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1. Introduction and Motivation
The BRDF �(�i; �i; �o; �o) is a radiometric quantity in-
troduced by Nicodemus et al. [1] , which is used in the
infrared as well as the visible domain, to characterize
material re
ectance properties. Intuitively, the BRDF
represents, how the light is angularly re
ected by a ma-
terial per wavelength.

Formally, if we consider a small element of surface
dA illuminated by an incident radiant 
ux d�i from the
direction l = (�i; �i) within the di�erential solid angle
d!i, and observe the re
ected radiance 
ux around v =
(�o; �o) within the di�erential solid angle d!o, the BRDF
is then de�ned as:

fr(�i; �i; �o; �o) cos �o d!o =
d�o(�o; �o)
d�i(�i; �i)

: (1)

As shown in the previous equation the BRDF is ex-
pressed in inverse steradians [sr�1]. Our mathematical
notations are illustrated in Figure 1.

The de�nition in Equation (1), which di�ers (but
mathematically equivalent) from the one introduced by
Nicodemus et al., shows that BRDF measurements can-
not be directly done. First, measuring in�nitesimal
quantities is not possible. Therefore, it is better to as-
sume that BRDF measurements represent the integral
of the BRDF over a �nite solid angle (�!0). The solid
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Fig. 1. The di�erent vectors (l;v) and angles (�i; �i; �o; �o)
used in this paper to parametrize the di�erent BRDF models.
The vector n represents the surface normal and dA is the
di�erential surface area on which the measurement with the
detector is accomplished.

angle �!o is directly related to the size of the detec-
tor used for the measurements. Second, goniophotome-
ters or goniore
ectometers measure 
ux ratios that are
proportional to the BRDF multiplied by a cosine factor
(cos �o) and not the BRDF itself.

In this paper we focus on a particular and less-studied
class of materials: retrore
ective materials. Retrore
ec-
tion is important and arises in di�erent situation. They
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are used for the safety of highway pavement [2, 3] and for
safety clothes. Retrore
ection also arises in nature: from
biological tissues [4], tree canopy [5], rough surfaces [6]
or dielectric layered materials [7].

Previous work have been dedicated to measure BRDF
either with non-imaging systems (e.g., [8{15]) or with
imaging systems (e.g., [16{24]), which are becoming
more and more popular due to the low cost of digital
cameras. However, few (e.g., [12{15]) of them are ca-
pable of measuring retrore
ective materials due to me-
chanical constraints. This comes from the fact that the
illumination direction and the sensor direction must be
aligned (i.e., l = v ). In this paper, we present our own
retrore
ection BRDF acquisition device along with our
measurements (cf. Section 2) and we take advantage of
these new measurements to extend the study of retrore-

ective materials. More precisely, we make the following
contributions:

� A new parametrization useful to represent mea-
sured materials with retrore
ecting lobes (cf. Sec-
tion 3). We show that this parametrization pre-
serves the isotropy or anisotropy of the data.

� Improvements of existing BRDF models so that
they support retrore
ection phenomenon (cf. Sec-
tion 4).

� Multiple comparisons of the capabilities of existing
and improved BRDF models to represent retrore-

ective material measurements using �tting and
approximation techniques (cf. Section 5).

2. Retrore
ection Measurements
2.A. Retrore
ection BRDF Capture Setup
Our measurement device, developed at CEA-CESTA, is
built upon a classical BRDF goniore
ectometer (e.g. [8{
11]). A goniometric cradle, a rotation stage and a ro-
tating arm are used to provide the three degrees of free-
dom required to measure an isotropic BRDF (cf. Fig-
ure 2). The goniometric cradle and the rotation stage
control the direction of incidence of the light source.
More speci�cally, the goniometric cradle permits to mea-
sure (light,detector) con�gurations, which are outside
the plane of incidence. The rotating arm is mainly re-
sponsible for moving the detector. The light source is a
10mW HeNe laser (633 nm) and is collimated on the
sample to be measured with two mirrors acting as a
beam steerer. The detector used is a 400-900nm photo-
diode manufactured by Hammamasu (model C10439-01)
which size is 2:4 � 2:4mm2 (the solid angle subtended by
the detector when placed at the beam splitter position is
approximately 3.6e-5 sr�1). To minimize the noise level,
the incident beam generated by the laser is chopped at
230 Hz.

