D^{4 \times 4}
$$

the presentation matrix of (84), and the $D$-module $M=D^{1 \times 4} /\left(D^{1 \times 4} R\right)$ associated with (84). Let us study the decomposability of the $D$-module $M$. Using Algorithm 2.1 of Cluzeau and Quadrat (2008) and its implementation in the OreMorphisms package (Cluzeau and Quadrat (2009)), we find that end $D(M)$ is defined by the family of generators $\left\{f_{i}\right\}_{i=1,2}$, where $f_{i}(\pi(\lambda))=\pi\left(\lambda P_{i}\right)$ for all $\lambda \in D^{1 \times 4}$, and:

$$
P_{1}=I_{4}, \quad P_{2}=\left(\begin{array}{cccc}
0 & d_{3} & -d_{2} & 0 \\
-d_{3} & 0 & d_{1} & 0 \\
d_{2} & -d_{1} & 0 & 0 \\
0 & 0 & 2 \rho_{0} \Omega_{0} & 0
\end{array}\right)
$$

For more details, see Section 8.5. Using the results explained at the end of Section 3, a generating set of $D$-linear relations among the generators $f_{i}$ 's of $\operatorname{end}_{D}(M)$ is defined by $L\left(\begin{array}{ll}f_{1} & f_{2}\end{array}\right)^{T}=0$, where the matrix $L$ is defined by:

$$
L=\left(\begin{array}{cc}
2 \rho_{0} \Omega_{0} d_{3} & \rho_{0} d_{t} \\
\rho_{0} d_{t} \Delta & -2 \rho_{0} \Omega_{0} d_{3}
\end{array}\right), \quad \Delta:=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}
$$

The endomorphism ring $\operatorname{end}_{D}(M)$ of $M$ is isomorphic to $N=D^{1 \times 2} /\left(D^{1 \times 2} L\right)$. The first Fitting ideal $\operatorname{Fitt}_{1}\left(\operatorname{end}_{D}(M)\right)=\left(d_{t}, d_{3}, d_{t} \Delta\right)=\left(d_{t}, d_{3}\right)$ of $\operatorname{end}_{D}(M)$ formed by the entries of $L$ is not equal to $D$, which shows that the $D$-module $\operatorname{end}_{D}(M)$ is not cyclic by Corollary 5 . Using again Serre's reduction techniques, we can prove the following result.

Proposition 10. If $D_{t}=\mathbb{Q}\left(\rho_{0}, \Omega_{0}, d_{t}\right)\left[d_{1}, d_{2}, d_{3}\right]$ and $M_{t}=D_{t} \otimes_{D} M$, then the $D_{t}$-module $\operatorname{end}_{D_{t}}\left(M_{t}\right) \cong$ $D_{t}^{1 \times 2} /\left(D_{t}^{1 \times 2} L\right)$ is cyclic and indecomposable, and thus the $D_{t}$-module $M_{t}$ is indecomposable.

Proof. If $\Lambda=\left(\begin{array}{ll}1 & 0\end{array}\right) \in D_{t}^{1 \times 2}$ and $P=\left(\begin{array}{ll}\Lambda^{T} & L^{T}\end{array}\right)^{T} \in D_{t}^{3 \times 2}$, then $P$ admits the following left inverse:

$$
S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 \frac{\Omega_{0} d_{3}}{d_{t}} & -\frac{1}{\rho_{0} d_{t}} & 0
\end{array}\right) \in D_{t}^{2 \times 3} .
$$

If we note $S=\left(\begin{array}{ll}S_{1} & S_{2}\end{array}\right)$, where $S_{1} \in D_{t}^{2}$ and $S_{2} \in D_{t}^{2 \times 2}$, then $S_{1} \Lambda+S_{2} L=I_{2}$. Using $L f=0$, where $f=\left(\begin{array}{ll}f_{1} & f_{2}\end{array}\right)^{T}$, and $\Lambda f=f_{1}$, we then obtain $f=S_{1} f_{1}$, i.e., $f_{1}=f_{1}$ and $f_{2}=\left(-2 \Omega_{0} d_{3} / d_{t}\right) f_{1}$. Thus, the $D_{t}$-module $\operatorname{end}_{D_{t}}\left(M_{t}\right)$ is a cyclic $D_{t}$-module generated by $f_{1}=\mathrm{id}_{M_{t}}$. Using Lemma 3.1 of Cluzeau and Quadrat (2008), we get

$$
\operatorname{end}_{D_{t}}\left(M_{t}\right)=D_{t} f_{1}=\left(D_{t}^{1 \times 3} P\right) /\left(D_{t}^{1 \times 2} L\right) \cong D_{t}^{1 \times 3} / D_{t}^{1 \times 3}\left(\left(F^{T} \quad P_{2}^{T}\right)^{T}\right) \cong D_{t} /\left(\rho_{0}\left(d_{t}^{2} \Delta+4 \Omega_{0}^{2} d_{3}^{2}\right)\right),
$$

where $F=\left(\begin{array}{ll}0 & I_{2}\end{array}\right) \in D_{t}^{2 \times 3}$ is such that $L=F P$ and $P_{2}=\left(\rho_{0}\left(d_{t}^{2} \Delta+4 \Omega_{0}^{2} d_{3}^{2}\right)-2 \Omega_{0} d_{3}-d_{t}\right)$ is such that $\operatorname{ker}_{D_{t}}(. P)=D_{t} P_{2}$. We note that $\rho_{0}\left(d_{t}^{2} \Delta+4 \Omega_{0}^{2} d_{3}^{2}\right)=\operatorname{det}(R)$. An idempotent $e$ of $\operatorname{end}_{D_{t}}\left(M_{t}\right) \cong D_{t} /(\operatorname{det}(R))$ is then of the form $e=\alpha \operatorname{id}_{M_{t}}$, where $\alpha \in D_{t}$ satisfies $\alpha(\alpha-1)=\gamma \operatorname{det}(R)$ for a certain $\gamma \in D_{t}$. Since $\operatorname{det}(R)$ is irreducible over $D_{t}$, the only idempotents of $\operatorname{end}_{D_{t}}\left(M_{t}\right)$ are then 0 and $\operatorname{id}_{M_{t}}$, which shows that $M_{t}$ is an indecomposable $D_{t}$-module.

To deduce the indecomposability of the $D$-module $M$, we shall need the next lemma.
Lemma 6. Let $D$ be a commutative polynomial ring over a field $k, R \in D^{p \times p}$ a square full row rank matrix, i.e., $\operatorname{det}(R) \neq 0, M=D^{1 \times p} /\left(D^{1 \times p} R\right)$ the $D$-module finitely presented by $R$ and $\pi: D^{1 \times p} \longrightarrow M$ the canonical projection onto $M$. Then, we have:

1. $\operatorname{det}(R) \in \operatorname{ann}_{D}(M):=\{d \in D \mid \forall m \in M: d m=0\}$.
2. If $\operatorname{det}(R)$ is irreducible over $k$, then every element $d \in D$ satisfying $d m=0$ for some $m \in M \backslash\{0\}$ is a multiple of $\operatorname{det}(R)$.
Proof. 1. Let us consider $m=\pi(\lambda) \in M$, where $\lambda \in D^{1 \times p}$. We have $\operatorname{det}(R) m=\pi(\lambda \operatorname{det}(R))$. If $\operatorname{Adj}(R)$ denotes the adjugate matrix of $R$, namely the transpose of the matrix of cofactors of $R$, then using the identity $\operatorname{det}(R) I_{p}=\operatorname{Adj}(R) R=R \operatorname{Adj}(R)$, we get $\operatorname{det}(R) m=\pi(\lambda \operatorname{Adj}(R) R)=\pi((\lambda \operatorname{Adj}(R)) R)=0$, which finally proves that $\operatorname{det}(R) \in \operatorname{ann}_{D}(M)$.
3. Let $m=\pi(\lambda) \in M \backslash\{0\}$, where $\lambda \in D^{1 \times p}$, and $d \in D$ satisfy $d m=0$, i.e., $\pi(d \lambda)=0$. Thus, there exists $\mu \in D^{1 \times p}$ such that $d \lambda=\mu R$. Post-multiplying the latter equality by $\operatorname{Adj}(R)$, we obtain $d \lambda \operatorname{Adj}(R)=\mu R \operatorname{Adj}(R)=\mu \operatorname{det}(R)$. Setting $\nu:=\lambda \operatorname{Adj}(R) \in D^{1 \times p}$, we get $d \nu=\mu \operatorname{det}(R)$. In particular, $\operatorname{det}(R)$ divides $d \nu$. Now, if $\operatorname{det}(R)$ is irreducible, then either $\operatorname{det}(R)$ divides each entry of $\nu$ or $d$ is a multiple of $\operatorname{det}(R)$. In the first case, we get $\nu=\alpha \operatorname{det}(R)$ for a certain $\alpha \in D^{1 \times p}$, which yields $\lambda \operatorname{Adj}(R)=\alpha \operatorname{det}(R)=\alpha R \operatorname{Adj}(R)$. This implies that $\lambda=\alpha R$ since $\operatorname{Adj}(R)$ has full row rank, and proves that $m=\pi(\lambda)=0$, which contradicts the fact that $m \neq 0$.

We can now to state the main result.
Theorem 19. Let $D=\mathbb{Q}\left(\rho_{0}, \Omega_{0}\right)\left[d_{t}, d_{1}, d_{2}, d_{3}\right], R \in D^{4 \times 4}$ be defined by 85) and $M=D^{1 \times 4} /\left(D^{1 \times 4} R\right)$ the $D$-module finitely presented by $R$ and associated with 84). Then, $M$ is an indecomposable $D$-module.
Proof. If $M=M_{1} \oplus M_{2}$ for two submodules $M_{1}$ and $M_{2}$ of $M$, then we get

$$
D_{t} \otimes_{D} M=\left(D_{t} \otimes_{D} M_{1}\right) \oplus\left(D_{t} \otimes_{D} M_{2}\right)
$$

(see, e.g., Rotman (2009). Now, we proved above that $D_{t} \otimes_{D} M$ is an indecomposable $D_{t}$-module so that either $D_{t} \otimes_{D} M_{1}=0$ or $D_{t} \otimes_{D} M_{2}=0$. Without loss of generality, let us suppose $D_{t} \otimes_{D} M_{1}=0$. If $M_{1} \neq 0$, then $\operatorname{ann}_{D}\left(M_{1}\right)$ must contain a non-zero polynomial $d \in \mathbb{Q}\left(\rho_{0}, \Omega_{0}\right)\left[d_{t}\right]$. Since $M_{1}$ is a $D$ submodule of $M$ and $d_{t}^{2} \Delta+4 \Omega_{0}^{2} d_{3}^{2}$ is irreductible over $\mathbb{Q}\left(\rho_{0}, \Omega_{0}\right)$, by Lemma 6 we get $d=\beta \operatorname{det}(R)=$ $\beta\left(\rho_{0}^{2}\left(d_{t}^{2} \Delta+4 \Omega_{0}^{2} d_{3}^{2}\right)\right)$ for some $\beta \in D$, which contradicts the fact that $d \in \mathbb{Q}\left(\rho_{0}, \Omega_{0}\right)\left[d_{t}\right]$. Consequently, we have $M_{1}=0$, and thus $M=M_{2}$, which proves that the $D$-module $M$ is indecomposable.

## 8 Appendix

In this appendix, we first give the explicit computations for the wind tunnel model studied in Examples 6 , 7. 9 and 10 of Sections 5 and 6 and then for standard linear PD systems encountered in hydrodynamics studied in Section 7.

The computations are obtained by means of the OreMorphisms package (Cluzeau and Quadrat (2009)). The OreMorphisms package is based on the OreModules package (Chyzak et al. (2007)). To handle linear algebra operations, we use the Maple package linalg.

```
> with(OreModules):
> with(OreMorphisms):
> with(linalg):
```

Since the symbol $D$ is protected in Maple, in what follows, we shall use $A$ instead of $D$ as a name for (the data representing) an Ore algebra.

### 8.1 Wind tunnel model: decomposition

Let us consider the ring $A$ of OD time-delay operators with coefficients in the field $\mathbb{Q}(a, k, \omega, \zeta)$, i.e.,
$>A:=$ DefineOreAlgebra(diff=[d,t], dual_shift=[delta, $s]$, polynom=[t, $s]$,
$>$ comm=[a,k,omega,zeta]):
and the matrix $R \in A^{3 \times 4}$ defined in Example 6, i.e.,
$>R:=$ evalm([[d+a,k*a*delta, 0,0],[0,d,-1,0],[0,omega^2,d+2*zeta*omega,-omega^2]]);

$$
R:=\left[\begin{array}{cccc}
d+a & k a \delta & 0 & 0 \\
0 & d & -1 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2}
\end{array}\right]
$$

which finitely presents the $A$-module $M:=A^{1 \times 4} /\left(A^{1 \times 3} R\right)$.
We can easily check that the following matrix $\Delta \in D^{4 \times 3}$
$>$ Delta := evalm([[0,-1,0],[0,0,0],[0,1,0],[1/omega^2,2*zeta/omega-a/omega^2,
> 1/omega~2] ]);

$$
\Delta:=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
\frac{1}{\omega^{2}} & 2 \frac{\zeta}{\omega}-\frac{a}{\omega^{2}} & \frac{1}{\omega^{2}}
\end{array}\right]
$$

satisfies the algebraic Riccati equation $\Delta R \Delta=-\Delta$ :
> simplify(evalm(Mult(Delta,R,Delta,A)+Delta));

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We note that the matrix $\Delta$ can be obtained by means of the RiccatiConstCoeff command of OreMorphisms (Cluzeau and Quadrat (2009)).
Hence, the matrix $\bar{P}:=I_{4}+\Lambda R$ defined by
> P_bar := simplify(evalm(1+Mult(Delta,R,A)));

$$
P_{-} b a r:=\left[\begin{array}{cccc}
1 & -d & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & d & 0 & 0 \\
\frac{d+a}{\omega^{2}} & -\frac{-\omega^{2}-k a \delta-2 d \zeta \omega+a d}{\omega^{2}} & \frac{d+a}{\omega^{2}} & 0
\end{array}\right]
$$

and the matrix $\bar{Q}:=I_{4}+R \Delta$ defined by
> Q_bar := simplify(evalm(1+Mult(R,Delta,A)));

$$
Q_{-} b a r:=\left[\begin{array}{ccc}
1 & -d-a & 0 \\
0 & 0 & 0 \\
-1 & d+a & 0
\end{array}\right]
$$

satisfy the identities $\bar{P}^{2}=\bar{P}, \bar{Q}^{2}=\bar{Q}$ and $R \bar{P}=\bar{Q} R$ :

$$
\begin{aligned}
& >\text { simplify (evalm(Mult(P_bar,P_bar,A)-P_bar)); } \\
& \qquad\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

