
HAL Id: hal-01083246
https://inria.hal.science/hal-01083246v2

Submitted on 25 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Accurate computation of single scattering in
participating media with refractive boundaries

Nicolas Holzschuch

To cite this version:
Nicolas Holzschuch. Accurate computation of single scattering in participating media with refractive
boundaries. Computer Graphics Forum, 2015, 34 (6), pp.48-59. �10.1111/cgf.12517�. �hal-01083246v2�

https://inria.hal.science/hal-01083246v2
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Volume xx (200y), Number z, pp. 1–12

Accurate computation of single scattering
in participating media with refractive boundaries

N. Holzschuch†

(a) Our algorithm (169 s) (b) Point sampling [WZHB09]
(27 samples, 170 s)

(c) Photon mapping
(650 000 photons, 167 s)

(d) bidirectional path tracing
(520 samples per pixel, 171 s)

Figure 1: Single scattering: comparison between our algorithm and existing methods (equal computation time) on a translucent
sphere illuminated by a point light source from behind. For Bi-Directional Path-Tracing, we replaced the point light source with
a sphere so the algorithm actually produces a picture (its angular size is ≈ 3.2◦).

Abstract
Volume caustics are high-frequency effects appearing in participating media with low opacity, when refractive
interfaces are focusing the light rays. Refractions make them hard to compute, since screen locality does not
correlate with spatial locality in the medium. In this paper we give a new method for accurate computation of
single scattering effects in a participating media enclosed by refractive interfaces. Our algorithm is based on the
observation that although radiance along each camera ray is irregular, contributions from individual triangles are
smooth. Our method gives more accurate results than existing methods, faster. It uses minimal information and
requires no precomputation or additional data structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing and texture

1. Introduction

Light traversing participating media interacts with it, being
either scattered or absorbed by the medium. Combined with
light concentration from occlusion or refractive interfaces,

† INRIA Grenoble - Rhône-Alpes and LJK CNRS / Université de
Grenoble

scattering results in high frequency effects, such as “god
rays” or underwater caustics.

Observing these effects from outside the participating me-
dia adds another refractive interface between the camera and
the media. This distorts the scattering effects, resulting in
beautiful but challenging to render effects as shown in Fig-
ure 1. The two refractive interfaces between the light source

submitted to COMPUTER GRAPHICS Forum (10/2014).

2 N. Holzschuch / Accurate single scattering in participating media with refractive boundaries

and the camera make it difficult to find light paths going from
the light source to the camera after exactly one scattering
event.

In this paper, we focus on objects enclosed by a refractive
interface defined by triangles with interpolated vertex nor-
mals, a representation close to ubiquitous in computer graph-
ics. For a given camera ray, refracted at the interface, the ra-
diance is equal to the integral of radiance received along this
ray and scattered in the camera direction. This out-scattered
radiance varies quickly along the ray, making it difficult to
compute the integral accurately. We observe that the radi-
ance caused by an individual triangle on the surface varies
smoothly; discontinuities correspond to triangle edges.

We exploit this property in a new algorithm for comput-
ing single scattering effects with refractive interfaces. For
each triangle on the surface, we quickly identify whether it
is making a contribution to this specific camera ray, and on
which segment of the ray. We then sample regularly inside
this segment. Our method works for highly tesselated ob-
jects and is significantly faster than existing methods while
providing better quality results. It has been designed to be
easily inserted into existing renderers, with minimal mod-
ifications. It does not require additional data structures or
pre-processing.

We review previous work on single and multiple scatter-
ing in the next section. We describe our algorithm in details
in Section 3. We study the behaviour of our algorithm and
compare with previous work in Section 4. Finally, we con-
clude and present avenues for future work in Section 5.

2. Previous work

Pegoraro and Parker [PP09] provided an analytical solution
for single scattering from a point light source in an homo-
geneous participating media. Their approach is useful for
scenes filled with smoke or dust, with no refractive inter-
faces.

Volume caustics are caused by light being refracted at
the interface between the refracted media and air. The most
striking examples are caustics in turbid water. Nishita and
Nakamae [NN94] described an algorithm to compute these
caustics by creating a light shaft for each triangle on the sur-
face, then accumulating the contributions from these light
shafts using the accumulation buffer. Iwasaki et al. [IDN01]
improved the method by using color blending between ver-
tex values inside the light shaft. Ernst et al. [EAMJ05] fur-
ther improved the light shaft method using non-planar shaft
boundaries and computing illumination inside the shaft with
fragment shaders. All these work focused on a single refrac-
tive interface, displaying volume caustics as seen from inside
the media.

Hu et al. [HDI∗10] traced light rays inside the participat-
ing media, after up to two specular events (reflections or re-
fractions). They accumulate radiance from these light rays in

a second step. Their method produces volume caustics inter-
actively, but with no refractive interface between the camera
and the volume caustics.

Ihrke et al. [IZT∗07] presented a method to compute light
transport in refractive objects by modelling the propagation
of the light wavefront inside the object. Their method is in-
teractive and handles objects made of inhomogeneous mate-
rials. It relies on a voxelised representation of light distribu-
tion inside the object. Sun et al. [SZS∗08] also used a vox-
elized representation of light inside the object, but computed
scattered light using photon propagation. For both methods,
the resolution of the voxel grid limits the spatial resolution
of volume caustics.