The main di�erence compared to a 3D isotropic go-
niore
ectometer is that the detector does not occlude
the incoming light source (i.e., the laser). As shown in
the right part of Figure 2, this is achieved by using a

70-30 beam splitter. This splitter and the detector are
�xed on a metallic plate �rmly connected to the rotat-
ing arm. The main principle is similar to the one used
by Ruiz-Cort�es and Dainty [15] or by Rabal et al. [14]
or previously by Jordan [25]. This is a classical setup
to achieve measurement in the retrore
ective direction.
The angular occluded zone (cf. holes in the graphics of
the right part of Figure 3), which cannot be measured, is
coming from the metallic plate holding the beam splitter
and the detector.

All measurements have been made relatively to the
measurement of a target Spectralon coming from Lab-
Sphere. The beam splitter has been characterized with
FTIR spectrometer. This is necessary to rescale the
measurements belonging to the retro-re
ective zone by
the transmission factor. Our measurement setup does
not take into account polarization (i.e., the measure of
the BRDF is the average measure over di�erent polar-
ization states).

2.B. Material Samples Measurements
We measured three retrore
ective materials two coming
from 3M and one from Avery Dennison: a yellow tape
covered with plastic, a gray tape, and an orange tape
(cf. Figure 3). These materials are often stitched on
safety jacket to improve the visibility of workers dur-
ing the night. According to the microscopic analysis
returned by an optical interferometer (ZYGO Newview
7300), the structure of the Yellow tape material has two
layers : one corresponds to the fabric whereas the other
one contains micro-balls made of glass that are responsi-
ble for the retrore
ective behavior. This implies that the
optical interferometer is not able to recover the height
�eld surface pro�le of the Yellow tape due to these two
layers, this is not the case for the Orange coating and
the Gray tape materials though.

Our setup permits to measure isotropic retrore
ec-
tive BRDFs. Mathematically speaking, an isotropic
BRDF requires only three angles to be parametrized:
fr(�i; �o;��) where �� = �i � �o. The isotropic BRDF
multiplied by its cosine factor is measured on a set of
discrete (l;v) con�gurations which are spanning con�g-
urations both inside and outside of the plane of inci-
dence: �s(�i; �o;��) cos �o�!o where �s represents the
s-th measurement sample. For all materials, we used
three angles of incidence for the light source direction
(i.e., �i = f 15�; 30�; 60�g) Regarding the detector, we
set �o 2 [0�; 90�] with three degrees resolution step and
�� 2 [� 180�; 180�] with a 10 degrees resolution step
for the Yellow and Gray tapes. Since the Orange coat-
ing is a more complex material we measured it more
densely: �o 2 [0�; 90�] with two degrees resolution step
and �� 2 [� 180�; 180�] with a 5 degrees resolution step.
Furthermore, the mirror and retro-re
ective directions
have been measured even more densely to minimise sam-
pling artefacts at the center of both lobes. For the Yel-
low and Gray tapes the total number of measured l;v
con�gurations is 3 � 3483 and 3 � 14554 for the Orange
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Fig. 2. Lateral view of our system to acquire retro-re
ective materials. The principle is to use a beam splitter to avoid occlusion
of the incident light source by the sensor when they are collinear. The incident beam is emitted from a laser source that goes
through a beam splitter, which acts as a transparent glass, before being re
ected by the sample. If the material re
ects light
backward (retro-re
ection con�guration), the scattered beam travels back to the beam splitter which is going to re
ect it toward
the sensor.

coating.
As shown in the right part of the Figure 3, the dif-

ferent measured materials present a specular lobe in the
retrore
ective (i.e., when the light source and detector
are aligned) direction. The magnitude of the retrore
ec-
tive lobe is higher than the one in the mirror direction.
The Yellow tape material has even two lobes, one for-
ward and one backward of approximately the same mag-
nitude. As a general observation, the Gray tape and the
Orange coating do have a more complex behavior with
a strong BRDF magnitude decrease with respect to the
angle of incidence.

3. Retrore
ection Parametrizations
The parametrization plays an important role in the de-
scription, understanding and use of data. In this section,
we describe the di�erent parametrizations we used in our
analysis of retrore
ective materials. We recal the clas-
sical parametrization to describe retrore
ection in Sec-
tion 3.A. Then we introduce a new parametrization, the
back parametrization, in Section 3.B. Finally, we com-
pare those two parametrizations and show that the new
parametrization permits to describe more e�ciently the
data (Sections 3.C and 3.D).