> simplify(evalm(Mult(Q_bar,Q_bar,A)-Q_bar));

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

> simplify(evalm(Mult(R,P_bar,A)-Mult(Q_bar,R,A)));

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $A$ is a commutative polynomial ring, we know that the matrix $R$ is equivalent to a block diagonal matrix. Let us compute this block diagonal matrix. To do that, we first compute a basis of the free $A$-module $\operatorname{ker}_{A}(. \Delta)$ :

```
> U2 := SyzygyModule(Delta,A);
```

$$
U 2:=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

We get $\operatorname{im}_{A}(. \bar{P})=\operatorname{ker}_{A}(. \Delta)=\operatorname{im}_{A}\left(. U_{2}\right)$, where $U_{2}$ has full row rank since:
> SyzygyModule(U2,A);

## INJ (2)

Hence, the rows of $U_{2}$ form a basis of the free $A$-module $\operatorname{ker}_{A}(. \Delta)$ of rank 2 . Now, let us compute a basis of the free $A$-module $\operatorname{im}_{A}(. \Delta) \cong \operatorname{coker}_{A}\left(. U_{2}\right)$ of rank 2 . We first compute a minimal parametrization $Q_{2} \in A^{4 \times 2}$ of $\operatorname{coker}_{A}\left(. U_{2}\right)$

```
 > Q2 := MinimalParametrization(U2,A);
```

$$
Q 2:=\left[\begin{array}{cc}
1 & 0 \\
0 & 0 \\
-1 & 0 \\
0 & 1
\end{array}\right]
$$

i.e., we have $\operatorname{ker}_{A}\left(. Q_{2}\right)=\operatorname{im}_{A}\left(. U_{2}\right)$ and $Q_{2}$ admits a left inverse $T_{2} \in A^{2 \times 4}$ defined by:

```
 > T2 := LeftInverse(Q2,A);
```

$$
T 2:=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

If $\kappa: A^{1 \times 4} \longrightarrow \operatorname{coker}_{A}\left(. U_{2}\right)$ is the canonical projection, then the family $\left\{\kappa\left(\left(T_{2}\right)_{1 \bullet}\right), \kappa\left(\left(T_{2}\right)_{2 \bullet}\right)\right\}$ formed by the residue classes of the rows $\left(T_{2}\right)_{1} \bullet$ and $\left(T_{2}\right)_{2} \bullet$ of $T_{2}$ defines a basis of $\operatorname{coker}_{A}\left(. U_{2}\right)$. Now, using the
isomorphism $\phi: \operatorname{coker}_{A}\left(. U_{2}\right) \longrightarrow \operatorname{im}_{A}(. \Delta)$ defined by $\phi(\kappa(\mu))=\mu \Delta$ for all $\mu \in A^{1 \times 4}$, we obtain that $V_{1}:=T_{2} \Delta$, i.e.,

```
 > V1 := Mult(T2,Delta,A);
```

$$
V 1:=\left[\begin{array}{ccc}
0 & -1 & 0 \\
\frac{1}{\omega^{2}} & -\frac{-2 \zeta \omega+a}{\omega^{2}} & \frac{1}{\omega^{2}}
\end{array}\right]
$$

defines a basis of $\operatorname{im}_{A}(. \Delta)$, i.e., $\operatorname{ker}_{A}(. \bar{Q})=\operatorname{im}_{A}(. \Delta)=\operatorname{im}_{A}\left(. V_{1}\right)$, where $V_{1}$ has full row rank:

```
> SyzygyModule(V1,A);
```

$$
I N J(2)
$$

Now, we know that the matrix $U_{1}:=V_{1} R$ defined by

```
> U1 := Mult(V1,R,A);
```

$$
U 1:=\left[\begin{array}{cccc}
0 & -d & 1 & 0 \\
\frac{d+a}{\omega^{2}} & -\frac{-\omega^{2}-k a \delta-2 d \zeta \omega+a d}{\omega^{2}} & \frac{d+a}{\omega^{2}} & -1
\end{array}\right]
$$

forms a basis of $\operatorname{ker}_{A}(. \bar{P})$, i.e., $\operatorname{ker}_{A}(. \bar{P})=\operatorname{im}_{A}\left(.\left(V_{1} R\right)\right)$. Let us now compute a basis of the free $A$ module $^{\operatorname{coker}_{A}(. \Delta)}$ of rank 1. Computing a minimal parametrization of $\operatorname{coker}_{A}(. \Delta)$, we obtain that $\Psi \in A^{3}$ defined by

$$
\begin{aligned}
& >\text { psi }:=\text { MinimalParametrization(Delta,A); } \\
& \qquad \Psi:=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
\end{aligned}
$$

is such that $\operatorname{ker}_{A}(. \Psi)=\operatorname{im}_{A}(. \Delta)$ and $\Psi$ admits a left inverse $\Phi \in A^{1 \times 3}$ defined by:

```
> Phi := LeftInverse(psi,A);
```

$$
\Phi:=\left[\begin{array}{lll}
0 & 0 & -1
\end{array}\right]
$$

In particular, the residue class of $\Phi$ in the $A$-module $\operatorname{coker}_{A}(. \Delta)$ is a basis. Thus, the full row rank matrix $V_{2}:=\Phi \bar{Q}$ defined by

```
> V2 := Mult(Phi,Q_bar,A);
 V2:=[\begin{array}{lll}{1}&{-d-a}&{0}\end{array}]
```

defines a basis of $\operatorname{im}_{A}(. \bar{Q})$, i.e., $\operatorname{im}_{A}(. \bar{Q})=\operatorname{im}_{A}\left(. V_{2}\right)$. Now, we know that $\Delta$ can be factorized by $V_{1}$

```
> Y := Factorize(Delta,V1,A);
```

$$
Y:=\left[\begin{array}{cc}
1 & 0 \\
0 & 0 \\
-1 & 0 \\
0 & 1
\end{array}\right]
$$

i.e., we have $\Delta=Y V_{1}$. Similarly, the matrix $\bar{P}$ can be factorized by $U_{2}$

```
> Z := Factorize(P_bar,U2,A);
```

$$
Z:=\left[\begin{array}{cc}
1 & -d \\
0 & 1 \\
0 & d \\
\frac{d}{\omega^{2}}+\frac{a}{\omega^{2}} & 1+\frac{k a \delta}{\omega^{2}}+\frac{(2 \zeta \omega-a) d}{\omega^{2}}
\end{array}\right]
$$

i.e., we have $\bar{P}=Z U_{2}$. Let us define the matrices $X_{1}=-R Y, X_{2}=\Psi, W_{1}=-Y$ and $W_{2}=Z$, i.e.: > X1 := Mult(evalm(-R), Y,A);

$$
X 1:=\left[\begin{array}{cc}
-d-a & 0 \\
-1 & 0 \\
d+2 \zeta \omega & \omega^{2}
\end{array}\right]
$$

> X2 := evalm(psi);

$$
X 2:=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

> W1 := evalm (-Y);

$$
W 1:=\left[\begin{array}{cc}
-1 & 0 \\
0 & 0 \\
1 & 0 \\
0 & -1
\end{array}\right]
$$

> W2 := evalm(Z);

$$
W 2:=\left[\begin{array}{cc}
1 & -d \\
0 & 1 \\
0 & d \\
\frac{d}{\omega^{2}}+\frac{a}{\omega^{2}} & 1+\frac{k a \delta}{\omega^{2}}+\frac{(2 \zeta \omega-a) d}{\omega^{2}}
\end{array}\right]
$$

If we form the matrix $U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T}$, i.e.,
> U := stackmatrix(U1,U2);

$$
U:=\left[\begin{array}{cccc}
0 & -d & 1 & 0 \\
\frac{d+a}{\omega^{2}} & -\frac{-\omega^{2}-k a \delta-2 d \zeta \omega+a d}{\omega^{2}} & \frac{d+a}{\omega^{2}} & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

then the matrix $U$ is unimodular, i.e., $U \in \mathrm{GL}_{4}(A)$, and its inverse $U^{-1}$ is defined by:

```
> U_inv := LeftInverse(U,A);
```

$$
U_{-} i n v:=\left[\begin{array}{cccc}
-1 & 0 & 1 & -d \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & d \\
0 & -1 & \frac{d+a}{\omega^{2}} & -\frac{-\omega^{2}-k a \delta-2 d \zeta \omega+a d}{\omega^{2}}
\end{array}\right]
$$

If we note $W=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right)$, i.e.,
$>\mathrm{W}:=\operatorname{augment}(\mathrm{W} 1, \mathrm{~W} 2)$;

$$
W:=\left[\begin{array}{cccc}
-1 & 0 & 1 & -d \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & d \\
0 & -1 & \frac{d}{\omega^{2}}+\frac{a}{\omega^{2}} & 1+\frac{k a \delta}{\omega^{2}}+\frac{(2 \zeta \omega-a) d}{\omega^{2}}
\end{array}\right]
$$

then we can check that $W=U^{-1}$ :
> simplify(evalm(U_inv-W));

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Similarly, if we define the matrix $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T}$, i.e.,

```
> V := stackmatrix(V1,V2);
```

$$
V:=\left[\begin{array}{ccc}
0 & -1 & 0 \\
\frac{1}{\omega^{2}} & -\frac{-2 \zeta \omega+a}{\omega^{2}} & \frac{1}{\omega^{2}} \\
1 & -d-a & 0
\end{array}\right]
$$

then the matrix $V$ is unimodular, i.e., $V \in \mathrm{GL}_{3}(A)$, and its inverse $V^{-1}$ is defined by:

```
> V_inv := LeftInverse(V,A);
```

$$
V_{-} i n v:=\left[\begin{array}{ccc}
-d-a & 0 & 1 \\
-1 & 0 & 0 \\
d+2 \zeta \omega & \omega^{2} & -1
\end{array}\right]
$$

If we note $X:=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right)$, i.e.,
> $\mathrm{X}:=\operatorname{augment}(\mathrm{X} 1, \mathrm{X} 2)$;

$$
X:=\left[\begin{array}{ccc}
-d-a & 0 & 1 \\
-1 & 0 & 0 \\
d+2 \zeta \omega & \omega^{2} & -1
\end{array}\right]
$$

then we can check that $X=V^{-1}$ :

```
> simplify(evalm(V_inv-X));
```

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The matrix $R$ is then equivalent to the block diagonal matrix $\bar{R}:=V R W$, i.e.:
> R_bar := Mult (V,R,W,A);

$$
R_{-} b a r:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & d+a & -d^{2}-a d+k a \delta
\end{array}\right]
$$

We note that the second diagonal block of $\bar{R}$ is equal to $\Phi R Z$ :

```
> Mult(Phi,R,Z,A);
```

$$
\left[\begin{array}{cc}
d+a & \left.-d^{2}-a d+k a \delta\right]
\end{array}\right.
$$

Finally, if we form the two matrices defined in 71, i.e.,

```
> J := stackmatrix(augment(R,-X2),augment(U2,evalm([[0]$2])));
```

$$
J:=\left[\begin{array}{ccccc}
d+a & k a \delta & 0 & 0 & -1 \\
0 & d & -1 & 0 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2} & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
>\mathrm{K}:=\operatorname{stackmatrix}(\operatorname{augment}(\operatorname{Mult}(\mathrm{W} 1, \mathrm{~V} 1, \mathrm{~A}), \mathrm{W} 2) \text {, augment }(-\mathrm{V} 2, \mathrm{Mult}(\mathrm{~V} 2, \mathrm{R}, \mathrm{~W} 2, \mathrm{~A}))) \text {; }
$$

$$
K:=\left[\begin{array}{ccccc}
0 & 1 & 0 & 1 & -d \\
0 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & d \\
-\frac{1}{\omega^{2}} & \frac{-2 \zeta \omega+a}{\omega^{2}} & -\frac{1}{\omega^{2}} & \frac{d}{\omega^{2}}+\frac{a}{\omega^{2}} & 1+\frac{k a \delta}{\omega^{2}}+\frac{(2 \zeta \omega-a) d}{\omega^{2}} \\
-1 & d+a & 0 & d+a & -d^{2}-d a+k a \delta
\end{array}\right]
$$

then we can check that $J K=I_{5}$ :
$>$ Mult $(\mathrm{J}, \mathrm{K}, \mathrm{A})$;

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Hence, it shows that we can take $\Lambda=X_{2}$ for Serre's reduction. Moreover, $\Lambda$ admits the left inverse $V_{2}$ :
$>\operatorname{Mult}(\mathrm{V} 2, \mathrm{X} 2, \mathrm{~A})$;

Now, let us consider another solution $\Delta_{2} \in A^{4 \times 3}$ of the Riccati equation $\Delta R \Delta=-\Delta$ defined by:
$>\operatorname{Delta} 2:=\operatorname{evalm}([[0,0,0],[0,0,0],[0,1,0],[0,(d+2 *$ zeta*omega $) /$ omega~2, $1 /$ omega^2] $])$;

$$
\Delta 2:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{d+2 \zeta \omega}{\omega^{2}} & \frac{1}{\omega^{2}}
\end{array}\right]
$$

We note that $\Delta_{2}$ is a first order matrix contrary to $\Delta$ which is a zero order matrix, i.e., $\Delta \in \mathbb{Q}(a, k, \omega, \zeta)^{4 \times 3}$. Let us redo the above computations with $\Delta_{2}$ instead of $\Delta$. Let us check again that $\Delta_{2} R \Delta_{2}=-\Delta_{2}$ :

```
> simplify(evalm(Mult(Delta2,R,Delta2,A)+Delta2));
```