Sun et al. [SZLG10] introduced the line space gathering
method. They first trace rays from the light source and store
them as points in Plücker coordinates. Then, for each camera
ray, they find the closest light rays using Plücker space and
compute their scattering contributions. Their technique pro-
duces high quality results, both inside and outside translu-
cent objects, taking into account refraction. The data struc-
tures used to store camera and light rays in Plücker space
uses approximately 400 MB.

Walter et al. [WZHB09] used a Newton-Raphson iterative
method to find all paths connecting a sample point inside the
participating media to the light source through a refractive
interface. They place sample points along camera rays in-
side the translucent object to compute volume caustics. They
used a position-normal tree to cull triangles in the search.
Our method can be seen as an extension of theirs; we re-
move the need for additional data structure and place sample
points optimally for each triangle.

Jarosz et al. [JZJ08] introduced the beam radiance es-
timate for efficient rendering of participating media with
photon mapping. It starts as conventional volumetric pho-
ton mapping, storing photons inside the participating media.
In the gathering step, camera rays are represente as beams,
gathering contributions from all photons around the beam.
The technique was later extended to photon beams, by Jarosz
et al. [JNSJ11]: light entering the participating media is also
stored as a beam of light. In the gathering step, they compute
contributions from light beams to camera beams, as well as
from photons to camera beams. Progressive photon beams,
by Jarosz et al. [JNT∗11], extends this idea by using beams
of varying width in successive rendering steps.

3. Single scattering computations

We consider an object, filled with an homogenous partici-
pating media, of refractive index η, mean free path ` = σ−1

T ,
albedo α and phase function p (see Figure 2). The bound-
ary of the translucent object is a smooth dielectric interface.
We assume that it is modelled as triangles with interpolated
vertex normals.

We place ourselves within a path tracing framework: we

submitted to COMPUTER GRAPHICS Forum (10/2014).

N. Holzschuch / Accurate single scattering in participating media with refractive boundaries 3

E

L

P

VVmin

Vmax

Figure 2: We consider a translucent object, under illumina-
tion from a light source L. We isolate a segment from the
camera path crossing the object, and compute single scatter-
ing effects on this segment.

P

f

Ns

V

L

ωL

ωV

H

ˆ

ˆ

ˆ

ˆ

Figure 3: At point P, we define the half-vector Ĥ, and com-
pare it with the shading normal N̂s. Our goal is to find zeros
of the function f = Ĥ + N̂s.

have a camera path, made of several connected segments. We
take one of these segments, crossing through the translucent
object, from an entry point Vmin to an exit point Vmax.

We also take a point sample L on the light source: either
its position for a point light source, or a random sample for
an area light source.

Our goal is to compute the integral of single scattering
effects from L on this specific segment of the camera path.
This contribution will be combined with other lighting ef-
fects computed by the renderer.

3.1. Point sampling algorithm

First, we briefly review the algorithm of Walter et
al. [WZHB09]. They place several sample points V along
each camera ray. For each sample point, they compute all
paths connecting V to the light source L (see Section 3.1.1),
then compute their contribution and sum them (see Sec-
tion 3.1.2). For clarity, we reuse their notations. v̂ is a nor-
malized vector: v̂ = v/‖v‖.

3.1.1. Iterative search for light paths

Given an individual triangle with interpolated vertex nor-
mals, a sample point V and a light source sample L the prob-
lem is to find all paths connecting L to V while following
Snell’s law. The key idea is to transform this into the search
for zeros of a function f. Given a point P on the triangle, with
shading normal N̂S , we define the normalized half-vector Ĥ
and the function f (see Figure 3):

dV = ‖V − P‖ (1)

dL = ‖L − P‖ (2)

ω̂V = (V − P)/dV (3)

ω̂L = (L − P)/dL (4)

H = ηω̂V + ω̂L (5)

Ĥ = H/‖H‖ (6)

f(P) = Ĥ + N̂S (7)

All points P such that f(P) = 0 correspond to a path con-
necting V and L, with the refraction angle following Snell’s
law.

To find the zeros of f, Walter et al. [WZHB09] used a
Newton-Raphson iterative method, with one small change:
since point P on the triangle uses barycentric coordinates
(a, b), f is a function from R2 into R3. The Jacobian J of f
is a non-square matrix and thus not invertible. They used the
pseudo-inverse of J, J+:

J+ = (JᵀJ)−1 Jᵀ (8)

The iterative Newton-Raphson method becomes:

Pn+1 = Pn − J+f(Pn) (9)

For this specific problem, it converges rapidly to a solution.

3.1.2. Contribution from each path

Once a path connecting V and L has been found, its contri-
bution to the pixel is computed:

contribution =
IeFAp

D
(10)

where Ie is the intensity of the light source sample L, F is the
Fresnel factor at the entry point Vmin and exit point P, A is
the volume attenuation (the integral of e−σT x along [VminV]
and [VP]), p is the phase function at V and D is the distance
correction factor.

In the absence of participating media and refractive in-
terface, D is the square of the distance between V and L,
D = ‖L − V‖2 = (dV + dL)2. With refractive media and con-
stant geometric normal N̂g, D has a simple expression:

D = (dV + ηdL)

 |ω̂L · N̂g|

|ω̂V · N̂g|
dV +

|ω̂V · N̂g|

|ω̂L · N̂g|
dL

 (11)

With shading normals, D has a more complicated expres-
sion, based on ray differentials at the interface [Ige99]. To

submitted to COMPUTER GRAPHICS Forum (10/2014).