3.A. View Vector
Retrore
ection can be speci�cally described by center-
ing the parametrization around the view direction and
looking at the angle between the view and light direc-
tion. To design distributions that are by construction
reciprocal, it is useful to take as input the dot product
between the light and view vectors clamped to positive
values:

cosR = (l � v)+; (2)

where � denotes the dot product between two vectors
and (:)+ clamps a real value to the positive domain.

3.B. Back Vector
We introduce a new parametrization of the retrore
ec-
tion domain, using a new direction vector: the back vec-
tor. We note it b and its formulation is:

b =
v0 + l

jjv0 + ljj
; (3)

where v0 = 2(n � v)n � v is the symmetric of the view
vector with respect to the normal vector, n. Intuitively,
the back vector is the halfway direction between the re-

ected direction v0 and the light direction l (Figure 4).
When used in a BRDF model, we use the dot product
between the back vector and the normal to ensure reci-
procity:

cosB = b � n: (4)

The use of the back vector is justi�ed by considering
microfacet theory [27]. We show in Appendix A, with
a 1D example of a V-cavity microfacet surface, that the
BRDF can be parametrized using the back vector.

3.C. Comparison of parametrizations
The two parametrizations can be compared using a
pseudo-planar formulation:

(l;v) ! (�i; � cos(��); � sin(��));

where � is either the angle between the view and light
vectors or the back and normal vector, and � is the az-
imuth between the light and view vectors or of the back
vector.

We compare the impact of the parametrization on the
data in Figure 5 by displaying the isoline of the data
in the parametrization’s planar formulation. It provides
an intuitive way to view how a parametrization deforms
the data. In the next section we provide a quantitative
study of this deformation using moments analysis.
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Fig. 3. The three retro-re
ected materials. Left: photographs of the samples. Center: Optical Surface Pro�ler (NewView
7300) images revealing the micro-balls structure of the retro-re
ective materials. However, since the Yellow tape has an
additional layer in top of the micro-balls structure, the interferometer cannot exactly extracts the height-�eld corresponding
to the micro-balls layer. Right: BRDF corrected by the cosine factor measurements in the plane of incidence (�� = 0� or
�� = 180�) where the retrore
ective zone corresponds to positive abscissa values (i.e., �0 cos �� � 0). For the Orange tape at
60-degree incidence, the outliers present around �o cos(��) = 60� and �o cos(��) = 75� have been removed for the rest of the
study.

3.D. Moments analysis

A parametrization that preserves the data isotropy or
anisotropy allows to compress the data a little more and
is more stable with respect to �tting.

To study the anisotropy of our data, we analyze the
retrore
ective specular lobe and compute its central mo-
ments in the two parametrizations with respect to the

input elevation. The formulation of central moments in
those 2D parametrizations is:

�i;j(�i) =
1

jjf jj

Z
(x � �x)i(y � �y)jf(�i; x; y)dxdy; (5)

where (x; y) =
�
� cos(��); � sin(��)

�
denote the coor-

dinates of the 2D parametrization, and (�x; �y) is the
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Fig. 4. We introduce the back vector, b, which is half-way
between the light vector and the vector v0, which is the sym-
metric vector of v with respect to the normal n. It shares
properties with h, the half-vector (cf. [26]) that is used in the
microfacets theory introduced by Torrance and Sparrow [27].

Fig. 5. We analyze the isolines of the interpolated yellow
cloth data in the back (red) and light-view (green, dashed)
parametrizations with respect to the angle of incidence. Iso-
lines have been shifted by the angle of incidence for clarity.
The back parametrization keeps the data more uniform with
respect to the angle of incidence compared to the light-view
parametrization.

mean vector. The 1
jjf jj weight ensures proper normal-

ization. The diagonal terms of the second central mo-
ment, �2

x = �2;0 and �2
y = �0;2 correspond to axis vari-

ances. The fourth central moment diagonal terms, �4;0
and �0;4, are link to the axis kurtosis. They indicate
if the distribution is more ’peaked’ or ’
attened’ than
the Normal distribution. Non diagonal terms (i.e. i
and j di�erent from zero) relates to the correlations of
the function between the dimensions of the parametriza-
tions. Non diagonal terms close to zero indicate a close
to separable behavior of the data.