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Now, let us define the matrix $\bar{P}_{2}:=I_{4}+\Delta_{2} R$

```
> P_bar2 := simplify(evalm(1+Mult(Delta2,R,A)));
```

$$
P_{-} b a r 2:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & \frac{\omega^{2}+d^{2}+2 d \zeta \omega}{\omega^{2}} & 0 & 0
\end{array}\right]
$$

and the matrix $\bar{Q}_{2}:=I_{4}+R \Delta_{2}$ :

```
> Q_bar2 := simplify(evalm(1+Mult(R,Delta2,A)));
```

$$
Q_{-} b a r 2:=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Then, we can check again the identities $\bar{P}_{2}^{2}=\bar{P}_{2}, \bar{Q}_{2}^{2}=\bar{Q}_{2}$ and $R \bar{P}_{2}=\bar{Q}_{2} R$ :

$$
\begin{aligned}
& >\text { simplify (evalm(Mult (P_bar2, P_bar2,A)-P_bar2)); } \\
& \qquad\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

> simplify(evalm(Mult(Q_bar2,Q_bar2,A)-Q_bar2));

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

> simplify(evalm(Mult(R,P_bar2,A)-Mult(Q_bar2,R,A)));

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Let us now compute the decomposition of the matrix $R$. First, let us compute a basis of the free $A$-module $\operatorname{ker}_{A}\left(. \Delta_{2}\right)$. We first have

$$
\begin{aligned}
& >\mathrm{U} 22:=\text { SyzygyModule(Delta2, } \mathrm{A}) ; \\
& \qquad U 22:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

i.e., we have $\operatorname{ker}_{A}\left(. \Delta_{2}\right)=\operatorname{im}_{A}\left(. U_{22}\right)$, where the matrix $U_{22}$ has full row rank:
> SyzygyModule(U2,A);

$$
I N J(2)
$$

Hence, the rows of $U_{22}$ define a basis of $\operatorname{ker}_{A}\left(. \Delta_{2}\right)$. Now, let us compute a basis of the free $A$-module $\operatorname{im}_{A}\left(. \Delta_{2}\right) \cong \operatorname{coker}_{A}\left(. U_{22}\right)$ of rank 2 . We first compute a minimal parametrization $Q_{22} \in A^{4 \times 2}$ of $\operatorname{coker}_{A}\left(. U_{22}\right)$

```
> Q22 := MinimalParametrization(U22,A);
```

$$
Q 22:=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

i.e., we have $\operatorname{ker}_{A}\left(. Q_{22}\right)=\operatorname{im}_{A}\left(. U_{22}\right)$ and $Q_{22}$ admits a left inverse $T_{22} \in A^{2 \times 4}$ defined by:

```
 > T22 := LeftInverse(Q22,A);
```

$$
T 22:=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

If $\kappa_{2}: A^{1 \times 4} \longrightarrow \operatorname{coker}_{A}\left(. U_{22}\right)$ is the canonical projection, then the family $\left\{\kappa_{2}\left(\left(T_{22}\right)_{1 \bullet}\right), \kappa_{2}\left(\left(T_{22}\right)_{2 \bullet}\right)\right\}$ formed by the residue classes of the rows $\left(T_{22}\right)_{1}$ • and $\left(T_{22}\right)_{2 \bullet}$ of $T_{22}$ defines a basis of $\operatorname{coker}_{A}\left(. U_{22}\right)$. Now, using the isomorphism $\phi_{2}: \operatorname{coker}_{A}\left(. U_{22}\right) \longrightarrow \operatorname{im}_{A}\left(. \Delta_{2}\right)$ defined by $\phi_{2}\left(\kappa_{2}(\mu)\right)=\mu \Delta_{2}$ for all $\mu \in A^{1 \times 4}$, we get that $V_{12}:=T_{22} \Delta_{2}$

```
> V12 := Mult(T22,Delta2,A);
```

$$
V 12:=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{d+2 \zeta \omega}{\omega^{2}} & \frac{1}{\omega^{2}}
\end{array}\right]
$$

defines a basis of $\operatorname{im}_{A}\left(. \Delta_{2}\right)$, i.e., $\operatorname{ker}_{A}\left(. \bar{Q}_{2}\right)=\operatorname{im}_{A}\left(. \Delta_{2}\right)=\operatorname{im}_{A}\left(. V_{12}\right)$, where $V_{12}$ has full row rank:
> SyzygyModule(V12,A);
INJ (2)
Now, we know that the matrix $U_{12}:=V_{12} R$ defined by

```
> U12 := Mult(V12,R,A);
```

$$
U 12:=\left[\begin{array}{cccc}
0 & d & -1 & 0 \\
0 & \frac{\omega^{2}+d^{2}+2 d \zeta \omega}{\omega^{2}} & 0 & -1
\end{array}\right]
$$

formed a basis of $\operatorname{ker}_{A}\left(. \bar{P}_{2}\right)$, i.e., $\operatorname{ker}_{A}\left(. \bar{P}_{2}\right)=\operatorname{im}_{A}\left(.\left(V_{12} R\right)\right)$. Let us now compute a basis of the free $A$-module $\operatorname{coker}_{A}\left(. \Delta_{2}\right)$ of rank 1. Computing a minimal parametrization of $\operatorname{coker}_{A}\left(. \Delta_{2}\right)$, we obtain that $\Psi_{2} \in A^{3}$ defined by

```
> psi2 := MinimalParametrization(Delta2,A);
```

$$
\Psi 2:=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

is such that $\operatorname{ker}_{A}\left(. \Psi_{2}\right)=\operatorname{im}_{A}\left(. \Delta_{2}\right)$ and $\Psi_{2}$ admits a left inverse $\Phi_{2} \in A^{1 \times 3}$ defined by:

```
> Phi2 := LeftInverse(psi2,A);
\Phi2:=[[lll}
```

In particular, the residue class of $\Phi_{2}$ in the $A$-module $\operatorname{coker}_{A}\left(. \Delta_{2}\right)$ is a basis. Thus, the full row rank matrix $V_{22}:=\Phi_{2} \bar{Q}_{2}$ defined by

```
> V22 := Mult(Phi2,Q_bar2,A);
```

$$
V 22:=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

defines a basis of $\operatorname{im}_{A}\left(. \bar{Q}_{2}\right)$, i.e., $\operatorname{im}_{A}\left(. \bar{Q}_{2}\right)=\operatorname{im}_{A}\left(. V_{22}\right)$. Now, we know that $\Delta_{2}$ can be factorized by $V_{12}$

```
> Y2 := Factorize(Delta2,V12,A);
```

$$
Y 2:=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

i.e., we have $\Delta_{2}=Y_{2} V_{12}$. Similarly, the matrix $\bar{P}_{2}$ can be factorized by $U_{22}$
> Z 2 := Factorize(P_bar2, U22,A);

$$
Z 2:=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & d \\
0 & \frac{d^{2}}{\omega^{2}}+2 \frac{\zeta d}{\omega}+1
\end{array}\right]
$$

i.e., we have $\bar{P}_{2}=Z_{2} U_{22}$. Let us define the matrices $X_{12}=-R Y_{2}, X_{22}=\Psi_{2}, W_{12}=-Y_{2}$ and $W_{22}=Z_{2}$, i.e.:
$>X 12:=\operatorname{Mult}($ evalm $(-R), Y 2, A)$;

$$
X 12:=\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
-2 \zeta \omega-d & \omega^{2}
\end{array}\right]
$$

$>$ X22 := evalm(psi2);

$$
X 22:=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

> W12 := evalm(-Y2);

$$
W 12:=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
-1 & 0 \\
0 & -1
\end{array}\right]
$$

> W22 := evalm(Z2);

$$
W 22:=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & d \\
0 & \frac{d^{2}}{\omega^{2}}+2 \frac{\zeta d}{\omega}+1
\end{array}\right]
$$

If we form the matrix $U_{2}:=\left(\begin{array}{ll}U_{12}^{T} & U_{22}^{T}\end{array}\right)^{T}$, i.e.,
$>\mathrm{U} 2:=$ stackmatrix $(\mathrm{U} 12, \mathrm{U} 22)$;

$$
U 2:=\left[\begin{array}{cccc}
0 & d & -1 & 0 \\
0 & \frac{\omega^{2}+d^{2}+2 d \zeta \omega}{\omega^{2}} & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

then the matrix $U_{2}$ is unimodular, i.e., $U_{2} \in \mathrm{GL}_{4}(A)$, and its inverse $U_{2}^{-1}$ is defined by:

```
 > U2_inv := LeftInverse(U2,A);
```

$$
U 2 \_i n v:=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & d \\
0 & -1 & 0 & \frac{\omega^{2}+d^{2}+2 d \zeta \omega}{\omega^{2}}
\end{array}\right]
$$

If we note $W_{2}=\left(\begin{array}{ll}W_{12} & W_{22}\end{array}\right)$, i.e.,
> W2 := augment(W12,W22);

$$
W 2:=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & d \\
0 & -1 & 0 & \frac{d^{2}}{\omega^{2}}+2 \frac{\zeta d}{\omega}+1
\end{array}\right]
$$

then we can check that $W_{2}=U_{2}^{-1}$ :

```
> simplify(evalm(U2_inv-W2));
```

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Similarly, if we define the matrix $V_{2}:=\left(\begin{array}{ll}V_{12}^{T} & V_{22}^{T}\end{array}\right)^{T}$, i.e.,

$$
\begin{aligned}
& >\mathrm{V} 2:=\text { stackmatrix(V12,V22) } ; \\
& \qquad V 2:=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{d+2 \zeta \omega}{\omega^{2}} & \frac{1}{\omega^{2}} \\
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

then the matrix $V_{2}$ is unimodular, i.e., $V_{2} \in \mathrm{GL}_{3}(A)$, and its inverse $V_{2}^{-1}$ is defined by:

```
> V2_inv := LeftInverse(V2,A);
```

$$
V 2_{-} i n v:=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
-2 \zeta \omega-d & \omega^{2} & 0
\end{array}\right]
$$

If we note $X_{2}:=\left(\begin{array}{ll}X_{12} & X_{22}\end{array}\right)$, i.e.,
$>\mathrm{X} 2:=$ augment $(\mathrm{X} 12, \mathrm{X} 22)$;

$$
X 2:=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
-2 \zeta \omega-d & \omega^{2} & 0
\end{array}\right]
$$

then we can check that $X_{2}=V_{2}^{-1}$ :

```
> simplify(evalm(V2_inv-X2));
```

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The matrix $R$ is then equivalent to the block diagonal matrix $\bar{R}_{2}:=V_{2} R W_{2}$, i.e.:
> R2_bar := Mult(V2,R,W2,A);

$$
R 2_{-} b a r:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & d+a & k a \delta
\end{array}\right]
$$

We note that the second diagonal block of $\bar{R}_{2}$ is equal to $\Phi_{2} R Z_{2}$ :

```
> Mult(Phi2,R,Z2,A);
```

$$
\left[\begin{array}{ll}
d+a & k a \delta
\end{array}\right]
$$

Finally, if we form the two matrices defined in 71, i.e.,

$$
\begin{aligned}
& >\mathrm{J} 2:=\text { stackmatrix }(\operatorname{augment}(\mathrm{R},-\mathrm{X} 22) \text {, augment }(\mathrm{U} 22, \text { evalm }([[0] \$ 2]))) ; \\
& \\
& J 2:=\left[\begin{array}{ccccc}
d+a & k a \delta & 0 & 0 & -1 \\
0 & d & -1 & 0 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2} & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

and
$>$ K2 := stackmatrix(augment(Mult(W12,V12,A),W22), augment(-V22, Mult(V22,R,W22,A)));

$$
K 2:=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & d \\
0 & -\frac{d+2 \zeta \omega}{\omega^{2}} & -\frac{1}{\omega^{2}} & 0 & \frac{d^{2}}{\omega^{2}}+2 \frac{\zeta d}{\omega}+1 \\
-1 & 0 & 0 & d+a & k a \delta
\end{array}\right]
$$

then we can check that $J_{2} K_{2}=I_{5}$ :
$>$ Mult(J2,K2,A);

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Hence, it shows that we can take $\Lambda=X_{22}$ for Serre's reduction. Moreover, $\Lambda$ admits the left inverse $V_{22}$ :

```
> Mult(V22,X22,A);
```


### 8.2 Wind tunnel model: Serre's reduction

Let us consider the ring $A$ of OD time-delay operators with coefficients in the field $\mathbb{Q}(a, k, \omega, \zeta)$, i.e.,
$>A:=$ DefineOreAlgebra(diff=[d,t],dual_shift=[delta, $s]$, polynom=[t,s],
$>$ comm=[a,k,omega,zeta]):
and the matrix $R \in A^{3 \times 4}$ defined in Example 6, i.e.,
$>R:=$ evalm([[d+a,k*a*delta, 0,0],[0,d,-1,0],[0,omega^2,d+2*zeta*omega,-omega^2]]);

$$
R:=\left[\begin{array}{cccc}
d+a & k a \delta & 0 & 0 \\
0 & d & -1 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2}
\end{array}\right]
$$

which finitely presents the $A$-module $M:=A^{1 \times 4} /\left(A^{1 \times 3} R\right)$. Let us introduce the matrix $R^{T}$
> R_trans := transpose(R);

$$
R_{-} \text {trans }:=\left[\begin{array}{ccc}
d+a & 0 & 0 \\
k a \delta & d & \omega^{2} \\
0 & -1 & d+2 \zeta \omega \\
0 & 0 & -\omega^{2}
\end{array}\right]
$$

and the $A$-module $N:=A^{1 \times 3} /\left(A^{1 \times 4} R^{T}\right)$ finitely presented by $R^{T}$. We can check that $N$ is a finitedimensional $\mathbb{Q}(a, k, \omega, \zeta)$-vector space:

```
> KBasis(R_trans,A);
```

$$
\left[\lambda_{1}\right]
$$

The above result means that the residue class of the vector (1 $\left.\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ in $N$ generates $N$ as a $\mathbb{Q}(a, k, \omega, \zeta)$ vector space. Hence, let us consider the vector $\Lambda$ defined by:
> Lambda := evalm([[1],[0],[0]]);

$$
\Lambda:=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Now, we can check that the matrix $P:=\left(\begin{array}{ll}R & -\Lambda\end{array}\right) \in A^{3 \times 5}$ defined by

```
\(>P:=\) augment (R,-Lambda);
```

$$
P:=\left[\begin{array}{ccccc}
d+a & k a \delta & 0 & 0 & -1 \\
0 & d & -1 & 0 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2} & 0
\end{array}\right]
$$

admits a right inverse $S \in A^{5 \times 3}$ defined by:
> S := RightInverse(P,A);

$$
S:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & -\frac{d+2 \zeta \omega}{\omega^{2}} & -\frac{1}{\omega^{2}} \\
-1 & 0 & 0
\end{array}\right]
$$