4 N. Holzschuch / Accurate single scattering in participating media with refractive boundaries

compute D, Walter et al. take two vectors perpendicular to
ωV and each other: u⊥ and u‖, then compute how L changes
when ωV is perturbed along these vectors. D is the cross-
product of these derivatives:

D =

∥∥∥∥∥∥ dL
du⊥

×
dL
du‖

∥∥∥∥∥∥ (12)

A complete expression of D can be found in [WZHB09]. We
refer the interested readers to this article for more informa-
tion.

3.1.3. Pruning triangles

The Newton-Raphson method converges with few iterations
for each sample point V and each triangle. In theory, the
search should be done for all triangles and all sample points,
but that would be too costly. Walter et al. [WZHB09] used
several methods to prune the triangles used in the search:

• Sidedness agreement: V must be in the negative half-
space of the triangle, and L in the positive half-space, for
both the geometric normal N̂g and the shading normal N̂s.

• Spindle test: the angle between the incoming and the re-
fracted ray is between π

2 + arcsin(1/η) and π. For a given
segment [VL], this restricts the potential solutions P to in-
side a surface of revolution around [VL], called the spin-
dle.

The spindle test doesn’t depend on triangle normals and can
be used to prune large parts of the scene. For the sidedness
agreement, Walter et al. [WZHB09] used a position-normal
tree built from the triangles upward.

Together, these pruning methods reduced the computation
time to something acceptable, a few minutes on a 8-core
Xeon.

3.1.4. Numerical issues

The algorithm described by Walter et al. [WZHB09] con-
verges quickly for objects made of flat triangles and moder-
ately curved surfaces. The authors reported numerical issues
for more complex scenes such as the bumpy sphere (see Fig-
ure 1):

• They have to place more samples V along each camera
ray, up to 128 samples for the bumpy sphere,

• Some samples had extremely large values, which resulted
in noise in the picture. These values had to be clamped in
order to reduce the noise.

Our experimental study (Section 3.2.1) explains these nu-
merical issues: the function being integrated is highly irreg-
ular, with many spikes (see Figure 5). Sample points, placed
randomly or regularly, are likely to miss the spikes. If one
sample point happens to hit a narrow spike, it will receive
disproportionate importance.

V

L

P

Figure 4: The set of points P corresponding to a refracted
camera ray inside the object defines a curve (in green) on
the surface.

3.2. Our algorithm

3.2.1. Motivation: study of a single camera ray

For a better understanding of single scattering effects with
refraction, we ran an experimental study of radiance along
a single camera ray. It is refracted as it enters the translu-
cent object, then travels in a straight line until it exits the
object. We placed a large number of sample points V along
the refracted camera ray. The set of corresponding points P
defines a curve on the surface of the object (see Figure 4).
This curve is implicitly defined by f = 0. It is irregular and
can be made of several disconnected components: it is piece-
wise continuous.

Figure 5, left, shows the radiance reaching the camera for
all sample points along the ray, taking into account atten-
uation, phase function and ray differentials. It is highly ir-
regular, with many spikes of high value, defined on a small
interval.

Zooming in on a small part of this curve (Figure 5, right),
we observe that it is a combination of slowly varying con-
tributions, with sharp discontinuities. These discontinuities
correspond to triangle boundaries. This our key observation:
the contribution from a single triangle to the outgoing radi-
ance is a smooth function; discontinuities occur only as the
curve enters and exits the triangle.

Several triangles can be contributing to the same sample
point on the refracted ray: there is not a one-to-one mapping
between the ray and the curve. For all points on the interval
on Figure 5, right, there are at least two triangles connecting
this point.

Note that the spikes do not correspond to an infinite
amount of light over an infinitely small sampling area, but
to a very large, but finite, amount of light over a small, but
measurable, area. Despite the name “volume caustics”, these
are not, technically, caustics, since they are not points of in-
finite energy.

The pixel value is the integral of the radiance values at

submitted to COMPUTER GRAPHICS Forum (10/2014).

N. Holzschuch / Accurate single scattering in participating media with refractive boundaries 5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10 12 14 16 18 20 22

O
ut

go
in

g
ra

di
an

ce

Depth along the ray

Radiance over ray Radiance over ray

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 3.35 3.4 3.45 3.5 3.55 3.6 3.65 3.7

O
ut

go
in

g
ra

di
an

ce

Depth along the ray

Figure 5: (left) Outgoing radiance, measured along a refracted ray inside the material. The radiance values are highly irregular:
computing the integral accurately would requires many samples. If we isolate contributions from each triangle (right), each of
them is smooth. Discontinuities occur only at the triangle boundaries.

f = 0

a = 0

b = 0

a+b = 1

Figure 6: f = 0 defines a curve in the triangle plane, param-
eterized by t. We search for intersections between this curve
and the triangle (defined in barycentric coordinates).

all sample points, the area under the curve on Figure 5,
left. Smooth parts of the curve (e.g. from depth = 12 to
depth = 20) can contribute more than all the spikes together.
But the spikes are making it difficult for point sampling
method: to avoid noise, the number of samples should be
inversely proportional to the minimum width of the spikes.

3.2.2. Interval analysis along the ray

Based on this observation, the key idea of our algorithm is
the following:

For each individual triangle, identify the limits of
its contribution on the [Vmin,Vmax] segment, using
Newton-Raphson iterative methods. Once we have
these limits, sample only inside the interval. This
reduces the number of samples required.