In Figure 6, we compare how the two parametrizations
preserve the isotropy of the data. To do so, we investi-
gate how the ratio of the x and y variances evolves as the
input incidence increases. To keep the plot coherent (in
the [0; 1] domain, 0 corresponding to perfect isotropy),
we look at the ratio between the di�erence of the x and
y variances and the maximum variance. The newly in-
troduced back parametrization preserves the isotropy of
the retrore
ective lobe better. We noted the exception
of the grazing incidence of the Orange coating sample.

However, at this incidence, the Orange cloth sample is
not unimodal (see Figure 10(a)) perturbing the moment
analysis.

Both parametrization provide low covariance values
(i.e., two orders of magnitude below the variances).
Thus, both parametrizations will provide a good sep-
arability of the data along their axis. This property is
important for �tting using basis functions (such as ra-
tional polynomials) as it allows a greater compression of
the data.

All samples showed a strong kurtosis, being spikier
or 
atter than a Gaussian function. This predicts that
Gaussian pro�les will not provide good �ts and this pre-
diction is con�rmed by our �tting results.

4. BRDF models for retrore
ection
4.A. Existing BRDF models for retrore
ection
Di�erent BRDF models account for retrore
ection in
the literature. Some provide a direct comprehension
of the retrore
ection by resolving the light transport
on simpli�ed geometry. Other BRDF models, often
empirical ones, handle retrore
ection by construction.

a. Numerical models. Trowbridge [28] derived
the retrore
ection of light from right angle corners,
inclusions, and below surface shadowing. Proposed
models are incompatible with our data as they exhibit a
singularity in the pure retro direction and thus are not
suited for �tting. Moreover, those models are expensive
to compute and do not contain any shadowing or
Fresnel term. Stoudt and Vedam [2, 3] as well as
Grosges [29] elaborated numerical retrore
ective models
in the case of glass beads inclusion in road paints.
Those models are not suited for data �tting due to
their numerical nature. More recently, �rst and second
order Kirchho� approximations were proposed to
describe the back-scattering from rough surfaces [6, 30].
Unfortunately, those derivations do not provide a closed
formula [31] and only provide insight for a small portion
of backscattering surfaces.

b. Analytical models. Yoo et al [4] provided
a Gaussian formulation of retrore
ection from a
monochromatic light on biological tissues depending
on the albedo and mean free path of the medium.
Simple formulations exist to simulate di�used pitted
surfaces [32]. Retrore
ection from randomly oriented
microfacets [33] has been used to explain the appear-
ance of the moon but does not apply in the case of
retrore
ective garments. Modeling the hotspot e�ect
on forest canopy is usually done by considering the
geometry of leaves, branches and tress. Unfortunately,
a closed form model of forest BRDF is usually not
available [34]. For e�ciency reasons, empirical Gaussian
models are used [5].

c. Empirical models. Some empirical models in-
clude retrore
ection as part of their degrees of freedom.
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(b)Gray cloth (c)Orange coating
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Fig. 6. We compare the ratio of variances r = �2
max ��

2
min

�2
min

along the two axes of the planar parametrization for each sample
for the three �i incidences of measure. Values close to zero denote perfect isotropy of the data while values close to one denote
a strong anisotropy of the data. The back parametrization (red plain line) is more stable than the light-view parametrization
(green striped line) for the Yellow and Gray samples, but fails to preserve isotropy for grazing incidences on the Orange sample.
For this last sample, the data is clearly not composed of a single lobe and there is not a simple retrore
ection model that could
explain it (cf. Figure 10(a)). We performed the moment analysis only on the data of the retrore
ective lobe (when possible)
to preserve a unimodal shape.