Thus, the $A$-module $E:=A^{1 \times 5} /\left(A^{1 \times 3} P\right)$ is stably free, i.e., free by the Quillen-Suslin theorem (see 2 of Theorem 22. Let us compute a basis of $E$.

```
> Q := MinimalParametrization(P,A);
```

$$
Q:=\left[\begin{array}{cc}
1 & 0 \\
0 & \omega^{2} \\
0 & d \omega^{2} \\
0 & \omega^{2}+d^{2}+2 \zeta d \omega \\
d+a & k a \delta \omega^{2}
\end{array}\right]
$$

We first have $\operatorname{ker}_{A}(. Q)=\operatorname{im}_{A}(. P)$. Let us now check whether or not the matrix $Q$ admits a left inverse:
$>\mathrm{T}:=\operatorname{LeftInverse}(\mathrm{Q}, \mathrm{A})$;

$$
T:=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\omega^{2}} & 0 & 0 & 0
\end{array}\right]
$$

We have $T Q=I_{2}$, which proves that the residue classes of the two rows of $T$ in $E$ define a basis of $E$.
Let us write $Q:=\left(\begin{array}{ll}Q_{1}^{T} & Q_{2}^{T}\end{array}\right)^{T}$, where $Q_{1} \in A^{4 \times 2}$ is defined by

```
> Q1 := submatrix(Q,1..coldim(R),1..2);
```

$$
Q 1:=\left[\begin{array}{cc}
1 & 0 \\
0 & \omega^{2} \\
0 & d \omega^{2} \\
0 & \omega^{2}+d^{2}+2 \zeta d \omega
\end{array}\right]
$$

and $Q_{2} \in A^{1 \times 2}$ by:

$$
\begin{array}{r}
>\mathrm{Q} 2:=\operatorname{submatrix}(\mathrm{Q}, \operatorname{col} \operatorname{dim}(\mathrm{R})+1 \ldots \operatorname{coldim}(\mathrm{R})+1,1 \ldots 2) ; \\
Q 2:=\left[\begin{array}{cc}
d+a & k a \delta \omega^{2}
\end{array}\right]
\end{array}
$$

By Theorem 11, we have $M \cong A^{1 \times 2} /\left(A Q_{2}\right)$, i.e., $M$ can be generated by 2 generators and 1 relation defined by $Q_{2}$, i.e., the wind tunnel model is equivalent to $\dot{z}(t)+a z(t)+k a \omega^{2} v(t-1)=0$.
If we form the matrix $Z=\left(\begin{array}{ll}S & Q\end{array}\right)$, i.e.,
$>\mathrm{Z}:=\operatorname{augment}(\mathrm{S}, \mathrm{Q})$;

$$
Z:=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \omega^{2} \\
0 & -1 & 0 & 0 & d \omega^{2} \\
0 & -\frac{d+2 \zeta \omega}{\omega^{2}} & -\frac{1}{\omega^{2}} & 0 & \omega^{2}+d^{2}+2 \zeta d \omega \\
-1 & 0 & 0 & d+a & k a \delta \omega^{2}
\end{array}\right]
$$

then we can check again that $P Z=\left(\begin{array}{ll}I_{3} & 0\end{array}\right)$

```
> Mult(P,Z,A);
```

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

and that the matrix $Z$ is unimodular, i.e., $Z \in \mathrm{GL}_{5}(A)$. In particular, its inverse $Z^{-1}$ is defined by:

$$
\begin{aligned}
& >\text { Z_inv := LeftInverse }(\mathrm{Z}, \mathrm{~A}) ; \\
& \qquad Z_{-} i n v:=\left[\begin{array}{ccccc}
d+a & k a \delta & 0 & 0 & -1 \\
0 & d & -1 & 0 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2} & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\omega^{2}} & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

We can check that the vector $\Lambda$ admits a left inverse $\Gamma$ defined by:

$$
\begin{aligned}
& >\text { Gamma }:=\text { LeftInverse(Lambda, } A) ; \\
& \qquad \Gamma:=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

By Theorem 12 and Remark 9 , the matrix $R$ is equivalent to the matrix $\operatorname{diag}\left(I_{2}, Q_{2}\right)$. Let us compute two unimodular matrices $V \in \mathrm{GL}_{3}(A)$ and $W \in \mathrm{GL}_{4}(A)$ such that $V R W=\operatorname{diag}\left(I_{2}, Q_{2}\right)$. Since $\Lambda$ admits a left inverse, we know that $\operatorname{ker}_{A}(. \Lambda)$ is a stably free $A$-module, i.e., free by the Quillen-Suslin theorem. Let us compute a basis of $\operatorname{ker}_{A}(. \Lambda)$. Let us first compute $\operatorname{ker}_{A}(. \Lambda)$.
> Theta := SyzygyModule(Lambda,A);

$$
\Theta:=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We get $\operatorname{ker}_{A}(. \Lambda)=\operatorname{im}_{A}(. \Theta)$. Let us now check whether or not the rows of $\Theta$ are $A$-linearly independent, i.e., if they define a basis of $\operatorname{ker}_{A}(. \Lambda)$. We have:

```
> SyzygyModule(Theta,A);
```


## INJ (2)

Thus, the matrix $\Theta$ has full row rank, which shows that the rows of $\Theta$ define a basis of $\operatorname{ker}_{A}(. \Lambda)$.
Let us now note the matrix $\Theta$ by $V_{1}$, i.e.:
> V1 := evalm(Theta);

$$
V 1:=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Now, if we form the matrix $U_{1}:=\Theta R$, i.e.,
> U1 := Mult(Theta, R,A);

$$
U 1:=\left[\begin{array}{cccc}
0 & d & -1 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2}
\end{array}\right]
$$

then the matrix $U_{1}$ defines a basis of $\operatorname{ker}_{A}\left(. Q_{1}\right)$, i.e., $\operatorname{ker}_{A}\left(. Q_{1}\right)=\operatorname{im}_{A}\left(. U_{1}\right)$ and $U_{1}$ has full row rank:
> SyzygyModule(U1,A);

$$
I N J(2)
$$

In particular, the matrix $U_{1}$ admits a right inverse $W_{1} \in A^{4 \times 2}$ :

```
 > W1 := RightInverse(U1,A);
```

$$
W 1:=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
-1 & 0 \\
-\frac{d+2 \zeta \omega}{\omega^{2}} & -\frac{1}{\omega^{2}}
\end{array}\right]
$$

Let us now compute the matrix $U_{2}$ which is such that $I_{4}-W_{1} U_{1}=Q_{1} U_{2}$ :

```
> U2 := Involution(Factorize(Involution(evalm(1-Mult(W1,U1,A)),A),
> Involution(Q1,A),A),A);
```

$$
U 2:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\omega^{2}} & 0 & 0
\end{array}\right]
$$

Now, let us define the matrix $X_{1}:=R W_{1}$, i.e.,

```
> X1 := Mult(R,W1,A);
```

$$
X 1:=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

and the matrix $V_{2}:=\Gamma\left(I_{3}-X_{1} V_{1}\right)$ :

$$
\begin{array}{r}
>\mathrm{V} 2:=\mathrm{Mult}(\text { Gamma, } \operatorname{evalm}(1-\operatorname{Mult}(\mathrm{X} 1, \mathrm{~V} 1, \mathrm{~A})), \mathrm{A}) ; \\
\qquad V 2:=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{array}
$$

Let us note $X_{2}:=\Lambda$

```
> X2 := evalm(Lambda);
```

$$
X 2:=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

and $W_{2}:=Q_{1}$ :

```
> W2 := evalm(Q1);
```

$$
W 2:=\left[\begin{array}{cc}
1 & 0 \\
0 & \omega^{2} \\
0 & d \omega^{2} \\
0 & \omega^{2}+d^{2}+2 \zeta d \omega
\end{array}\right]
$$

Now, we can check again that we have $Q_{2}=\Gamma R Q_{1}$ :
> Q2 := Mult(Gamma,R, Q1, A);

$$
Q 2:=\left[\begin{array}{ll}
d+a & k a \delta \omega^{2}
\end{array}\right]
$$

If we note $U:=\left(\begin{array}{ll}U_{1}^{T} & U_{2}^{T}\end{array}\right)^{T}$, i.e.,
> U := stackmatrix(U1, U2);

$$
U:=\left[\begin{array}{cccc}
0 & d & -1 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2} \\
1 & 0 & 0 & 0 \\
0 & \frac{1}{\omega^{2}} & 0 & 0
\end{array}\right]
$$

then we can check that $U$ is unimodular, i.e., $U \in \mathrm{GL}_{4}(A)$. In particular, its inverse is defined by:

```
> U_inv := LeftInverse(U,A);
```

$$
U_{-} i n v:=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \omega^{2} \\
-1 & 0 & 0 & d \omega^{2} \\
-\frac{d+2 \zeta \omega}{\omega^{2}} & -\frac{1}{\omega^{2}} & 0 & \omega^{2}+d^{2}+2 \zeta d \omega
\end{array}\right]
$$

If we note $W:=\left(\begin{array}{ll}W_{1} & W_{2}\end{array}\right)$, i.e.:

```
> W := augment(W1,W2);
```

$$
W:=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \omega^{2} \\
-1 & 0 & 0 & d \omega^{2} \\
-\frac{d+2 \zeta \omega}{\omega^{2}} & -\frac{1}{\omega^{2}} & 0 & \omega^{2}+d^{2}+2 \zeta d \omega
\end{array}\right]
$$

then we can check again that we have $W=U^{-1}$ :
> simplify(evalm(W-U_inv));

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

In particular, it proves that $W \in \mathrm{GL}_{4}(A)$. Now, let us define the matrix $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T}$.
> V := stackmatrix(V1,V2);

$$
V:=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

The matrix $V$ is unimodular, i.e., $V \in \mathrm{GL}_{3}(A)$, and its inverse is defined by:

```
> V_inv := LeftInverse(V,A);
```

$$
V_{-} i n v:=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Let us note $X:=\left(\begin{array}{ll}X_{1} & X_{2}\end{array}\right)$, i.e.:
$>\mathrm{X}:=\operatorname{augment}(\mathrm{X} 1, \mathrm{X} 2)$;

$$
X:=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

We can check again that we have $X=V^{-1}$.
> simplify(evalm(X-V_inv));

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We then have $\bar{R}:=V R W=\operatorname{diag}\left(I_{2}, Q_{2}\right)$ :
> R_bar := Mult(V,R,W,A);

$$
R_{-} b a r:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & d+a & k a \delta \omega^{2}
\end{array}\right]
$$

Now, let us check again that the matrix $\Delta:=-W_{1} V_{1}$, i.e.,

```
 > Delta := Mult(-1,W1,V1,A);
```

$$
\Delta:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{d+2 \zeta \omega}{\omega^{2}} & \frac{1}{\omega^{2}}
\end{array}\right]
$$

satisfies the algebraic Riccati equation $\Delta R \Delta=-\Delta$ :
$>\operatorname{simplify}($ evalm(Mult(Delta,R,Delta,A)+Delta));

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence, if we define the matrix $\bar{P}:=Q_{1} U_{2}$, i.e.,
$>$ P_bar $:=\operatorname{Mult}(\mathrm{Q} 1, \mathrm{U} 2, \mathrm{~A})$;

$$
P_{-} b a r:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & \frac{\omega^{2}+d^{2}+2 \zeta d \omega}{\omega^{2}} & 0 & 0
\end{array}\right]
$$

then we can check again that $\bar{P}=I_{4}+\Delta R$

```
> simplify(evalm(P_bar-evalm(1+Mult(Delta,R,A))));
```

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and that $\bar{P}$ is an idempotent matrix, i.e., $\bar{P}^{2}=\bar{P}$ :

```
> simplify(evalm(Mult(P_bar,P_bar,A)-P_bar));
```

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Similarly, if we note $\bar{Q}:=X_{2} V_{2}$, i.e.,

```
> Q_bar := Mult(X2,V2,A);
```

$$
Q_{-} b a r:=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

then we can check again that we have $\bar{Q}=I_{3}+R \Delta$

## > simplify(evalm(Q_bar-evalm(1+Mult(R,Delta,A))));

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and that the matrix $\bar{Q}$ is an idempotent matrix:
> simplify(evalm(Mult(Q_bar,Q_bar,A)-Q_bar));

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Moreover, we have $R \bar{P}=\bar{Q} R$ :
> simplify(evalm(Mult(R,P_bar,A)-Mult(Q_bar,R,A)));

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Finally, let us check again that the $A$-modules $\operatorname{ker}_{A}(. \bar{P}), \operatorname{im}_{A}(. \bar{P}), \operatorname{ker}_{A}(. \bar{Q})$ and $\operatorname{im}_{A}(. \bar{Q})$ are free.
Let us first compute $\operatorname{ker}_{A}(. \bar{P})$.
> SyzygyModule(P_bar,A);

$$
\left[\begin{array}{cccc}
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2} \\
0 & d & -1 & 0
\end{array}\right]
$$

We then have $\operatorname{ker}_{A}(\cdot \bar{P})=\operatorname{im}_{A}\left(U_{1}\right)$, where the full row rank matrix $U_{1}$ is defined by:
$>$ evalm(U1);

$$
\left[\begin{array}{cccc}
0 & d & -1 & 0 \\
0 & \omega^{2} & d+2 \zeta \omega & -\omega^{2}
\end{array}\right]
$$

Let us now compute $\operatorname{im}_{A}(. \bar{P})=\operatorname{ker}_{A}\left(.\left(I_{4}-\bar{P}\right)\right)$.
> SyzygyModule(evalm(1-P_bar),A);

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

We get $\operatorname{im}_{A}(. \bar{P})=\operatorname{im}_{A}\left(. U_{2}\right)$, where the full row rank matrix $U_{2}$ is defined by:
$>$ evalm(U2);

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{\omega^{2}} & 0 & 0
\end{array}\right]
$$

Similarly, let us compute $\operatorname{ker}_{A}(. \bar{Q})$.

```
> SyzygyModule(Q_bar,A);
```

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We get $\operatorname{ker}_{A}(\cdot \bar{Q})=\operatorname{im}_{A}\left(. V_{1}\right)$, where the full row rank matrix $V_{1}$ is defined by:

```
> evalm(V1);
```

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Finally, let us compute $\operatorname{im}_{A}(. \bar{Q})=\operatorname{ker}_{A}\left(.\left(I_{3}-\bar{Q}\right)\right)$.

```
> SyzygyModule(evalm(1-Q_bar),A);
 [1 0 0 []
```

We have $\operatorname{im}_{A}(. \bar{Q})=\operatorname{im}_{A}\left(. V_{2}\right)$, where $V_{2}$ is the full row rank matrix defined by:

```
> evalm(V2);
```

Hence, we obtain that the $A$-modules $\operatorname{ker}_{A}(. \bar{P}), \operatorname{im}_{A}(. \bar{P}), \operatorname{ker}_{A}(. \bar{Q})$ and $\operatorname{im}_{A}(. \bar{Q})$ are free and can respectively be generated by means of the full row rank matrices $U_{1}, U_{2}, V_{1}$ and $V_{2}$.