We use the same function f defined in Equations 1 to 7, but
with a third parameter, t, the depth of point V along the re-
fracted ray. t is limited in range by the entry and exit points,

Vmin and Vmax, corresponding to tmin and tmax respectively:

V = Vmin + t
Vmax − Vmin

‖Vmax − Vmin‖
(13)

f is now a function of three parameters: t and the barycen-
tric coordinates (a, b) of point P on the triangle plane. f = 0
is a polynomial equation of degree 6 (see Appendix A). It de-
fines a curve parameterized by t in the plane (a, b). We need
the intersection between this curve and the triangle defined
by: a ≥ 0, b ≥ 0, a + b ≤ 1 (see Figure 6). The coordinates
in t of these intersections will give us the limits of the con-
tribution for this triangle.

We compute the intersection between the curve f = 0 and
the triangle edges using Newton-Raphson iterative methods.
For this, we need the Jacobian of f:

J =

(
∂f
∂t
∂f
∂a

∂f
∂b

)
(14)

We compute it using repeated applications of the following
rule: the derivative of a normalized vector v̂ = v/‖v‖ with
respect to any of its parameters q is:

∂̂v
∂q

=
1
‖v‖

(
∂v
∂q
−

(̂
v ·

∂v
∂q

)
v̂
)

(15)

Note that ωL and NS are only functions of (a, b), thus their
derivative with respect to t is null.

f is a function of 3 parameters. We are looking for a point
on the edge of the triangle, which removes one degree of
freedom: one of the barycentric coordinate is either equal to
0 (for the edges defined by a = 0 and b = 0) or connected
to the other (for the edge defined by a + b = 1). We solve
for the remaining two parameters: t and the other barycentric
coordinate.

We use the same technique as before for finding zeros of f,
with the pseudo-inverse of the Jacobian. The only difference
is that we start with a 3×3 matrix, then convert it into a 3×2

submitted to COMPUTER GRAPHICS Forum (10/2014).

6 N. Holzschuch / Accurate single scattering in participating media with refractive boundaries

matrix by removing the column corresponding to the fixed
parameter, then compute the pseudo-inverse of this matrix.

Once we have an intersection, we compute the tangent to
the curve using the Jacobian of f (see Section 3.2.3 for de-
tails). We use it to tell whether the value of t we found is
an upper or a lower bound. We update the interval [tmin, tmax]
accordingly:

• If t is an upper bound, tmax ← t
• If t is a lower bound, tmin ← t

We treat all boundaries of the triangle, in a loop, until we
either have an empty interval for t or a segment where the
curve enters and leaves the triangle. If we have an empty in-
terval, we move to the next triangle. If we have a valid seg-
ment, we sample it regularly and compute the contribution
from each sample point.

Our algorithm is summarized in Algorithm 1. A single
loop over the triangle edges is usually sufficient to identify
the entry and exit points. The curve occasionally enters and
leaves the triangle on the same edge, requiring a second loop.

Although the curve defined on the entire object is complex
and does not have a one-on-one correspondance with points
on the [Vmin,Vmax] segment, the curve for a given triangle
plane is much simpler, and has this one-on-one correspon-
dance. We do not explicitly compute the full curve on the
object, but instead its intersection with every triangle.

The next three sections present specific details of our al-
gorithm: how to compute the tangent to the curve and use
it to check whether we have an upper or a lower bound for
t (Section 3.2.3), a pruning algorithm that does not require
complex data structures, but can use a bounding volume hi-
erarchy if one is provided by the renderer (Section 3.2.4),
and how we sample inside the restricted interval for t (Sec-
tion 3.2.5).

3.2.3. Tangent to the curve

Once we have found a point (t, a, b)ᵀ on the curve of equa-
tion f = 0 on the triangle plane, we compute the tangent at
this point. We express it as: (t, a, b)ᵀ + λg (λ ∈ R) (we ex-
plain how to compute g using the Jacobian of f at the end of
this section). We write the coordinates of g as (gt, ga, gb)ᵀ.

We use this tangent:

• to find better starting points for the other triangle edges.
We compute the intersections between the tangent and the
other triangle edges, and use them as starting points for
the Newton-Raphson methods on these edges. This speeds
up the computations.

• to decide whether the point corresponds to an upper or
lower bound for t. Variations in t are connected to vari-
ations in a (resp. b) by the ratio gt/ga (resp. gt/gb). The
sign of this ratio tells us whether we have a minimum or
a maximum, depending on the edge:

Start with interval [tmin, tmax]
numIntersections = 0;
repeat

for each triangle edge E
Compute (t, a, b) intersection between E and curve
Check if value of t is a min or a max (Section 3.2.3)
Update interval [tmin, tmax] accordingly
If interval is empty: return 0
If (a, b) inside triangle: numIntersections++;

end for
until numIntersections = 2;
// Now, we sample the curve segment
Sum = 0
for t regularly sampled in [tmin, tmax]

Find (a, b) such that f(t, a, b) = 0
Sum += contribution from point (a, b)

end for
return Sum

Algorithm 1: Computing single-scattering effects

– For a = 0, t is a maximum if gt/ga < 0.
– For b = 0, t is a maximum if gt/gb < 0.
– For a + b = 1, t is a maximum if gt/(ga + gb) > 0.