The generalized cosine mode from Lafortune et al. [35]
can model retrore
ection using its transformation
matrix (using Cx = Cy > 0). Neumann and Neumann’s
BRDF [36] provide retrore
ection using the same trans-
formation mechanism, but lacks a close formulation.

d. Basis models. Other models provide a surface
representation of the BRDF by mean of a functional
basis, they are used to project the data onto them.
Pacanowski et al. [37] use rational functions in the half
vector parametrization. Spherical harmonics are often
used as a way to describe angular distribution [38] but
are restricted to low frequencies. Wavelets [39] provide
the compression capabilities to store high frequency
materials but the lack of e�cient and practical basis
functions limit their capabilities to describe a signal on
the sphere. Generally, as shown by Mahajan et al. [40],
the number of coe�cients for Spherical Harmonics or
Wavelets grows quadratically with the frequency of the
signal that needs to be represented.

e. Summary. We could not identify any retrore-

ecting BRDF model from the literature that could
match our requirements. Analytical models are re-
stricted to di�use surfaces or simple lobes (either cosine
or Gaussian) and do not model Fresnel or Shadowing
e�ects. Models that would produce such behaviors
require costly numerical evaluations and are not suitable
for use in computer programs (like parameters �nding)
that require a lot of evaluations of the BRDF.

We decided to compare the performance of four dif-
ferent parametric BRDF models and a semi-parametric
model: an extended cosine model [35], a Blinn lobe [26],
a Beckmann distribution [41], an ABC distribution [42],
and a Rational function [37]. Since some of these BRDFs
cannot model the retrore
ection, we decided to improve

them (Section 4.B) by expressing them in one adapted to
the retrore
ection parametrization (Section 3). Further-
more, since some models could not express the Fresnel or
the Shadowing e�ect, we decided to add a retrore
ective
Fresnel term (Section 4.C) and a Smith [43] shadowing
term when needed.

4.B. Updating existing BRDF Models
Using the formulation of the Back vector, we pro-
vide new empirical models to approximate retrore
ec-
tive data e�ciently. In all the following, BRDFs fr are
decomposed into a single scattering term, f , a retrore-

ective term, fb, and an incoherent (di�use) scattering
term, fd: fr = f + fb + fd. We also denote c either the
view vector or the back vector parametrization cosine
cosRB = f cosR; cosBg.

4.B.1. Simple Cosine
The simple cosine model (also referred as Blinn
BRDF [26]) uses the power of the dot product between
the Half vector and the normal of the surface to model
the BRDF:

f = (h � n)�: (6)

We extend this model and provide a retrore
ective
BRDF by replacing the Half vector with one of the
retrore
ection cosines:

fb = cos�RB : (7)

This model has the bene�t to be computationally ef-
�cient as dot products are fast to compute. E�cient
BRDF models permit to use non local parameter re-
search algorithms such as controlled random search [44].

4.B.2. Beckmann Distribution
Microfacet theory [27] describes the re
ection of light
on a surface modeled as distribution of oriented mir-
rors. Assuming that the distribution of the microfacet
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normals follows the Normal distribution (referred as the
Beckmann distribution [41]), single scattering formula-
tion is (presented in the Half angle parametrization):

f =
D(h)F (v � h)G(l;v;h)

4(l � n)(v � n)
;

where F denotes the Fresnel term, G accounts for the
visibility of micro-geometry from the input and output
directions, and D(h) is the distribution of microfacets
(as de�ned in Walter et al. [45]):

D(h) =
1

��2(h � n)4 exp
�

(h � n)2 � 1
�2(h � n)2

�
;

where � is the surface roughness.
We introduce a fb term which include retrore
ec-

tion into the microfacet re
ection model using the same
mathematical form than f :

fb =
Db(b)Fb(v;b)G(l;v;h)

4(l � n)(v � n)
;

The retrore
ective distribution term, Db, is modeled
by replacing the dot product between the Half vector
and the normal by one of the retrore
ection cosine:

Db(b) =
1

��2 cos4
RB

exp
�

cos2
RB � 1

�2 cos2
RB

�
:

Note that the � used in the retrore
ective formulation
is no longer the micro-surface roughness. It however
de�nes the apparent roughness of the retrore
ection. We
describe our retrore
ecting Fresnel term Fb and discuss
the shadowing/masking term G in Section 4.C.