### 8.3 Oseen equations

Let us consider the ring $A$ of PD operators with coefficients in the field $\mathbb{Q}\left(\nu, b_{1}, b_{2}\right)$

```
> A := DefineOreAlgebra(diff=[dt,t],diff=[dx,x],diff=[dy,y],polynom=[t,x,y],
> comm=[nu,b1,b2]):
```

the Laplacian operator $\Delta$ defined by

```
> Delta := dx^2+dy^2;
```

$$
\Delta:=d x^{2}+d y^{2}
$$

and the matrix $R \in A^{3 \times 3}$ defined by 76 , i.e.,

$$
\begin{aligned}
& >\mathrm{R}:=\operatorname{evalm}([[\mathrm{dt}+\mathrm{b} 1 * \mathrm{dx}+\mathrm{b} 2 * \mathrm{dy}-\mathrm{nu} * \operatorname{Delta}, 0, \mathrm{dx}],[0, \mathrm{dt}+\mathrm{b} 1 * \mathrm{dx}+\mathrm{b} 2 * \mathrm{dy}-\mathrm{nu} * \mathrm{De} 1 \mathrm{ta}, \mathrm{dy}], \\
& >\mathrm{dx}, \mathrm{dy}, 0]]) ; \\
& R:=\left[\begin{array}{ccc}
d t+b 1 d x+b 2 d y-\nu\left(d x^{2}+d y^{2}\right) & 0 & d x \\
0 & d t+b 1 d x+b 2 d y-\nu\left(d x^{2}+d y^{2}\right) & d y \\
d x & d y & 0
\end{array}\right]
\end{aligned}
$$

which finitely presents the $A$-module $M=A^{1 \times 3} /\left(A^{1 \times 3} R\right)$. Let us compute a family of generators of the $A$-module $\operatorname{end}_{A}(M)$ :

```
> E := MorphismsConstCoeff(R,R,A):
> F := E[1];
```

$$
\begin{gathered}
F:=\left[\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
0 & d y & 0 \\
0 & -d x & 0 \\
0 & 0 & -d x
\end{array}\right],\left[\begin{array}{ccc}
0 & -d y & 0 \\
0 & d x & 0 \\
0 & 0 & d x
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & d x \\
0 & 0 & d y \\
0 & 0 & -d t-b 1 d x-b 2 d y
\end{array}\right]\right. \\
{\left[\begin{array}{cc}
0 & d y \nu d x \\
0 & \nu d y^{2}-d t-b 1 d x-b 2 d y \\
0 & -d y \\
0 & \nu d y^{2}
\end{array}\right],\left[\begin{array}{ccc}
0 & -\nu d y^{3}+d y d t+d y^{2} b 2 & d y^{2} \\
0 & -b 2 d x d y-d x d t+d y^{2} d x \nu & -d y d x \\
0 & 0 & -b 1 d y^{2}+d y^{2} d x \nu
\end{array}\right]}
\end{gathered}
$$

Then, the $A$-module $\operatorname{end}_{A}(M)$ is generated by the $A$-endomorphisms $f_{i}$ 's defined by $f_{i}(\pi(\lambda))=\pi\left(\lambda F_{i}\right)$, where $\pi: A^{1 \times 3} \longrightarrow M$ is the canonical projection and the $F_{i}$ 's are the above matrices.

The relations between the generators $\left\{f_{i}\right\}_{i=1, \ldots, 6}$ of end ${ }_{A}(M)$ are defined by:

$$
\begin{aligned}
& >\mathrm{E}[2] ; \\
& E[2]:=\left[\begin{array}{cccccc}
d x & 0 & -1 & 0 & 0 & 0 \\
\nu d y^{2}-d t-b 2 d y & 0 & -b 1 & -1 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & -\nu d x & 0 & -1 & 0 \\
0 & 0 & \nu^{2} d y^{2}-b 1 d x \nu-d t \nu-b 2 d y \nu & -\nu d x & -b 1 & -\nu \\
0 & 0 & -d x \nu^{2} d y^{2} & -\nu d y^{2} & -b 2 d y-d t & \nu d x \\
0 & 0 & 0 & 0 & -b 1+\nu d x & -\nu
\end{array}\right]
\end{aligned}
$$

We note that the second and third entries of $F$ are the same up to a sign. Hence, we can remove the second entry of $F$ to obtain the following family of generators:

$$
\begin{gathered}
>\mathrm{G}:=[\mathrm{F}[1], \mathrm{F}[3], \mathrm{F}[4], \mathrm{F}[5], \mathrm{F}[6]] ; \\
G:=\left[\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
0 & -d y & 0 \\
0 & d x & 0 \\
0 & 0 & d x
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & d x \\
0 & 0 & d y \\
0 & 0 & -d t-b 1 d x-b 2 d y
\end{array}\right]\right. \\
{\left[\begin{array}{ccc}
0 & d y \nu d x & \\
0 & \nu d y^{2}-d t-b 1 d x-b 2 d y & -d y \\
0 & 0 & \nu d y^{2}
\end{array}\right],\left[\begin{array}{ccc}
0 & -\nu d y^{3}+d y d t+d y^{2} b 2 & d y^{2} \\
0 & -b 2 d x d y-d x d t+d y^{2} d x \nu & -d y d x \\
0 & 0 & -b 1 d y^{2}+d y^{2} d x \nu
\end{array}\right]}
\end{gathered}
$$

Hence, if $f_{i} \in \operatorname{end}_{A}(M)$ is defined by $f_{i}(\pi(\lambda))=\pi\left(\lambda G_{i}\right)$ for $i=1, \ldots, 5$, then $\left\{f_{i}\right\}_{i=1, \ldots, 5}$ is a family of generators of $\operatorname{end}_{A}(M)$. Let us compute the $A$-linear relations among the new generators.

$$
\begin{aligned}
& >\mathrm{L}:=\text { RelationsMatrix }(\mathrm{R}, \mathrm{R}, \mathrm{G}, \mathrm{~A}) ; \\
& L \\
& L:=\left[\begin{array}{ccccc}
d x & -1 & 0 & 0 & 0 \\
\nu d y^{2}-d t-b 2 d y & -b 1 & -1 & -1 & 0 \\
0 & -\nu d x & 0 & -1 & 0 \\
0 & \nu^{2} d y^{2}-b 1 d x \nu-d t \nu-b 2 d y \nu & -\nu d x & -b 1 & -\nu \\
0 & -d x \nu^{2} d y^{2} & -\nu d y^{2} & -b 2 d y-d t & \nu d x \\
0 & 0 & 0 & -b 1+\nu d x & -\nu
\end{array}\right]
\end{aligned}
$$

We obtain that $\operatorname{end}_{A}(M) \cong A^{1 \times 5} /\left(A^{1 \times 6} L\right)$. Now, let us prove that end $A_{A}(M)$ is a cyclic $A$-module. To do that, let us introduce the following vector $\Lambda \in A^{1 \times 5}$

```
> Lambda := evalm([[1,0,0,0,0]]);
\[
\Lambda:=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right]
\]
```

and consider the matrix $P:=\left(\begin{array}{ll}L^{T} & \Lambda^{T}\end{array}\right)^{T}$ defined by:

$$
\begin{aligned}
& >P:=\text { stackmatrix(L,Lambda); } \\
& P:=\left[\begin{array}{ccccc}
d x & -1 & 0 & 0 & 0 \\
\nu d y^{2}-d t-b 2 d y & -b 1 & -1 & 0 \\
0 & -\nu d x & 0 & -1 & 0 \\
0 & \nu^{2} d y^{2}-b 1 d x \nu-d t \nu-b 2 d y \nu & -\nu d x & -b 1 & -\nu \\
0 & -d x \nu^{2} d y^{2} & -\nu d y^{2} & -b 2 d y-d t & \nu d x \\
0 & 0 & 0 & -b 1+\nu d x & -\nu \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Now, we can check that the matrix $P$ admits a left inverse $X \in A^{5 \times 7}$ defined by:

```
> X := LeftInverse(P,A);
```

$$
X:=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & d x \\
b 1-\nu d x & -1 & 1 & 0 & 0 & 0 & -d t-b 1 d x-b 2 d y+\nu d x^{2}+\nu d y^{2} \\
\nu d x & 0 & -1 & 0 & 0 & 0 & -\nu d x^{2} \\
-d x(b 1-\nu d x) & 0 & \frac{b 1-\nu d x}{\nu} & 0 & 0 & -\nu^{-1} & d x^{2}(b 1-\nu d x)
\end{array}\right]
$$

Let us note $X=\left(\begin{array}{ll}X_{1}^{T} & X_{2}^{T}\end{array}\right)^{T}$, where $X_{1} \in A^{5 \times 6}$ and $X_{2} \in A^{5}$, i.e.:
> X 1 := submatrix $(\mathrm{X}, 1 \ldots \operatorname{rowdim}(\mathrm{X}), 1 \ldots 6)$;

$$
X 1:=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
b 1-\nu d x & -1 & 1 & 0 & 0 & 0 \\
\nu d x & 0 & -1 & 0 & 0 & 0 \\
-d x(b 1-\nu d x) & 0 & \frac{b 1-\nu d x}{\nu} & 0 & 0 & -\nu^{-1}
\end{array}\right]
$$

$>$ X2 := submatrix(X,1..rowdim(X),7..7);

$$
X 2:=\left[\begin{array}{c}
1 \\
d x \\
-d t-b 1 d x-b 2 d y+\nu d x^{2}+\nu d y^{2} \\
-\nu d x^{2} \\
d x^{2}(b 1-\nu d x)
\end{array}\right]
$$

Hence, we obtain that $\operatorname{end}_{A}(M)$ is a cyclic $A$-module defined by the generator $f_{1}=\Lambda\left(f_{1} \ldots f_{5}\right)^{T}=\operatorname{id}_{M}$. All these results can directly be obtained by using the command ReducedModuleHom.
> Pp := ReducedModuleHom(R,R,F,A);

$$
P p:=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Let us now compute the annihilator $\operatorname{ann}_{A}\left(\operatorname{id}_{M}\right):=\left\{a \in A \mid a \operatorname{id}_{M}=0\right\}$ of $\operatorname{id}_{M}$ :

```
> Lp := RelationsMatrix(R,R,[Pp],A);
```



```
> d := simplify(Lp[1,1]/Delta)*Delta
 d:= (-dt - b1 dx - b2 dy + \nudx 2}+\nud\mp@subsup{y}{}{2})(d\mp@subsup{x}{}{2}+d\mp@subsup{y}{}{2}
```

We have $\operatorname{ann}_{A}\left(\operatorname{id}_{M}\right)=A d$, which shows that $\operatorname{end}_{A}(M) \cong A /(d)$. From that, following the arguments developed in Section 7.1, we can prove that $M$ is an indecomposable $A$-module.

Finally, let us give two strict factorizations of the matrix $R$. First, let us consider the endomorphism $g_{1}=\Delta \mathrm{id}_{M}$ defined by the matrices $P_{1}=Q_{1}=\Delta I_{3}$, i.e.:

```
 > P1 := diag(Delta$3);
```

$$
P 1:=\left[\begin{array}{ccc}
d x^{2}+d y^{2} & 0 & 0 \\
0 & d x^{2}+d y^{2} & 0 \\
0 & 0 & d x^{2}+d y^{2}
\end{array}\right]
$$

The $A$-module coim $g_{1}$ is then finitely presented by the following matrix $S_{1}$

$$
\begin{aligned}
& >\mathrm{S} 1:=\text { CoimMorphism }(\mathrm{R}, \mathrm{R}, \mathrm{P} 1, \mathrm{~A}) ; \\
& \\
& S 1:=\left[\begin{array}{ccc}
\nu d x & d y \\
d x & 0 & -1 \\
-d t-b 1 d x-b 2 d y+\nu d x^{2}+\nu d y^{2} & 0 \\
0 & -d t-b 1 d x-b 2 d y+\nu d x^{2}+\nu d y^{2} & -d y
\end{array}\right]
\end{aligned}
$$

i.e., we have coim $g_{1}=A^{1 \times 3} /\left(A^{1 \times 4} S_{1}\right)$. Then, we have the factorization $R=L_{1} S_{1}$, where the matrix $L_{1} \in A^{3 \times 4}$ is defined by:

```
 > L1 := Factorize(R,S1,A);
```

$$
L 1:=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

We can check that this factorization $R=L_{1} S_{1}$ is strict, i.e., $D^{1 \times 3} R \subsetneq D^{1 \times 4} S_{1}$ :

```
> Factorize(S1,R,A);
```

Now, if we consider the endomorphism $g_{2}=\left(d_{t}+b_{1} d_{x}+b_{2} d_{y}-\nu \Delta\right) \operatorname{id}_{M}$ defined by the matrices $P_{2}=Q_{2}=\left(d_{t}+b_{1} d_{x}+b_{2} d_{y}-\nu \Delta\right) I_{3}$, i.e.

```
 > P2 := diag(dt+b1*dx+b2*dy-nu*Delta$3);
```