To compute g, we use the linear approximation of f with
the Jacobian:

f(t + δt, a + δa, b + δb) ≈ f(t, a, b) + J

 δtδa
δb

 (16)

For a point on the curve, f(t, a, b) = 0. Equation 16 defines
the tangent to the curve:

J

 δtδa
δb

 = 0 (17)

The Jacobian J at a point on the curve is thus of rank at
most 2, and its kernel is the tangent to the curve. If J is of
rank 2, there are at least two columns in J such that their
cross-product is non-null. This cross-product g is the basis
for the kernel of J and the direction of the tangent to the
curve (see, for example, Reeder [Ree11]). If J was of rank 1
or 0, then locally the tangent would not be defined; this has
never happened in all our test scenes.

3.2.4. Pruning triangles and restricting the interval

We developped two strategies to restrict the search by
quickly rejecting triangles:

• One is based on the spindle test and uses only the geomet-
ric position of objects; it can be applied to both triangles
and bounding volumes.

• The other is based on the shading normals; it can be ap-
plied only to triangles.

submitted to COMPUTER GRAPHICS Forum (10/2014).

N. Holzschuch / Accurate single scattering in participating media with refractive boundaries 7

LVmin

Vmax

uL

uV

C

r

θL

θV
ˆ

ˆ

Figure 7: Based on the bounding sphere (C, r) of the current
hierarchical level, we build bounding cones for ω̂V and ω̂L.

Both use the fact that the interval for V is restricted
by the entry and exit points of the refracted camera ray,
[Vmin,Vmax].

If a bounding volume hierarchy (BVH) is present in the
renderer, we use it in a hierarchical descent: starting with
the largest node containing the translucent object, we test
whether it passes the first test. If yes, we iterate on its de-
scendants. If not, we stop the search. We keep descending
recursively until we reach triangles that have passed the first
test. We apply to them the second test based on shading nor-
mals.

If the renderer does not have a BVH, we test the triangles
directly.

The output of the second test is both a boolean and a valid-
ity interval for t. If the boolean is true, we apply Algorithm 1
to this triangle.

For both tests, we build bounding cones for ω̂L and ω̂V

(see Figure 7). We then use these cones to discard trian-
gles where it is impossible to have a refracted path. We build
these bounding cones using the the bounding sphere of the
object (whether it is a triangle or a bounding volume), de-
fined by its center C and radius r:

• ω̂L is inside a cone of axis ûL and angle θL:

dLC = ‖L − C‖
ûL = (L − C) /dLC

θL = arcsin(r/dLC)

• ω̂V is bounded by a sweeping cone, whose normalized
axis moves from ûVmin to ûVmax and whose angle is θV :

ûVmin =
Vmin − C
‖Vmin − C‖

ûVmax =
Vmax − C
‖Vmax − C‖

θV = arcsin(r/dmin)

where dmin = min (‖V − C‖) for V ∈ [Vmin,Vmax]

�
�ˆ

ˆ ˆ

ˆ

Figure 8: The half-vector Ĥ lives inside a cone of axis ûH

and angle θH . ûH lives on an elliptical cone. This cone in-
tersects the plane perpendicular to ûN in an hyperbola. Ex-
istence of a point such that ûN + Ĥ = 0 becomes a point-to-
hyperbola distance in that plane.

Geometry-based test The spindle test tells us that the an-
gle between ω̂V and ω̂L must be between π

2 + arcsin(1/η)
and π. Alternatively, the angle between ω̂V and −ω̂L must be
smaller than π2 − arcsin(1/η).

We compute the minimum angle between −ûL and ûV and
compare it with π2 − arcsin(1/η) + θV + θL. If it is larger, the
entire bounding sphere is outside of the spindle, and we can
stop the search.

Shading-normal based test When testing against a trian-
gle, we start by computing a sweeping cone bounding the
half-vector Ĥ. We also build a cone bounding the shading
normal, with axis ûN and angle θN and check for intersection
between the cones.

The tip of the normalized vector ω̂L lies inside a sphere of
radius rL = 2 sin(θL/2), centered on the tip of ûL (similarly
for ω̂V). Thus, the tip of H = ηω̂V + ω̂L is inside a sphere of
radius ηrV + rL, centered on a moving vector ηûV + ûL.

We denote Hmin the minimal value of the norm of ηûV +ûL.
The normalized half-vector Ĥ lies inside a cone of axis ûH

and angle θH :

ûH = normalize(ηûV + ûL)

θH = arcsin ((ηrV + rL)/Hmin)

The axis ûH lies on a portion of an elliptic cone defined by
ûL and the circle on which ηûV varies (see Figure 8). It is
possible to have Ĥ + NS = 0 only if −uH falls inside the
cone of axis ûN and angle θN + θH .

Rather than having to compute the intersection of these
two cones, we move to the plane perpendicular to ûN , de-
fined by M · ûN = 1. The intersection between this plane
and the cone (̂uN , θN + θH) is a circle, of center O and radius
tan(θN + θH). The intersection between this plane and the el-
liptic cone carrying uH is a hyperbola. The two cones can
intersect only if the curves intersect in the plane: if the min-
imum distance between O and the hyperbola is larger than
tan(θN + θH) we discard the triangle.

Restricting the interval for t A hyperbola defined as the
intersection between a cone and a plane has two branches.

submitted to COMPUTER GRAPHICS Forum (10/2014).

8 N. Holzschuch / Accurate single scattering in participating media with refractive boundaries

Only one branch is relevant for us, the one corresponding
to ûN · ûH < 0. The point V such that ûN · ûH = 0 defines
the boundary between the two branches. We can discard the
other part of the interval, which reduces the search interval
for t.