4.B.3. ABC Model
Church et al. [42] introduced the ABC parameters to re-
cover a BRDF from surface pro�le measurements based
on the Rayleigh-Rice theory. For e�cient �tting and
evaluation of data L�ow et al. [46] derived a new micro-
facet BRDF model, which distribution relies on the ABC
parameters. We use their formulation:

f =
A

�
1 +B(1 � (h � n))

� C F (v � h):

We update the ABC model by changing the dot prod-
uct between the Half vector and the normal by one of
the retrore
ection cosines and by changing the Fresnel
term by a retrore
ecting Fresnel term:

fb =
A

�
1 +B(1 � cosRB)

� C Fb(v
0;b):

4.C. Fresnel and Shadowing terms for retrore
ection
During measurements, we experienced re
ectance pro-
�les in the backward direction similar to the one of the

Fresnel e�ect in the forward direction for the Yellow sam-
ple (Fig. 10(c)). Following e�cient formulations intro-
duced in graphics [47], we provide a formulation for the
Fresnel e�ect in the retrore
ective lobe:

Fb(v0;b) = F (v0 � b):

Instead of using u = l � h, we use the product between
v0 and b (u = v0 � b), and use Schlick’s approximation
of the Fresnel F (u); u 2 [0; 1]. By de�nition this Fresnel
term incorporates reciprocity which makes it straight-
forward to use.

We also experienced a strong shadowing e�ect during
the measurement of the gray and orange samples. We
experimented with Smith [43], Cook and Torrance [48],
and Schlick’s [47] approximation for shadowing func-
tions, but none of them provided satisfactory results. We
used Smith shadowing term for Gaussian pro�les [43] in
the two cases.

5. Comparison of BRDF models
In this section, we compare the performance of the
various retrore
ective BRDF models presented in Sec-
tion 4. We �rst compare all parametric models (cf. Sec-
tion 5.A) on the three data samples and then add a
non-parametric model (cf. Section 5.B).

We perform the �tting procedure on the retrore
ec-
tive domain of the BRDF (�o > 0 in our case). This
provides more stable optimizations procedure and re-
duce the number of data points to consider, reducing
the cost of the optimization.

To estimate the parameters of a given parametric
BRDF model, we perform a nonlinear optimization of
the L2 di�erence with respect to the parameters as the
cost function:

arg min
p

q X
(fp (xs) � �s)2: (8)

In this equation, fp is a BRDF model with parameters
vector p and we optimize the square distance to the data
values �s acquired at positions xs. Most nonlinear solver
optimize this L2 norm as a �rst order formulation of
the cost function is easy to compute, and enables local
searches algorithms to be used.

Rational functions interpolate vertical segments and
thus optimize a cost function close to the in�nity norm.
This implicit cost function is mixed with an explicit one
on the coe�cients: the algorithm tries to reduce the L2

norm of the coe�cient vector.

5.A. Parametric models
a. Yellow sample. The results of our �tting of

parametric models on the yellow sample are reported
in Figure 7. The yellow sample exhibits a kurtotic
behavior that the ABC model correctly reproduces.
This sample exhibits a strong Fresnel e�ect with an
increase in intensity at grazing angles; we have therefore
added our updated Fresnel term to perform the �tting.
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We did not include the Fresnel term in the Lafortune
model since it can already reproduce Fresnel behavior.

b. Gray and Orange samples. The results of our �t-
ting of parametric models on the gray and orange sam-
ples are reported in Figure 8 and Figure 9. These sam-
ples exhibit a kurtotic behavior that the ABC model
and the power of cosine correctly reproduce. Further-
more. Since these samples do not show sign of a Fresnel
e�ect (increase of intensity at grazing angles), we did
not add our updated Fresnel term to the �tting. How-
ever, these samples show a strong shadowing e�ect. We
used Smith shadowing term for Gaussian pro�les [43] in
the two cases. We did not include a shadowing term in
the Lafortune model since its formulation can already
reproduce such behavior.

5.B. Rational Function Fitting
Rational functions have no issue dealing with retrore-

ective data when given a reasonable number of coe�-
cients. We performed the interpolation (cf. Figure 10)
of the Yellow tape sample with 48 coe�cients for a
three dimensional data set. This is coherent with what
Pacanowski et al. [37] reported. Since we perform the �t-
ting on the three dimensional data, we can retrieve the
complete BRDF. For our rational approximations, we
used an absolute error of 0:5 with respect to the data and
kept the solution minimizing the L2 norm for the Yellow
and Gray samples. For the Orange coating, we used a
larger absolute error of 1:0 to obtain reasonable approx-
imations (with less than a hundred coe�cients). We
compared the bene�t of performing the approximation
in the back or light-view parametrization. Our experi-
ment show no real gain to use the back parametrization.
Note that since the rational �tting does not optimize for
the L2 norm, there might exists better solutions for one
or the other parametrization. Finally, we did not use the
apparent separability, validated by the moment analysis,
of our data in the projected plane to further reduce the
number of coe�cients. Since the data is close to sepa-
rable in both parametrizations, �tting could be perform
independently along the two dimension of the projective
plane. This would reduce the number of coe�cients as
all cross terms would not appear in the formulation of
the BRDF.