                                    \(P 2:=\)
    $$
\left[\begin{array}{ccc}
d t+b 1 d x+b 2 d y-\nu\left(d x^{2}+d y^{2}\right) & 0 & 0 \\
0 & d t+b 1 d x+b 2 d y-\nu\left(d x^{2}+d y^{2}\right) & 0 \\
0 & 0 & d t+b 1 d x+b 2 d y-\nu\left(d x^{2}+d y^{2}\right)
\end{array}\right]
$$

then the $A$-module coim $g_{2}$ is finitely presented by the following matrix $S_{2}$ :

```
> S2 := CoimMorphism(R,R,P2,A);
```

$$
S 2:=\left[\begin{array}{ccc}
-d y & d x & 0 \\
d y \nu d x-b 1 d y & \nu d y^{2}-d t-b 2 d y & -d y \\
-d x & -d y & 0 \\
-d t-b 1 d x-b 2 d y+\nu d x^{2}+\nu d y^{2} & 0 & -d x
\end{array}\right]
$$

i.e., we have coim $g_{2}=A^{1 \times 3} /\left(A^{1 \times 4} S_{2}\right)$. Then, we have the factorization $R=L_{2} S_{2}$, where the matrix $L_{2} \in A^{3 \times 4}$ is defined by:
> L2 := Factorize(R,S2,A);

$$
L 2:=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
b 1-\nu d x & -1 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Finally, we can check that the factorization $R=L_{2} S_{2}$ is strict, i.e., $D^{1 \times 3} R \subsetneq D^{1 \times 4} S_{2}$ :

```
> Factorize(S2,R,A);
```


### 8.4 Implicit scheme for the Oseen equations

Let us consider the ring $A$ of PD operators with coefficients in the field $\mathbb{Q}(\nu, c)$

```
> A := DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[nu,c]):
```

the Laplacian operator $\Delta$ defined by

```
> Delta := dx^2+dy^2;
```

$$
\Delta:=d x^{2}+d y^{2}
$$

and the matrix $R \in A^{3 \times 3}$ defined by 80 , i.e.,

$$
\begin{aligned}
& >R:=\operatorname{evalm}\left(\left[\left[\mathrm{c}-\mathrm{nu} *\left(\mathrm{dx}^{\wedge} 2+\mathrm{dy}{ }^{\wedge} 2\right), 0, \mathrm{dx}\right],\left[0, \mathrm{c}-\mathrm{nu} *\left(\mathrm{dx}^{\wedge} 2+\mathrm{dy} \wedge 2\right), \mathrm{dy}\right],[\mathrm{dx}, \mathrm{dy}, 0]\right]\right) ; \\
& R:=\left[\begin{array}{ccc}
c-\nu\left(d x^{2}+d y^{2}\right) & 0 & d x \\
0 & c-\nu\left(d x^{2}+d y^{2}\right) & d y \\
d x & d y & 0
\end{array}\right]
\end{aligned}
$$

which finitely presents the $A$-module $M=A^{1 \times 3} /\left(A^{1 \times 3} R\right)$. Let us consider $f \in \operatorname{end}_{A}(M)$ defined by $f(\pi(\lambda))=\pi(\lambda P)$, where $\pi: A^{1 \times 3} \longrightarrow M$ is the canonical projection and the matrix $P=Q=$ $\left(1-\frac{\nu}{c} \Delta\right) I_{3}$, i.e.:

```
> P := diag((1-nu*Delta/c)$3);
```

$$
P:=\left[\begin{array}{ccc}
1-\frac{\nu\left(d x^{2}+d y^{2}\right)}{c} & 0 & 0 \\
0 & 1-\frac{\nu\left(d x^{2}+d y^{2}\right)}{c} & 0 \\
0 & 0 & 1-\frac{\nu\left(d x^{2}+d y^{2}\right)}{c}
\end{array}\right]
$$

The $A$-module coim $f$ is finitely presented by the following matrix

```
> S := CoimMorphism(R,R,P,A);
```

$$
S:=\left[\begin{array}{ccc}
-d y c & d x c & 0 \\
\nu d x d y c & \nu d y^{2} c-c^{2} & -d y c \\
-d x c & -d y c & 0 \\
\nu d x^{2} c-c^{2}+\nu d y^{2} c & 0 & -d x c
\end{array}\right]
$$

i.e., we have coim $f=A^{1 \times 3} /\left(A^{1 \times 4} S\right)$. Then, we have the factorization $R=L S$, where the matrix $L \in A^{3 \times 4}$ is defined by:
> L := Factorize(R,S,A);

$$
L:=\left[\begin{array}{cccc}
0 & 0 & 0 & -\frac{1}{c} \\
-\frac{\nu d x}{c} & -\frac{1}{c} & 0 & 0 \\
0 & 0 & -\frac{1}{c} & 0
\end{array}\right]
$$

To compute a presentation of $\operatorname{ker} f=\left(A^{1 \times 4} S\right) /\left(A^{1 \times 3} R\right)$, let us first compute $\operatorname{ker}_{A}(. S)$ :

$$
\begin{aligned}
& >\mathrm{S} 2:=\operatorname{SyzygyModule}(\mathrm{S}, \mathrm{~A}) ; \\
& \qquad S 2:=\left[\begin{array}{llll}
-c+\nu d y^{2} & -d x & 0 & d y
\end{array}\right]
\end{aligned}
$$

We obtain that $\operatorname{ker}_{A}(. S)=\operatorname{im}_{A}\left(. S_{2}\right)$. Then, we have ker $f \cong A^{1 \times 4} /\left(A^{1 \times 4}\left(L^{T} \quad S_{2}^{T}\right)^{T}\right)$, i.e., a presentation matrix of $\operatorname{ker} f$ is defined by:

```
> Lp := stackmatrix(L,S2);
```

$$
L p:=\left[\begin{array}{cccc}
0 & 0 & 0 & -\frac{1}{c} \\
-\frac{\nu d x}{c} & -\frac{1}{c} & 0 & 0 \\
0 & 0 & -\frac{1}{c} & 0 \\
-c+\nu d y^{2} & -d x & 0 & d y
\end{array}\right]
$$

We recall that the short exact sequence $0 \longrightarrow \operatorname{ker} f \xrightarrow{i} M \xrightarrow{\rho} \operatorname{coim} f \longrightarrow 0$ splits if and only if there exist matrices $U_{1} \in A^{4 \times 3}, U_{2} \in A^{4}$ and $V \in A^{3 \times 4}$ such that $U_{1} L+U_{2} S_{2}+S V=I_{4}$ Quadrat and Robertz (2007b)). Let us check if this last identity holds.

```
> M1 := KroneckerProduct(diag(1$4),Lp,A):
> M2 := KroneckerProduct(transpose(S),diag(1$4),A):
> M := stackmatrix(M1,M2):
> K := transpose(convert(convert(diag(1$4),vector),matrix)):
> J := Factorize(K,M,A);
 J:=[[\begin{array}{cllllllllllllll}{0}&{0}&{0}&{-\frac{1}{c}}&{0}&{0}&{0}&{0}&{dx}&{dy}&{-c}&{0}&{0}&{0}\end{array}]
 0
> u := convert(convert(submatrix(J,1..1,1..16),vector),list);
 u:= [0,0,0, -\frac{1}{c},0,0,0,0,dx,dy,-c,0,0,0,0,\frac{\nudy}{c}]
> v := convert(convert(submatrix(J,1..1,17..coldim(J)),vector),list);
 v : = [- \frac { \nu d y } { c ^ { 2 } } , 0 , 0 , - \frac { 1 } { c ^ { 2 } } , 0 , - \frac { 1 } { c ^ { 2 } } , 0 , 0 , - \frac { \nu ^ { 2 } d x d y } { c ^ { 2 } } , - \frac { \nu d y } { c ^ { 2 } } , 0 , - \frac { \nu d x } { c ^ { 2 } }]
```

Hence, if we define the following matrix $U \in A^{4 \times 4}$ formed by the entries of the row vector $u$

```
> U := matrix(4,4,u);
```

$$
U:=\left[\begin{array}{cccc}
0 & 0 & 0 & -\frac{1}{c} \\
0 & 0 & 0 & 0 \\
d x & d y & -c & 0 \\
0 & 0 & 0 & \frac{\nu d y}{c}
\end{array}\right]
$$

and the matrix $V \in A^{3 \times 4}$ formed by the entries of the row vector $v$

```
> V := matrix(3,4,v);
```

$$
V:=\left[\begin{array}{cccc}
-\frac{\nu d y}{c^{2}} & 0 & 0 & -\frac{1}{c^{2}} \\
0 & -\frac{1}{c^{2}} & 0 & 0 \\
-\frac{\nu^{2} d x d y}{c^{2}} & -\frac{\nu d y}{c^{2}} & 0 & -\frac{\nu d x}{c^{2}}
\end{array}\right]
$$

then we have the identity $U\left(\begin{array}{ll}L^{T} & S_{2}^{T}\end{array}\right)^{T}+S V=I_{4}$, a fact which can be checked again:
> simplify(evalm(Mult(U,Lp,A)+Mult(S,V,A)));

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Thus, we have $M \cong \operatorname{ker} f \oplus \operatorname{coim} f$. All these results can be directly obtained as follows.

$$
\begin{aligned}
& >\mathrm{C}:=\text { ComplementConstCoeff }(\mathrm{S}, \mathrm{R}, \mathrm{~A}) ; \\
& C:\left[\begin{array}{ccc}
-\frac{c-\nu d x^{2}}{c}+1 & \frac{\nu d x d y}{c} & -\frac{d x}{c} \\
\frac{\nu d x d y}{c} & -\frac{c-\nu d y^{2}}{c}+1 & -\frac{d y}{c} \\
-\frac{\nu d x\left(c-\nu d x^{2}-\nu d y^{2}\right)}{c} & -\frac{\nu d y\left(c-\nu d x^{2}-\nu d y^{2}\right)}{c} & 1-\frac{\nu\left(d x^{2}+d y^{2}\right)}{c}
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
d x & d y & -c \\
0 & 0 & 0
\end{array}\right], \\
& \\
& \\
& \left.\left[\begin{array}{cccc}
-\frac{\nu d y}{c^{2}} & 0 & 0 & -\frac{1}{c^{2}} \\
0 & -\frac{1}{c^{2}} & 0 & 0 \\
-\frac{\nu^{2} d x d y}{c^{2}} & -\frac{\nu d y}{c^{2}} & 0 & -\frac{\nu d x}{c^{2}}
\end{array}\right]\right]
\end{aligned}
$$

> U1 := C[2];

$$
U 1:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
d x & d y & -c \\
0 & 0 & 0
\end{array}\right]
$$

$>\mathrm{V}:=\mathrm{C}[3]$;

$$
V:=\left[\begin{array}{cccc}
-\frac{\nu d y}{c^{2}} & 0 & 0 & -\frac{1}{c^{2}} \\
0 & -\frac{1}{c^{2}} & 0 & 0 \\
-\frac{\nu^{2} d x d y}{c^{2}} & -\frac{\nu d y}{c^{2}} & 0 & -\frac{\nu d x}{c^{2}}
\end{array}\right]
$$

$>$ U2 := Factorize(evalm(1-Mult(S,V,A)-Mult(U1,L,A)),S2,A);

$$
U 2:=\left[\begin{array}{c}
-\frac{1}{c} \\
0 \\
0 \\
\frac{\nu d y}{c}
\end{array}\right]
$$

> $\mathrm{U}:=$ augment $(\mathrm{U} 1, \mathrm{U} 2)$;

$$
U:=\left[\begin{array}{cccc}
0 & 0 & 0 & -\frac{1}{c} \\
0 & 0 & 0 & 0 \\
d x & d y & -c & 0 \\
0 & 0 & 0 & \frac{\nu d y}{c}
\end{array}\right]
$$

Now, we can check that we have $P^{2}=P+Z R$, where $Z \in A^{3 \times 3}$ is defined by:
> $Z$ := map(factor,Factorize(evalm(Mult(P,P,A)-P),R,A));

$$
Z:=\left[\begin{array}{ccc}
-\frac{\nu d y^{2}}{c^{2}} & \frac{\nu d x d y}{c^{2}} & -\frac{d x \nu\left(c-\nu d x^{2}-\nu d y^{2}\right)}{c^{2}} \\
\frac{\nu d x d y}{c^{2}} & -\frac{\nu d x^{2}}{c^{2}} & -\frac{d y \nu\left(c-\nu d x^{2}-\nu d y^{2}\right)}{c^{2}} \\
-\frac{d x \nu\left(c-\nu d x^{2}-\nu d y^{2}\right)}{c^{2}} & -\frac{d y \nu\left(c-\nu d x^{2}-\nu d y^{2}\right)}{c^{2}} & \frac{\nu\left(c-\nu d x^{2}-\nu d y^{2}\right)^{2}}{c^{2}}
\end{array}\right]
$$

Thus, the matrix $P$ defines an idempotent $A$-endomorphism $f$ of $M$.
We can check that the matrix $\Lambda \in A^{3 \times 3}$ defined by
$>$ Lambda := evalm(evalm([[-1, 0,0],[0,-1,0],[nu*dx,nu*dy,nu*(nu*Delta-c)]])/c);

$$
\Lambda:=\left[\begin{array}{ccc}
-\frac{1}{c} & 0 & 0 \\
0 & -\frac{1}{c} & 0 \\
\frac{\nu d x}{c} & \frac{\nu d y}{c} & \frac{\nu\left(\nu\left(d x^{2}+d y^{2}\right)-c\right)}{c}
\end{array}\right]
$$

satisfies the algebraic Riccati equation $\Lambda R \Lambda+\left(P-I_{3}\right) \Lambda+\Lambda Q+Z=0$ :

```
> simplify(evalm(Mult(Lambda,R,Lambda,A)+Mult(evalm(P-1),Lambda,A)
> +Mult(Lambda,P,A)+Z));
```

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence, the idempotent endomorphism $f$ of $M$ can be defined by the idempotent matrix $\bar{P}:=P+\Lambda R$
> P_bar := simplify (evalm(P+Mult(Lambda, R,A)));

$$
\text { P_bar }:=\left[\begin{array}{ccc}
0 & 0 & -\frac{d x}{c} \\
0 & 0 & -\frac{d y}{c} \\
0 & 0 & 1
\end{array}\right]
$$

and the idempotent matrix $\bar{Q}:=Q+R \Lambda$ defined by:

```
> Q_bar := simplify(evalm(P+Mult(R,Lambda,A)));
```

$$
Q_{-} \text {bar }:=\left[\begin{array}{ccc}
\frac{\nu d x^{2}}{c} & \frac{\nu d x d y}{c} & -\frac{d x \nu\left(c-\nu d x^{2}-\nu d y^{2}\right)}{c} \\
\frac{\nu d x d y}{c} & \frac{\nu d y^{2}}{c} & -\frac{d y \nu\left(c-\nu d x^{2}-\nu d y^{2}\right)}{c} \\
-\frac{d x}{c} & -\frac{d y}{c} & \frac{c-\nu d x^{2}-\nu d y^{2}}{c}
\end{array}\right]
$$