3.2.5. Computing the integral

Once we have tmin and tmax for a given triangle, we sample
this interval regularly in t. For K samples, we take:

ti = tmin +
i + 1

2

K
(tmax − tmin) (18)

For each ti we compute Vi using Equation 13, then Pi on
the surface such that ViPiL is a valid path following Snell’s
law. We shoot a shadow ray from Pi to L. If the points are
visible from each other, we add the contribution associated
to that path, Ci, to the contribution of the triangle:

Ctriangle =
tmax − tmin

K

∑
i

Ci (19)

The number K of samples in each interval is a parameter.
In practice, we have used K = 1 for all our test scenes with
no visible impact on quality.

4. Results and comparison

Unless otherwise specified, pictures and timings in this pa-
per were generated on a quad-core Intel Xeon W3250 at
2.66 GHz with 6 GB of memory, running Windows 7. We
used the Mitsuba renderer [Jak10] for our algorithm, photon
mapping and bi-directional path-tracing, and the original im-
plementation of Walter et al.’s algorithm [WZHB09].

There is no post-processing in any of the pictures: no
clamping, no filtering. We compute single scattering effects,
along with transmitted and reflected light, as well as internal
reflections.

4.1. Equal time comparison

The key advantage of our algorithm is that it provides high
quality pictures of single scattering effects quickly. Figures 1
and 9 show a side-by-side comparison between our algo-
rithm and other algorithms for approximately the same com-
putation time. Other algorithms do not provide the same
quality:

• Point sampling, the algorithm described in [WZHB09],
computes an exact solution at several points along the re-
fracted camera ray. With equal time computation, there
are too little samples, and point artefacts are clearly visi-
ble (see Figures 1b and 9b).

• Photon mapping uses the implementation in the Mit-
suba renderer, which relies on Beam-Radiance Esti-
mates [JZJ08]. It provides a picture without artefacts, but
the individual features characteristic of single scattering
have been averaged (see Figures 1c and 9c).

PM, 150 M photons

Our algorithm

Figure 10: Comparison with a high quality solution: Photon
mapping with 150 M photons (3.53 h on a dual Intel Xeon
E5345, 2.33 GHz with 48 Gb RAM).

• Bi-directional path-tracing also uses the implementa-
tion in the Mitsuba renderer. For scattering effects, we
connect paths from the light source and paths from the
camera inside the medium. For single scattering, the two
paths must intersect exactly, which has a zero probability
for a point light source. To produce a picture, we replaced
it with a spherical light source (see Figure 1d). Picture
quality is much lower than for the other methods.

4.2. Validation: comparison with high-quality solution

Given the difference between our results and those of other
methods, we need confirmation that we are actually comput-
ing the right solution. Photon mapping with a large number
of photons provides this validation. The computer we used
in our tests ran out of memory after 15 million photons. We
used a different computer, with 48 GB of memory, to com-
pute a picture with 150 million photons (see Figure 10). This
high quality picture is identical to the one we compute in
169 s, up to the thinner details.

4.3. Equal-quality comparison

Increasing the number of samples or photons increases the
quality of the other algorithms, along with their computation
time. Figure 11 shows pictures with approximately the same
quality. The computation time is at least 17 times larger, and
the image quality is still not as good as ours. Note that bi-
directional path tracing also converges to the same solution,
but much slower than the other methods.

Equal quality comparisons with photon mapping is diffi-
cult because of the memory cost: we are limited to 15 million
photons on our testing computer. We allocated all of them to
the volume photon map, specifically for single scattering. In
a more realistic scenario, part of the photons would be used
for surface effects and for multiple scattering, reducing the
quality of single scattering simulation. On the other hand,
photon mapping can be used for rendering more complex
scenarios, that are beyond the scope of our method.

submitted to COMPUTER GRAPHICS Forum (10/2014).

N. Holzschuch / Accurate single scattering in participating media with refractive boundaries 9

(a) Our algorithm (5.8 mn) (b) Point sampling [WZHB09]
(64 samples, 6.2 mn)

(c) Photon mapping
(1.8 M photons, 5.6 mn)

Ours PS PM
(d) Zoom-ins

Figure 9: Comparison between our algorithm for single-scattering effects and existing methods, for approximately equal time.
Bunny model with 16 301 triangles.

(a) Our algorithm (169 s) (b) Point sampling [WZHB09]
(512 samples, 3 188 s, 18×)

(c) Photon mapping
(15 M photons, 2 940 s, 17×)

(d) Bi-Directional Path-Tracing
(500 K samples per pixel,
331 776 s, 1940×)

Figure 11: Comparison between our algorithm for single-scattering effects and existing methods, for approximately equal
quality (Photon Mapping: we used the maximum number of photons for our computer, 15 millions; Bi-Directional Path-Tracing:
we use a sphere instead of a point light source).

A strong advantage of our algorithm is that it has no addi-
tional memory cost: we do not use any data structure beyond
what is already present in the renderer: the geometry of the
object and the bounding volume hierarchy.

4.4. Computation time

We used five test scenes, for a total of eight different poly-
gon counts: the bumpy sphere from [WZHB09], the Stanford
bunny at two different resolutions, a Buddha statue at three
different resolutions, the Stanford armadillo and a model of
a hand (see Figure 12). Triangle count ranges from 104 to
106 triangles. For the Buddha and the hand, we show com-
putation times for two different light positions: from the top
and from behind. We also tried different light positions for
the bumpy sphere and the bunny, but the difference in com-
putation time was within the margin of error.