5.C. Summary
We report the di�erent L2 norms (see Equation 8) in
Table 1. These norms are computed with respect to
densi�ed data sets. We interpolate missing values and
made the samples more regular in the projected space.
Although this create a bias in regions where the data
could not be measured, it also makes the L2 norm close
to the continuous L2 norm in regions where the signal
was su�ciently measured.

Comparing the models, Rational functions perform
the best both on the L2 norm and the L1 norm (not
reported). However, Rational functions parameters can-

Yellow tape Gray tape Orange coating

Lafortune 0.689 0.906 0.589
Blinn 1.109 (1.109) 1.165 (1.165) 1.007 (1.007)

Beckmann 1.505 (1.110) 2.858 (2.218) 1.442 (1.119)
ABC 0.443 (0.454) 1.163 (1.177) 0.751 (0.780)

Rational 0.092 (0.080) 0.191 (0.189) 0.256 (0.293)
Nb coe�s = 48 Nb coe�s = 35 Nb coe�s = 70

Table 1. L2 norm distance of the �tted BRDF models to the
retrore
ective data. We report in each cell the distance when
using the Back parametrization model in bold when it exists
and the classical parametrization inside parenthesis. The L2

norm for the back parametrization models is displayed �rst
and we display the L2 norm for the light-view parametriza-
tion in parenthesis. For the rational functions, we display
the number of coe�cients used to achieve the interpolation
using a maximum error of 0:5 (1:0 for the Orange coating).

not be connected to a physical explanation of the mea-
surements. The ABC model provides a good �tting of
the yellow sample. For the gray and orange data, the
Lafortune BRDF provides better �ts. This is because
we were not able to design an adequate shadowing term
for the retrore
ection and that the Lafortune BRDF can
model this decrease in intensity with respect to the in-
cidence elevation.

Overall, despite its good mathematical property
of being more uniform, the advantage of the back
parametrization in terms of �tting is not clear. The
L2 error values are relatively close between the
two parametrizations and we cannot discriminate one
parametrization or the other with respect to �tting.

6. Fitting methodology
In this section, we provide the practical details used for
the moment analysis, the �tting, and the interpolation
of the data.

6.A. Prior-treatment of data
a. Moment analysis. To perform the integration

of the data as speci�ed in Equation 5, we interpolate
the missing values from neighboring samples using
the interpolation package of Matlab (griddata function
was used to perform cubic interpolation). We show
the reconstructed surfaces and the captured data in
Figure 11. To better compute the moment of the lobe
and avoid pollution by the di�use term, we removed
from the computation the di�erent �s that are below
a given threshold. Thus we only consider the specular
response in the analysis.

b. Fitting and rational approximation. To ensure a
better convergence of the �tting and interpolation pro-
cedures we densi�ed the data and �lled the missing part
using Matlab interpolation toolbox. This reduces the
probability of producing a rational function with a zero
in the denominator inside the domain. For the paramet-
ric �tting, this makes the cost function closer to the true
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(d)Updated ABC Model
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Fig. 7. Fitting comparisons of di�erent updated BRDF models on the Yellow cloth sample. For clarity, we only display the
domain where back scattering happens, �o > 0, in the plane of incidence (i:e:;��o = 0). All the incidences are outputted on
the same plot. The updated ABC model is clearly the best �tting model for this data sample.

L2-norm of the di�erence.

6.B. Algorithms
a. Parametric �tting. To perform our parametric

�tting, we use the non-linear optimization library
CERES [49]. This library performs optimization for
nonlinear least-square problems.

b. Rational approximation. We use the rational in-
terpolation of vertical segment from Pacanowski et
al [37]. This approximation method relies on quadratic
programming to �nd one of the possible solutions for a
given set of vertical segments. We set our vertical seg-
ment to be at 0:5 around the data points and did not
use the relative vertical segment advocated in this paper
as it did not provide any stable �t in our case. We also
clamp the vertical segment to be positive to avoid ap-
proximations with negative values, thus enforcing to �t
a positive function. Furthermore, we use a cosine mul-

tiplied by a rational function to improve the stability of
the approximation procedure.