Let us check that we have $\bar{P}^{2}=\bar{P}$ :

```
> simplify(evalm(Mult(P_bar,P_bar,A)-P_bar));
```

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Let us also check that we have $\bar{Q}^{2}=\bar{Q}$ :
> simplify(evalm(Mult(Q_bar,Q_bar,A)-Q_bar));

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Moreover, let us check that we have $R \bar{P}=\bar{Q} R$ :
> simplify(evalm(Mult(R,P_bar,A)-Mult(Q_bar,R,A)));

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Hence, the matrix $R$ is equivalent to a block diagonal matrix. Let us compute this block diagonal matrix.
Since $\bar{P}$ and $\bar{Q}$ are idempotent matrices of $A^{3 \times 3}$, we know that $\operatorname{ker}_{A}(. \bar{P})$ and $\operatorname{ker}_{A}(. \bar{Q})$ are projective, i.e., free $A$-modules by the Quillen-Suslin theorem (see 2 of Theorem 2). Let us compute a basis of $\operatorname{ker}_{A}(. \bar{P})$ and of $\operatorname{ker}_{A}(. \bar{Q})$. To do that, let us first compute $\operatorname{ker}_{A}(. \bar{P})$ and of $\operatorname{ker}_{A}(. \bar{Q})$.
> X := SyzygyModule(P_bar,A);

$$
X:=\left[\begin{array}{ccc}
c & 0 & d x \\
-d y & d x & 0 \\
0 & c & d y
\end{array}\right]
$$

We obtain $\operatorname{ker}_{A}(. \bar{P})=\operatorname{im}_{A}(. X)$. Now, let us compute $\operatorname{ker}_{A}(\cdot \bar{Q})$.
> Y := SyzygyModule(Q_bar,A);

$$
Y:=\left[\begin{array}{ccc}
1 & 0 & \nu d x \\
-d y & d x & 0 \\
0 & 1 & \nu d y
\end{array}\right]
$$

We obtain that $\operatorname{ker}_{A}(\cdot \bar{Q})=\operatorname{im}_{A}(. Y)$. Now, we can check that neither $X$ nor $Y$ has full row rank:
> SyzygyModule(X,A);

$$
\begin{aligned}
& {\left[\begin{array}{lll}
-d y & -c & d x
\end{array}\right]} \\
& {\left[\begin{array}{lll}
-d y & -1 & d x
\end{array}\right]}
\end{aligned}
$$

> SyzygyModule(Y,A);

In particular, $X$ (resp., $Y$ ) does not define a basis of $\operatorname{ker}_{A}(. \bar{P})\left(\right.$ resp., $\left.\operatorname{ker}_{A}(. \bar{Q})\right)$. But, from the last but one matrix, we obtain that the second row of $X$ is a $A$-linear combination of the first and third rows of $X$. Thus, if we consider the matrix $U_{1} \in A^{2 \times 3}$ formed by the first and third rows of $X$, i.e.,

$$
\begin{aligned}
& >\mathrm{U} 1:=\operatorname{submatrix}(\mathrm{X},[1,3], 1 \ldots 3) ; \\
& \qquad U 1:=\left[\begin{array}{ccc}
c & 0 & d x \\
0 & c & d y
\end{array}\right]
\end{aligned}
$$

then $U_{1}$ defines a basis of $\operatorname{ker}_{A}(. \bar{P})$, i.e., $\operatorname{ker}_{A}(. \bar{P})=\operatorname{im}_{A}\left(. U_{1}\right)$. Similarly, we can check that the second row of $Y$ is a $A$-linear combination of the first and third rows of $Y$. Thus, if we consider the matrix $V_{1} \in A^{2 \times 3}$ formed by the first and third rows of $Y$, i.e.,

```
> V1 := submatrix(Y,[1,3],1..3);
```

$$
V 1:=\left[\begin{array}{lll}
1 & 0 & \nu d x \\
0 & 1 & \nu d y
\end{array}\right]
$$

then $V_{1}$ defines a basis of $\operatorname{ker}_{A}(. \bar{Q})$, i.e., $\operatorname{ker}_{A}(. \bar{Q})=\operatorname{im}_{A}\left(. V_{1}\right)$. The matrices $U_{1}$ and $V_{1}$ can directly be computed by the QuillenSuslin package (Fabiańska and Quadrat (2007)).

Now, let us compute a basis of $\operatorname{im}_{A}(. \bar{P})=\operatorname{ker}_{A}\left(.\left(I_{3}-\bar{P}\right)\right)$.

$$
\begin{aligned}
& >\mathrm{U} 2:=\text { SyzygyModule(evalm(1-P_bar),A) } \\
& \qquad U 2:=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Thus, we have $\operatorname{im}_{A}(. \bar{P})=\operatorname{im}_{A}\left(. U_{2}\right)$, where $U_{2}$ has full row rank, i.e., $U_{2}$ defines a basis of $\operatorname{im}_{A}(. \bar{P})$. Similarly, let us compute a basis of $\operatorname{im}_{A}(. \bar{Q})=\operatorname{ker}_{A}\left(.\left(I_{3}-\bar{Q}\right)\right)$.

```
> V2 := SyzygyModule(evalm(1-Q_bar),A);
 V2:=[[\begin{array}{lll}{dx}&{dy}&{-c+\nud\mp@subsup{x}{}{2}+\nud\mp@subsup{y}{}{2}}\end{array}]
```

Thus, we have $\operatorname{im}_{A}(. \bar{Q})=\operatorname{im}_{A}\left(. V_{2}\right)$, where $V_{2}$ has full row rank, i.e., $V_{2}$ defines a basis of $\mathrm{im}_{A}(. \bar{Q})$. Now, if we define the matrix $U:=\left(U_{1}^{T} \quad U_{2}^{T}\right)^{T}$, i.e.,

```
> U := stackmatrix(U1,U2);
```

$$
U:=\left[\begin{array}{ccc}
c & 0 & d x \\
0 & c & d y \\
0 & 0 & 1
\end{array}\right]
$$

and the matrix $V:=\left(\begin{array}{ll}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T}$ defined by
> V := stackmatrix(V1,V2);

$$
V:=\left[\begin{array}{ccc}
1 & 0 & \nu d x \\
0 & 1 & \nu d y \\
d x & d y & -c+\nu d x^{2}+\nu d y^{2}
\end{array}\right]
$$

then we can check that these two matrices belong to $\mathrm{GL}_{3}(A)$ :

```
> U_inv := LeftInverse(U,A);
```

$$
U_{-} i n v:=\left[\begin{array}{ccc}
\frac{1}{c} & 0 & -\frac{d x}{c} \\
0 & \frac{1}{c} & -\frac{d y}{c} \\
0 & 0 & 1
\end{array}\right]
$$

```
> V_inv := LeftInverse(V,A);
```

$$
V_{-} i n v:=\left[\begin{array}{ccc}
\frac{-\nu d x^{2}+c}{c} & -\frac{\nu d x d y}{c} & \frac{\nu d x}{c} \\
-\frac{\nu d x d y}{c} & \frac{c-\nu d y^{2}}{c} & \frac{\nu d y}{c} \\
\frac{d x}{c} & \frac{d y}{c} & -\frac{1}{c}
\end{array}\right]
$$

Finally, the matrix $R$ is equivalent to the block diagonal matrix $\bar{R}=V R U^{-1}$ defined by:

```
> R_bar := Mult(V,R,U_inv,A);
```

$$
R_{-} b a r:=\left[\begin{array}{ccc}
\frac{c-\nu d y^{2}}{c} & \frac{\nu d x d y}{c} & 0 \\
\frac{\nu d x d y}{c} & \frac{-\nu d x^{2}+c}{c} & 0 \\
0 & 0 & d x^{2}+d y^{2}
\end{array}\right]
$$

Let us now study whether or not the first block diagonal matrix $T \in A^{2 \times 2}$ of $\bar{R}$ is equivalent to a block diagonal matrix.

$$
\begin{aligned}
& >\mathrm{T}:=\text { submatrix(R_bar,1..2,1..2); } \\
& \qquad T:=\left[\begin{array}{cc}
\frac{c-\nu d y^{2}}{c} & \frac{\nu d x d y}{c} \\
\frac{\nu d x d y}{c} & \frac{-\nu d x^{2}+c}{c}
\end{array}\right]
\end{aligned}
$$

Let us note $O:=A^{1 \times 2} /\left(A^{1 \times 2} T\right)$. We first compute a presentation of the $A$-module end $A(O)$.

```
> E := MorphismsConstCoeff(T,T,A):
```

We obtain that a family of generators of $\operatorname{end}_{A}(O)$ is defined by $\left\{g_{i}\right\}_{i=1, \ldots, 4}$, where $g_{i}(\kappa(\nu))=\kappa\left(\nu P_{i}\right)$, $\kappa: A^{1 \times 2} \longrightarrow O$ is the canonical projection and the matrices $P_{i}$ 's are defined by:
$>E[1]:$

$$
\left[\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & d y c \\
0 & -d x c
\end{array}\right],\left[\begin{array}{cc}
0 & -\nu d y^{2} \\
0 & \nu d x d y
\end{array}\right],\left[\begin{array}{cc}
0 & \nu d x d y \\
0 & -c+\nu d y^{2}
\end{array}\right]\right]
$$

The $A$-linear relations among the generators $g_{i}$ 's of the $A$-module end ${ }_{A}(O)$ are defined by:
$>E[2] ;$

$$
\left[\begin{array}{cccc}
d x c & 1 & 0 & 0 \\
-c+\nu d y^{2} & 0 & 0 & -1 \\
0 & \nu d y & c & 0 \\
0 & \nu d x & 0 & -c \\
0 & c & d y c & -d x c
\end{array}\right]
$$

Hence, we get $\operatorname{end}_{A}(O) \cong A^{1 \times 4} /\left(A^{1 \times 5} E_{2}\right)$, i.e., $E_{2}$ is a presentation matrix of $\operatorname{end}_{A}(O)$. Let us check that $\operatorname{end}_{A}(O)$ is a cyclic $A$-module generated by $g_{1}=\operatorname{id}_{O}$. If we define the following vector

```
> lambda := evalm([[1,0,0,0]]);
 \lambda:=[\begin{array}{llll}{1}&{0}&{0}&{0}\end{array}]
```

corresponding to a representative of $g_{1}=\mathrm{id}_{O}$ in the $A$-module end $A_{A}(O) \cong A^{1 \times 4} /\left(A^{1 \times 5} E_{2}\right)$, then we can check that the matrix $\left(\begin{array}{ll}\lambda^{T} & E_{2}^{T}\end{array}\right)^{T}$ admits the following left inverse

```
> LeftInverse(stackmatrix(lambda,E[2]),A);
```

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-d x c & 1 & 0 & 0 & 0 & 0 \\
\nu d x d y & -\frac{\nu d y}{c} & 0 & \frac{1}{c} & 0 & 0 \\
-c+\nu d y^{2} & 0 & -1 & 0 & 0 & 0
\end{array}\right]
$$

which shows that $g_{1}$ generates the $A$-module end $A_{A}(O)$. This result can directly be obtained by using the command ReducedModuleHom:
$>$ ReducedModuleHom(T,T,E[1],A);

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Let us now compute the $A$-linear relations of $g_{1}$, i.e., its annihilator:

$$
\begin{array}{r}
>\operatorname{Rp}:=\operatorname{collect}(\operatorname{RelationsMatrix}(\mathrm{T}, \mathrm{~T},[\mathrm{E}[1][1]], \mathrm{A}),[\mathrm{nu}, \mathrm{c}]) ; \\
R p:=\left[c \nu\left(d x^{2}+d y^{2}\right)-c^{2}\right]
\end{array}
$$

We obtain that $\operatorname{end}_{A}(O) \cong A /(A(c(\nu \Delta-c)))$. From that, following the arguments developed in Section 7.2, we can easily check that $\operatorname{end}_{A}(O)$ does not admit non-trivial idempotents, which proves that $O$ is an indecomposable $A$-module.

### 8.5 Rotating fluid

Let us consider the ring $A$ of PD operators with coefficients in the field $\mathbb{Q}\left(\rho_{0}, \Omega_{0}\right)$, i.e.,

```
> A := DefineOreAlgebra(diff=[dt,t],diff=[d1,x1], diff=[d2,x2],diff=[d3,x3],
> polynom=[t,x1,x2,x3],comm=[rho0,0mega0]):
```

and the matrix $R \in A^{4 \times 4}$ defined by 85 , i.e.,

```
> R := evalm([[rho0*dt,-2*rho0*Omega0,0,d1],[2*rho0*Omega0,rho0*dt,0,d2],
> [0,0,rho0*dt,d3],[d1,d2,d3,0]]);
```

$$
R:=\left[\begin{array}{cccc}
\rho 0 d t & -2 \rho 0 \Omega 0 & 0 & d 1 \\
2 \rho 0 \Omega 0 & \rho 0 d t & 0 & d 2 \\
0 & 0 & \rho 0 d t & d 3 \\
d 1 & d 2 & d 3 & 0
\end{array}\right]
$$

which finitely presents the $A$-modue $M=A^{1 \times 4} /\left(A^{1 \times 4} R\right)$. Let us characterize the $A$-module end $A(M)$.

```
> E := MorphismsConstCoeff(R,R,A):
```

We obtain that the $A$-module $\operatorname{end}_{A}(M)$ is generated by $f_{i}(\pi(\lambda))=\pi\left(\lambda P_{i}\right)$, where $\pi: A^{1 \times 4} \longrightarrow M$ is the canonical projection and the matrices $P_{i}$ are defined by:

```
> P := E[1];
```

$$
\begin{aligned}
& P:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & d 3 & -d 2 & 0 \\
-d 3 & 0 & d 1 & 0 \\
d 2 & -d 1 & 0 & 0 \\
0 & 0 & 2 \rho 0 \Omega 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & d 2 & d 3 & 0 \\
0 & -d 1 & 0 & 0 \\
0 & 0 & -d 1 & 0 \\
0 & 0 & 0 & -d 1
\end{array}\right], \\
& \left.\left[\begin{array}{cccc}
0 & 2 \rho 0 \Omega 0 & 0 & -d 1 \\
-2 \rho 0 \Omega 0 & 0 & 0 & -d 2 \\
0 & 0 & 0 & -d 3 \\
0 & 0 & 0 & \rho 0 d t
\end{array}\right],\left[\begin{array}{cccc}
0 & -d 2 d 1 & -d 1 d 3 & 0 \\
0 & d 1^{2} & 0 & 0 \\
0 & 0 & d 1^{2} & 0 \\
-2 \rho 0 \Omega 0 d 2 & 2 \Omega 0 d 1 \rho 0 & 0 & -d 2^{2}-d 3^{2}
\end{array}\right]\right]
\end{aligned}
$$

