M. R. Teague, Image analysis via the general theory of moments*, Journal of the Optical Society of America, vol.70, issue.8, pp.920-930, 1980.
DOI : 10.1364/JOSA.70.000920

A. B. Bhatia and E. Wolf, On the circle polynomials of Zernike and related orthogonal sets, Mathematical Proceedings of the Cambridge Philosophical Society, vol.1, issue.01, pp.40-48, 1954.
DOI : 10.1016/0031-8914(47)90052-9

C. Teh and R. T. Chin, On image analysis by the methods of moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.4, pp.496-513, 1988.
DOI : 10.1109/34.3913

Y. S. Abu-mostafa and D. Psaltis, Recognitive Aspects of Moment Invariants, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.6, issue.6, pp.698-706, 1984.
DOI : 10.1109/TPAMI.1984.4767594

D. Zhang and G. Lu, Shape-based image retrieval using generic Fourier descriptor, Signal Processing: Image Communication, pp.825-848, 2002.
DOI : 10.1016/S0923-5965(02)00084-X

M. Bober, F. Preteux, and W. Y. Kim, Shape descriptors, " in Introduction to MPEG 7: Multimedia Content Description Language, pp.231-260, 2002.

T. H. Koornwinder, R. Wong, R. Koekoek, and R. F. Swarttouw, Orthogonal polynomials, " in NIST Handbook of Mathematical Functions, pp.435-484, 2010.

F. Zernike, Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode, Physica, vol.1, issue.7-12, pp.689-704, 1934.
DOI : 10.1016/S0031-8914(34)80259-5

Y. Sheng and L. Shen, Orthogonal Fourier???Mellin moments for invariant pattern recognition, Journal of the Optical Society of America A, vol.11, issue.6, pp.1748-1757, 1994.
DOI : 10.1364/JOSAA.11.001748

Z. Ping, R. Wu, and Y. Sheng, Image description with Chebyshev???Fourier moments, Journal of the Optical Society of America A, vol.19, issue.9, pp.1748-1754, 2002.
DOI : 10.1364/JOSAA.19.001748

G. Amu, S. Hasi, X. Yang, and Z. Ping, Image analysis by pseudo-Jacobi (p = 4, q = 3)???Fourier moments, Applied Optics, vol.43, issue.10, pp.2093-2101, 2004.
DOI : 10.1364/AO.43.002093

J. Flusser, T. Suk, and B. Zitová, Moments and Moment Invariants in Pattern Recognition, 2009.
DOI : 10.1002/9780470684757

T. V. Hoang, Image Representations for Pattern Recognition, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00714651

Z. Ping, H. Ren, J. Zou, Y. Sheng, and W. Bo, Generic orthogonal moments: Jacobi???Fourier moments for invariant image description, Pattern Recognition, vol.40, issue.4, pp.1245-1254, 2007.
DOI : 10.1016/j.patcog.2006.07.016

T. V. Hoang and S. Tabbone, Errata and comments on ???Generic orthogonal moments: Jacobi???Fourier moments for invariant image description???, Pattern Recognition, vol.46, issue.11, pp.3148-3155, 2013.
DOI : 10.1016/j.patcog.2013.04.011

URL : https://hal.archives-ouvertes.fr/hal-00820279

F. Bowman, Introduction to Bessel Functions, 1958.

Q. Wang, O. Ronneberger, and H. Burkhardt, Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.9, pp.1715-1722, 2009.
DOI : 10.1109/TPAMI.2009.29

S. Guan, C. Lai, and G. W. Wei, Fourier???Bessel analysis of patterns in a circular domain, Physica D: Nonlinear Phenomena, vol.151, issue.2-4, pp.83-98, 2001.
DOI : 10.1016/S0167-2789(01)00223-8

B. Xiao, J. Ma, and X. Wang, Image analysis by Bessel???Fourier moments, Pattern Recognition, vol.43, issue.8, pp.2620-2629, 2010.
DOI : 10.1016/j.patcog.2010.03.013

S. C. Verrall and R. Kakarala, Disk-harmonic coefficients for invariant pattern recognition, Journal of the Optical Society of America A, vol.15, issue.2, pp.389-401, 1998.
DOI : 10.1364/JOSAA.15.000389

H. Ren, Z. Ping, W. Bo, W. Wu, and Y. Sheng, Multidistortion-invariant image recognition with radial harmonic Fourier moments, Journal of the Optical Society of America A, vol.20, issue.4, pp.631-637, 2003.
DOI : 10.1364/JOSAA.20.000631

P. Yap, X. Jiang, and A. C. Kot, Two-dimensional polar harmonic transforms for invariant image representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.6, pp.1259-1270, 2010.

T. V. Hoang and S. Tabbone, Fast computation of orthogonal polar harmonic transforms, Proceedings of the 21th International Conference on Pattern Recognition, pp.3160-3163, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00734307

C. Fefferman, On the convergence of multiple Fourier series, Bulletin of the American Mathematical Society, vol.77, issue.5, pp.744-745, 1971.
DOI : 10.1090/S0002-9904-1971-12793-3

S. X. Liao and M. Pawlak, On the accuracy of Zernike moments for image analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.12, pp.1358-1364, 1998.
DOI : 10.1109/34.735809

G. A. Papakostas, Y. S. Boutalis, C. Papaodysseus, and D. K. Fragoulis, Numerical error analysis in Zernike moments computation, Image and Vision Computing, vol.24, issue.9, pp.960-969, 2006.
DOI : 10.1016/j.imavis.2006.02.015

J. Z. Wang, J. Li, and G. Wiederhold, SIMPLIcity: semantics-sensitive integrated matching for picture libraries, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.9, pp.947-963, 2001.
DOI : 10.1109/34.955109

C. Teh and R. T. Chin, On digital approximation of moment invariants, Computer Vision, Graphics, and Image Processing, pp.318-326, 1986.

A. Khotanzad and Y. H. Hong, Invariant image recognition by Zernike moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.5, pp.489-497, 1990.
DOI : 10.1109/34.55109

P. Yip, Sine and cosine transforms, Transforms and Applications Handbook, 2010.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

A. , G. , R. Zm, . Pzm, and C. Ofmm, Jacobi polynomial-based and eigenfunction-based (FBM, BFM, DHC) methods on NoiseAll dataset under different degrees of Gaussian, pp.4-12

A. , G. , R. Zm, . Pzm, and C. Ofmm, Classification rates of GRHFM at s = 0.5, 1, 2, 4, non-orthogonal Jacobi polynomial-based and eigenfunction-based (FBM, BFM, DHC) methods on NoiseInner dataset under different degrees of Gaussian, Table, vol.5, 2005.

A. , G. , R. Zm, . Pzm, . Ofmm et al., Classification rates of GRHFM at s = 0.5, 1, 2, 4, non-orthogonal Jacobi polynomial-based, and eigenfunction-based (FBM, BFM, DHC) methods on NoiseOuter dataset under different degrees of Gaussian noise, p.10