Figure 13a displays the average computation time for each
camera ray that reached the translucent object. This measure
is independent of the screen coverage of the model. We show
the computation time with and without shadow rays for each
sample point. We show separately the average time for inter-
nally reflected rays; 40 % to 55 % of the camera rays entering
the object result in internal reflections (except for the bumpy
sphere with only 20 %):

• The total computation time is dominated by finding the
zeros of f. Shooting shadow rays accounts for 3 % of com-
putation time. This could be caused, in part, by the sim-
plicity of our test scenes: they contain a large translucent
object and few other objects.

• The influence of light position depends on the object
shape. For compact objects, such as the sphere, the bunny
and the Buddha, it has little influence (at most 10 %).

submitted to COMPUTER GRAPHICS Forum (10/2014).

10 N. Holzschuch / Accurate single scattering in participating media with refractive boundaries

(a) Bumpy sphere (9680 tri.) (b) Bunny (16301 triangles) (c) Buddha (50 000 triangles) (d) Bunny (69 451 triangles)

(e) Hand (310 000 triangles) (f) Armadillo (346 000 triangles) (g) Buddha (0.5 million tri.) (h) Buddha (1 million triangles)

Figure 12: Our test scenes (by increasing order of complexity).

For branching objects, such as the hand and armadillo, it
has a strong influence: computation time is several times
smaller than for a compact object with the same trian-
gle count if each branch can be treated independently (ar-
madillo, hand illuminated from behind). It is slower than
for a comparable compact object when branches interfere
with each other (hand from the top).

• Scattering computations for internal reflections can be ei-
ther slower or faster than for direct rays, depending on
light position. The behavior evolves consistently with ob-
ject resolution. Internal reflections are focusing compu-
tations on part of the object, which can be more or less
complex than the average.

Figure 13b displays the same results in log-log space. For
compact objects and identical lighting conditions, computa-
tion time for each sample evolves roughly as O(n3/4), where
n is the number of polygons. A smooth curve drawn on a
spherical object tesselated into n triangles crosses O(n1/2)
triangles. This is our lower bound. The upper bound is ex-
ploring all triangles: O(n). Complexity is half-way between
upper and lower bounds.

Comparing Figures 12b and 12d shows the effect of
changing object complexity: caustics become more convo-
luted. The effect is less visible on the Buddha model (Fig-
ures 12c, 12g and 12h) probably because the first model is
already of high accuracy.

5. Conclusion

We have described a new algorithm for accurate computa-
tion of single scattering effects inside a translucent object
with refractive boundary. It is an extension of Walter et al.’s
algorithm [WZHB09]. Our main idea is to compute the lim-
its of the influence of each triangle over each refracted ray,
then sample only inside these limits. Our algorithm proves
to be both faster and more accurate than existing methods,
with a smaller memory footprint.

Our method does not require any additional memory
structure beyond what is already available in a renderer: the
geometry of each triangle, and a bounding volume hierar-
chy. This makes it easier to implement inside existing ren-
derers, but impacts performance: with adjacency informa-
tion between triangles, we could reuse computations from
neighboring triangles for shared edges. This should reduce
computation time by 50 %. Using the results from neighbor-
ing pixels as a starting point for the Newton-Raphson iter-
ation would also speed up computations. This information
would also help for adaptive anti-aliasing.

Our algorithm does not allow a speed-quality tradeoff. In
future work we want to introduce this possibility, based on
a hierarchical representation of surface details. This would
also be connected to an extension to rough specular inter-
face. We are currently limited to smooth dielectric.

Finally, we want to extend our algorithm to more complex
configurations. There are no limitations on the camera ray,
but we are restricted to one refractive interface between the

submitted to COMPUTER GRAPHICS Forum (10/2014).

N. Holzschuch / Accurate single scattering in participating media with refractive boundaries 11

 0

 10

 20

 30

 40

 50

 60

 70

 0 200000 500000 1e+06

Total computation time
without auxiliary rays

Internal reflections
Ti

m
e

pe
r i

m
ag

e
sa

m
pl

e
(m

s)

Number of triangles

Hand

Armadillo

1st light position

2nd light position

(a) Linear representation

 0.1

 1

 10

 100

 10000 100000 1e+06

Ti
m

e
pe

r i
m

ag
e

sa
m

pl
e

(m
s)

Number of triangles

Total computation time
without auxiliary rays

Internal reflections
O(n)

O(n½)
O(n¾)

Hand
Armadillo

(b) Log-log space. Time per ray evolves approximately as n3/4.

Figure 13: Average computation time for each camera ray reaching the object, as a function of scene complexity, for two
different light positions. Compact objects (bumpy sphere, bunny, Buddha) behave similarly (connected curves). For branching
objects (hand, armadillo), complexity depends on light position.

camera ray segment and the light source. We would like to
handle more complex cases, with several interfaces from the
light source to the segment.

Acknowledgments

This work was supported in part by a grant ANR-11-BS02-006
“ALTA”. The Bunny and Armadillo models are provided by the
Stanford Computer Graphics Lab data repository. The bumpy sphere
model and the original [WZHB09] implementation were kindly pro-
vided by Bruce Walter. The Agnes Hand model is provided courtesy
of INRIA by the AIM@SHAPE repository. The Buddha model is
provided courtesy of VCG-ISTI by the AIM@SHAPE repository.