The $A$-linear relations among the generators $f_{1}, \ldots, f_{5}$ of $\operatorname{end}_{A}(M)$ are defined by:
$>$ L := $\mathrm{E}[2] ;$

$$
L:=\left[\begin{array}{ccccc}
d 1 & 1 & 0 & 0 & 0 \\
2 \rho 0 \Omega 0 d 3 & 0 & \rho 0 d t & 0 & 0 \\
\rho 0 d t & 0 & 0 & -1 & 0 \\
0 & -d 1 & 0 & 0 & -1 \\
0 & \rho 0 d t & 0 & d 1 & 0 \\
0 & 0 & 2 \rho 0 \Omega 0 d 3 & -d 2^{2}-d 3^{2} & -\rho 0 d t
\end{array}\right]
$$

We obtain $\operatorname{end}_{A}(M) \cong A^{1 \times 5} /\left(A^{1 \times 6} L\right)$. From the $A$-linear relations among the generators of end $A_{A}(M)$, we obtain $f_{2}=-d_{1} f_{1}, f_{4}=\rho_{0} d_{t} f_{1}, f_{5}=-d_{1} f_{2}=d_{1}^{2} f_{1}$. Hence, the $A$-module end ${ }_{A}(M)$ can only be generated by $f_{1}=\operatorname{id}_{M}$ and $f_{3}$. Let us compute the $A$-linear relations among $f_{1}$ and $f_{3}$ to obtain a smaller presentation matrix for the $A$-module end $A_{A}(M)$.

$$
\begin{aligned}
& >\operatorname{Lp}:=\operatorname{collect}(\operatorname{RelationsMatrix}(\mathrm{R}, \mathrm{R},[\mathrm{E}[1][1], \mathrm{E}[1][3]], \mathrm{A}),[\mathrm{rho0}, \mathrm{dt}]) ; \\
& \qquad L p:=\left[\begin{array}{cc}
2 \rho 0 \Omega 0 d 3 & \rho 0 d t \\
\left(d 3^{2}+d 2^{2}+d 1^{2}\right) d t \rho 0 & -2 \rho 0 \Omega 0 d 3
\end{array}\right]
\end{aligned}
$$

We get $\operatorname{end}_{A}(M) \cong A^{1 \times 2} /\left(A^{1 \times 2} L^{\prime}\right)$, where $L^{\prime}$ is the above matrix and the two generators of $\operatorname{end}_{A}(M)$ are $f_{1}$ and $f_{3}$. Note that the above fact can be obtained directly using the ReducedModuleHom command:

$$
\begin{aligned}
& >\text { GenFam:=ReducedModuleHom }(\mathrm{R}, \mathrm{R}, \mathrm{E}, \mathrm{~A}) ; \\
& \left.\qquad\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & d 3 & -d 2 & 0 \\
-d 3 & 0 & d 1 & 0 \\
d 2 & -d 1 & 0 & 0 \\
0 & 0 & 2 \rho 0 \Omega 0 & 0
\end{array}\right]\right] \\
& >\operatorname{collect}(\text { RelationsMatrix }(\mathrm{R}, \mathrm{R}, \mathrm{GenFam}, \mathrm{~A}),[\mathrm{rho0}, \mathrm{dt}]) ; \\
& \\
& {\left[\begin{array}{r}
-2 \Omega 0 d 3 \rho 0 \\
\left(d 1^{2}+d 2^{2}+d 3^{2}\right) d t \rho 0 \\
-2 \Omega 0 d 3 \rho 0
\end{array}\right]}
\end{aligned}
$$

Finally, if we note $B=\mathbb{Q}\left(\rho_{0}, \Omega_{0}, d_{t}\right)\left[d_{1}, d_{2}, d_{3}\right]$,

```
> B := DefineOreAlgebra(diff=[d1,x1],diff=[d2,x2],diff=[d3,x3],polynom=[x1,x2,x3],
> comm=[dt,rho0,Omega0]):
```

then let us prove that the $B \otimes_{A} \operatorname{end}_{A}(M) \cong B^{1 \times 2} /\left(B^{1 \times 2} L^{\prime}\right)$ is a cyclic $B$-module generated by $\mathrm{id}_{B \otimes_{A} M}$. If we consider the following vector which is the representative of $\operatorname{id}_{B \otimes_{A} M}$ in $B \otimes_{A} \operatorname{end}_{A}(M)$.

```
> Lambda := evalm([[1,0]]);
```

$$
\Lambda:=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

and define the matrix $P=\left(\begin{array}{ll}\Lambda^{T} & L^{\prime T}\end{array}\right)^{T}$, i.e.,

```
> P := stackmatrix(Lambda,Lp);
```

$$
P:=\left[\begin{array}{cc}
1 & 0 \\
2 \rho 0 \Omega 0 d 3 & \rho 0 d t \\
\left(d 3^{2}+d 2^{2}+d 1^{2}\right) d t \rho 0 & -2 \rho 0 \Omega 0 d 3
\end{array}\right]
$$

then we can check that $P$ admits a left inverse $S \in B^{2 \times 3}$ defined by

```
> S := LeftInverse(P,B);
```

$$
S:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 \frac{\Omega 0 d 3}{d t} & \frac{1}{\rho 0 d t} & 0
\end{array}\right]
$$

which proves that $B \otimes_{A}$ end $_{A}(M) \cong B^{1 \times 2} /\left(B^{1 \times 2} L^{\prime}\right)$ is a cyclic $B$-module generated by $\operatorname{id}_{B \otimes_{A} M}$. Let us now compute the annihilator $\operatorname{ann}_{B}\left(\operatorname{id}_{B \otimes_{A} M}\right)=\left\{b \in B \mid b \mathrm{id}_{B \otimes_{A} M}=0\right\}$ of $\mathrm{id}_{B \otimes_{A} M}$. To do that, let us first factorize $L^{\prime}$ by $P$.

```
> F := Factorize(Lp,P,B);
```

$$
F:=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We get $L^{\prime}=F P$. Now, let us compute $\operatorname{ker}_{A}(. P)$.

```
> P2 := collect(SyzygyModule(P,B),[rho0,dt]);
 P2:=[((d\mp@subsup{3}{}{2}+d\mp@subsup{2}{}{2}+d\mp@subsup{1}{}{2})d\mp@subsup{t}{}{2}+4\Omega\mp@subsup{0}{}{2}d\mp@subsup{3}{}{2})\rho0
```

We obtain $\operatorname{ker}_{A}(. P)=\operatorname{im}_{A}\left(. P_{2}\right)$. If we define the matrix $Q=\left(\begin{array}{ll}F^{T} & P_{2}^{T}\end{array}\right)^{T}$, i.e.,

```
> Q := stackmatrix(F,P2);
```

$$
\mathrm{Q}:=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
\left(\left(d 3^{2}+d 2^{2}+d 1^{2}\right) d t^{2}+4 \Omega 0^{2} d 3^{2}\right) \rho 0 & -2 \Omega 0 d 3 & -d t
\end{array}\right]
$$

then we have $B \otimes_{A} \operatorname{end}_{A}(M) \cong B^{1 \times 3} /\left(B^{1 \times 3} Q\right) \cong B /(B b)$, where $b:=Q_{31}=-\frac{1}{\rho_{0}} \operatorname{det}(R)$ since we have:

```
> collect(-det(R),[rho0,dt]);
\[
\left(\left(d 3^{2}+d 2^{2}+d 1^{2}\right) d t^{2}+4 \Omega 0^{2} d 3^{2}\right) \rho 0^{2}
\]
```

This result can directly be obtained as follows:

```
> collect(RelationsMatrix(R,R,[E[1][1]],A),[rho0,dt]);
 [((d\mp@subsup{3}{}{2}+d\mp@subsup{2}{}{2}+d\mp@subsup{1}{}{2})d\mp@subsup{t}{}{2}+4\Omega\mp@subsup{0}{}{2}d\mp@subsup{3}{}{2})\rho0]
```

Finally, following the arguments developed in Section 7.3, we can prove that $M$ is an indecomposable $A$-module.

## References

Barkatou, M. A., 1999. On rational solutions of systems of linear differential equations. Journal of Symbolic Computation 28, 547-567.

Barkatou, M. A., 2007. Factoring systems of linear functional equations using eigenrings. Latest Advances in Symbolic Algorithms, Proc. of the Waterloo Workshop, Ontario, Canada (10-12/04/06) I. Kotsireas and E. Zima (Eds.), World Scientific, 22-42.

Boudellioua, M. S., Quadrat, A., 2010. Serre's reduction of linear functional systems. Math. Comput. Sci. 4 (2-3), 289-312.

Chyzak, F., Quadrat, A., Robertz, D., 2005. Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput. 16, 319-376.

Chyzak, F., Quadrat, A., Robertz, D., 2007. OreModules: A symbolic package for the study of multidimensional linear systems. In: Chiasson, J., Loiseau, J.-J. (Eds.), Applications of Time-Delay Systems. Vol. 352 of Lecture Notes in Control and Information Sciences. Springer, pp. 233-264, OreModules project: http://wwwb.math.rwth-aachen.de/OreModules.

Cluzeau, T., Quadrat, A., 2008. Factoring and decomposing a class of linear functional systems. Linear Algebra Appl. 428 (1), 324-381.

Cluzeau, T., Quadrat, A., 2009. OreMorphisms: A homological algebraic package for factoring, reducing and decomposing linear functional systems. In: Topics in Time-Delay Systems. Vol. 388 of Lecture Notes in Control and Inform. Sci. Springer, Berlin, pp. 179-194, OreMorphisms project: http: //pages.saclay.inria.fr/alban.quadrat//OreMorphisms/index.html, http://www.unilim.fr/ pages_perso/thomas.cluzeau/Packages/OreMorphisms/index.html.

Cluzeau, T., Quadrat, A., 2013. Isomorphisms and Serre's reduction of linear systems. In: Proceedings of the 8th International Workshop on Multidimensional ( $n \mathrm{D}$ ) Systems ( $n \mathrm{Ds}$ ). Erlangen, Germany.

Cluzeau, T., Quadrat, A., Robertz, D., 2013. AlgebraicAnalysis: A package for the study of a certain classes of nonlinear PD systems. In preparation.

Dolean, V., Nataf, F., Rapin, G., 2005. New constructions of domain decomposition methods for systems of PDEs. C.R. Acad. Sci. Paris, Ser I 340, 693-696.

Dubois, F., Petit, N., Rouchon, N., 1999. Motion planning and nonlinear simulations for a tank containing a fluid. In: Proceedings of the 5th Symposium on System Structure and Control. Karlsruhe, Germany.

Eisenbud, D., 1995. Commutative Algebra: with a View Toward Algebraic Geometry. Vol. 150 of Graduate Texts in Mathematics. Springer-Verlag, New York.

Fabiańska, A., Quadrat, A., 2007. Applications of the Quillen-Suslin theorem to multidimensional systems theory. In: Park, H., Regensburger, G. (Eds.), Gröbner Bases in Control Theory and Signal Processing. Vol. 3 of Radon Series on Computation and Applied Mathematics. de Gruyter, pp. 23-106, the QuillenSuslin project: http://wwwb.math.rwth-aachen.de/QuillenSuslin.

Hotta, R., Takeuchi, K., Tanisaki, T., 2008. D-Modules, Perverse Sheaves, and Representation Theory. Vol. 236 of Progress in Mathematics. Birkhäuser.

Kashiwara, M., 1995. Algebraic Study of Systems of Partial Differential Equations. Vol. 63. Mémoires de la Société Mathématique de France, English translation (Kyoto 1970).

Lam, T. Y., 1999. Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer.
Landau, L., Lifschitz, L., 1989. Physique théorique, Tome 6: Mécanique des fluides. MIR.

Lin, Z., Boudellioua, M., Xu, L., 2006. On the equivalence and factorization of multivariate polynomial matrices. In: Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS 2006). Kos, Greece.

Malgrange, B., 1962. Systèmes différentiels à coefficients constants. Séminaire Bourbaki 1962/63, 1-11.
Manitius, A., 1984. Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulations. IEEE Trans. Autom. Contr. 29, 1058-1068.

McConnell, J. C., Robson, J. C., 2000. Noncommutative Noetherian Rings. American Mathematical Society.

Quadrat, A., 2010. An introduction to constructive algebraic analysis and its applications. In: CIRM (Ed.), Les cours du CIRM. Vol. 1 of Journées Nationales de Calcul Formel (2010). pp. 281-471, INRIA report 7354, http://hal.archives-ouvertes.fr/inria-00506104/fr/.

Quadrat, A., Robertz, D., 2007a. Computation of bases of free modules over the Weyl algebras. J. Symbolic Comput. 42, 1113-1141, StafFord project: http://wwwb.math.rwth-aachen.de/OreModules.

Quadrat, A., Robertz, D., 2007b. On the Baer extension problem for multidimensional linear systems. INRIA Research Report n. 630, http://hal.inria.fr/inria-00175272.

Quadrat, A., Robertz, D., 2014. A constructive study of the module structure of rings of partial differential operators. Acta Applicandæ Mathematicæ 133, 187-234.

Rotman, J. J., 2009. An Introduction to Homological Algebra, 2nd Edition. Springer.
van der Put, M., Singer, M. F., 2003. Galois theory of linear differential equations. Vol. 328 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin.

RESEARCH CENTRE
SACLAY - ÎLE-DE-FRANCE
Parc Orsay Université
4 rue Jacques Monod
91893 Orsay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105-78153 Le Chesnay Cedex
inria.fr


[^0]:    * Université de Limoges ; CNRS ; XLIM UMR 7252, DMI, 123 avenue Albert Thomas, 87060 Limoges Cedex, France. E-mail: thomas.cluzeau@unilim.fr.
    $\dagger$ INRIA Saclay -Île-de-France, DISCO project, Supélec, L2S, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France. E-mail: alban.quadrat@inria.fr.