7. Conclusion & Future work
a. Conclusion. By introducing the back

parametrization for retrore
ection, we improve ex-
isting BRDF models. The new parametrization
preserves better the isotropy of data and allows to
include a Fresnel term for the retrore
ection. However,
this new parametrization does improve only slightly the
data �tting methods. We tested the performances of
improved BRDF models for �tting and showed that a
model close to ABC [42] was best describing the data.
We showed that the masking term for retrore
ection
needs an analytical model.

b. Future work. A possible extension would be to
improve our setup to acquire data more densely and by
reducing even more the blind zone. This could help us
to validate or discriminate our new parametrization and
remove the in
uence of the reconstruction in the �tting
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(a)Lafortune Model
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(b)Updated Blinn Model
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(c)Updated Beckmann Model

0

10

20

30

40

5 0

6 0

7 0

8 0

0 10 20 30 40 5 0 6 0 7 0 8 0

B

R

D

F

i nci de nc e el evat i on (i n deg re es�

G ray cl ot h data

ret ro �e ckm a nn �t

b ack �e ckm a nn �t

(d)Updated ABC Model
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Fig. 8. Fitting comparisons of di�erent updated BRDF models on the Gray cloth sample. For clarity, we only display the
domain where back scattering happens, �o > 0, in the plane of incidence (i:e:;��o = 0). All the incidences are outputted on
the same plot.

comparison. Another step in our research will be to
provide an e�cient and analytical retrore
ection model
with parameters connected to the physical phenomenon.
From our study, we know that the shape of the retrore-

ection lobe can be explained by kurtotic models like the
ABC model. The Fresnel term can be modeled using our
extended model, but we currently lack a masking term.
A new analytical model has to match those constraints.
Finally, our �t and models could be of interest to other
communities such as the computer graphics community,
where no model for retrore
ection is currently used.
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Appendix A: A 1D Justi�cation for the Back Vector

In this appendix, we provide a justi�cation for the use
of the back vector for retrore
ecting data using results
from the work of Torrance and Sparrow [27]. We only
provide here a simpli�ed 1D formulation of the scatter-
ing problem. Let us consider a surface and a double
bounce of light given the incoming (l) and outgoing (v)
directions as described in Figure 12. We assume that the
surface is composed of a V-cavity of angular opening 2�
aligned with the normal of the surface n. We denote
mv the normal of the facet that v re
ects on, and ml
the normal of the facet that l re
ects on (Figure 12, in
blue). Both cases describe the same angle with respect
to the normal: mv � n = ml � n = cos(�). Given l and
v, there is only one angle � for which the light will pass
through. To determine �, we formulate the constraint
that light coming from direction l must bounce on facet
ml in the opposite direction than the light bouncing on
facet ml from direction v. The change of sign is equiv-
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(a)Fitting using Lafortune
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(d)Fitting using updated ABC
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Fig. 9. Fitting comparisons of di�erent updated BRDF models on the Orange cloth sample. For clarity, we only display the
domain where back scattering happens, �o > 0, in the plane of incidence (i:e:;��o = 0). All the incidences are outputted on
the same plot.

alent to a double symmetry of the resulting direction,
a �rst symmetry with respect to the axis of the cavity
(Figure 12, vertical dashed line) and a second symmetry
with respect to the surface plane (Figure 12, horizontal
dashed line). The symmetric of the re
ection of v on
facet mv with respect to the cavity axis is the re
ection
of v0 on facet ml . Consequently, the constraint is equiv-
alent to: the re
ection of v0 on facet ml (noted d0) is
the symmetric of re
ection of v on facet ml (noted d)
with respect to the surface plane.

d0 relationship to d is thus: d0 = d � 2(d � n)n. We
can expand this expression using d = 2(l � ml )ml � l and
d0 = 2(v0 � ml )ml � v0. By taking the dot product of the
resulting expression with the normal n, we get:

2(ml � n)
�
(l + v0) � ml

�
= (l + v0) � n (A1)

Equation A1 makes apparent the back vector b, and
we can rewrite it: 2 cos(�)(b�ml ) = b�n. Since all vector
are de�ned in the scattering plane, we can write in lo-

cal coordinates ml = [� cos(�); 0; sin(�)]. The resulting
equation can be written (if bz > 0): b x

b z
= sin(2�)�1

cos(2�)+1 .
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