References
[EAMJ05] ErnstM., Akenine-Möller T., Jensen H. W.: Interac-

tive rendering of caustics using interpolated warped volumes. In
Graphics Interface (2005), pp. 87–96. 2

[HDI∗10] Hu W., Dong Z., Ihrke I., Grosch T., Yuan G., Sei-
del H.-P.: Interactive volume caustics in single-scattering media.
In Symposium on Interactive 3D Graphics and Games (2010),
ACM, pp. 109–117. 2

[IDN01] Iwasaki K., Dobashi Y., Nishita T.: Efficient rendering
of optical effects within water using graphics hardware. In Pa-
cific Conference on Computer Graphics and Applications (2001),
pp. 374–383. 2

[Ige99] Igehy H.: Tracing ray differentials. In SIGGRAPH ’99
(1999), ACM, pp. 179–186. 3

[IZT∗07] Ihrke I., Ziegler G., Tevs A., Theobalt C., MagnorM.,
SeidelH.-P.: Eikonal rendering: Efficient light transport in refrac-
tive objects. ACM Transactions on Graphics (proc. Siggraph) 26,
3 (July 2007), 59:1 – 59:9. 2

[Jak10] Jakob W.: Mitsuba renderer, 2010. http://www.
mitsuba-renderer.org. 8

[JNSJ11] Jarosz W., Nowrouzezahrai D., Sadeghi I., Jensen
H. W.: A comprehensive theory of volumetric radiance esti-
mation using photon points and beams. ACM Transactions on
Graphics 30, 1 (January 2011), 5:1–5:19. 2

[JNT∗11] JaroszW., NowrouzezahraiD., ThomasR., Sloan P.-P.,
Zwicker M.: Progressive photon beams. ACM Transactions on
Graphics (proc. Siggraph Asia) 30, 6 (December 2011), 181:1–
181:12. 2

[JZJ08] JaroszW., ZwickerM., JensenH. W.: The beam radiance
estimate for volumetric photon mapping. Computer Graphics
Forum (Proc. Eurographics 2008) 27, 2 (2008), 557 – 566. 2, 8

[NN94] Nishita T., Nakamae E.: Method of displaying optical
effects within water using accumulation buffer. In SIGGRAPH
’94 (1994), ACM, pp. 373–379. 2

[PP09] PegoraroV., Parker S. G.: An Analytical Solution to Sin-
gle Scattering in Homogeneous Participating Media. Computer
Graphics Forum (Proc. Eurographics 2009) 28, 2 (2009), 329–
335. 2

[Ree11] Reeder M.: The kernel of a three-by-three matrix.
https://www2.bc.edu/~reederma/Linalg15.pdf, 2011. 6

[SZLG10] Sun X., Zhou K., Lin S., Guo B.: Line space gather-
ing for single scattering in large scenes. ACM Transactions on
Graphics (proc. Siggraph 2010) 29, 4 (July 2010), 54:1–54:8. 2

[SZS∗08] Sun X., Zhou K., Stollnitz E., Shi J., Guo B.: Interac-
tive relighting of dynamic refractive objects. ACM Transactions
on Graphics (proc. Siggraph 2008) 27, 3 (Aug. 2008), 35:1–35:9.
2

[WZHB09] Walter B., Zhao S., Holzschuch N., Bala K.: Sin-
gle scattering in refractive media with triangle mesh boundaries.
ACM Transactions on Graphics (proc. Siggraph 2009) 28, 3 (July
2009), 92:1–92:8. 1, 2, 3, 4, 8, 9, 10, 11

Appendix A: Complexity of the equation f = 0

f = 0 defines a polynomial equation of degree at most 6 in
the parameters t, a and b.

Proof
Each vector V, P and Ns (before normalization) can be ex-
pressed linearly with a parameter vector x = (t, a, b, 1)ᵀ:

V = Vmin + t
Vmax − Vmin

‖Vmax − Vmin‖
= MV x (20)

P = P0 + a(P1 − P0) + b(P2 − P0) = MPx (21)

submitted to COMPUTER GRAPHICS Forum (10/2014).

http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org
https://www2.bc.edu/~reederma/Linalg15.pdf

12 N. Holzschuch / Accurate single scattering in participating media with refractive boundaries

Ns = N0 + a(N1 − N0) + b(N2 − N0) = MNx (22)

Vectors L − P and V − P are also linear:

L − P = L −MPx = MLPx (23)

V − P = MV x −MPx = MVPx (24)

Solutions for f = 0 must satisfy Snell’s law:

η sin θi = sin θo (25)

We express this law with our variables using cross products:

η
‖(V − P) × Ns‖

‖V − P‖‖Ns‖
=
‖(L − P) × Ns‖

‖L − P‖‖Ns‖
(26)

All points solutions of the equation f = 0 satisfy:

η2(L− P)2‖(V− P)×Ns‖
2 = (V− P)2‖(L− P)×Ns‖

2 (27)

(L − P)2 and (V − P)2 are polynomials of degree 2. Each
coordinate of (V−P)×Ns and (L−P)×Ns is a polynomial of
degree 2. The square of their norm is a polynomial of degree
4. Thus, Equation 27 is a polynomial equation of degree 6.

submitted to COMPUTER GRAPHICS Forum (10/2014).

