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Abstract :

Object:

Parallel MRI is a fast imaging technique that helps acquiring highly resolved

images in space/time. Its performance depends on the reconstruction algorithm,

which can proceed either in the k-space or in the image domain.

Materials and Methods:

To improve the performance of the widely used SENSE algorithm, 2D regulariza-

tion in the wavelet domain has been investigated. In this paper, we first extend

this approach to 3D-wavelet representations and 3D sparsity-promoting regular-

ization term, in order to address reconstruction artifacts which propagate across

adjacent slices. The resulting optimality criterion is convex but nonsmooth, and

we resort to the Parallel Proximal Algorithm to minimize it. Second, to account

for temporal correlation between successive scans in functional MRI (fMRI), we

extend our first contribution to 3D+t acquisition schemes by incorporating a prior

along the time axis into the objective function.

Results:

Our first method (3D-UWR-SENSE) is validated on T1-MRI anatomical data for

gray/white matter segmentation. The second method (4D-UWR-SENSE) is vali-

dated for detecting evoked activity during a fast event-related fMRI protocol.

Conclusion:

We show that our algorithm outperforms the SENSE reconstruction at the sub-

ject and group levels (15 subjects) for different contrasts of interest (motor or

computation tasks) and two parallel acceleration factors (R = 2 and R = 4) on

2× 2× 3 mm3 EPI images.

Keywords Parallel MRI, fMRI, wavelet transform, spatio-temporal regulariza-

tion, convex optimization
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1 Introduction

Reducing scanning time in Magnetic Resonance Imaging (MRI) exams remains

a worldwide challenging issue since it has to be achieved while maintaining high

image quality [2, 3]. The expected benefits are i.) to limit patient’s exposure to

the MRI environment either for safety or discomfort reasons, ii.) to improve ac-

quisition robustness against subject’s motion artifacts and iii.) to limit geometric

distortions. One basic idea to make MRI acquisitions faster (or to improve spatial

resolution in a fixed scanning time) consists of reducing the amount of acquired

samples in the k-space (spatial Fourier domain) and developing dedicated recon-

struction pipelines. To achieve this goal, three main research avenues have been

developed so far:

– parallel imaging or parallel MRI that relies on a geometrical principle involving

multiple receiver coils with complementary sensitivity profiles. This enables the

k-space undersampling along the phase encoding direction without degrading

spatial resolution or truncating the Field-Of-View (FOV). pMRI requires the

unfolding of reduced FOV coil-specific images to reconstruct the full FOV

image [4, 5, 6].

– Compressed Sensing (CS) MRI that exploits three ingredients: sparsity of MR

images in wavelet bases, the incoherence between Fourier and inverse wavelet

bases which allows to randomly undersample k-space and the nonlinear recovery

of MR images by solving a convex but nonsmooth ℓ1 minimization problem [7,

8, 9, 10, 11]. This approach remains usable with classical receiver coil but can

also be combined with parallel MRI [12, 13].

– In the dynamic MRI context, fast parallel acquisition schemes have been pro-

posed to increase the acquisition rate by reducing the amount of acquired

k-space samples in each frame using interleaved partial k-space sampling be-

tween successive frames (UNFOLD approach [14]). To further reduce the scan-

ning time, some strategies taking advantage of both the spatial (actually in
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the k-space) and temporal correlations between successive scans in the dataset

has been pushed forward such as kt-BLAST [15] or kt-SPARSE [16].

In parallel MRI (pMRI), many reconstruction methods like SMASH (Simulta-

neous Acquisition of Spatial Harmonics) [4], GRAPPA (Generalized Autocalibrat-

ing Partially Parallel Acquisitions) [6] and SENSE (Sensitivity Encoding) [5] have

been proposed in the literature to reconstruct a full FOV image from multiple

k-space undersampled images acquired on separate channels. Their main differ-

ence lies in the space on which they operate. GRAPPA performs multichannel

full FOV reconstruction in the k-space domain whereas SENSE carries out the

unfolding process in the image domain: all undersampled images are first recon-

structed by inverse Fourier transform before combining them to unwrap the full

FOV image. Also, GRAPPA is autocalibrated, whereas SENSE needs a separate

coil sensitivity estimation step based on a reference scan. Note however that auto-

calibrated versions of SENSE are now available such that the mSENSE algorithm [17]

on Siemens scanners.

In the dynamic MRI context, combined strategies mixing parallel imaging and

accelerated sampling schemes along the temporal axis have also been investi-

gated. The corresponding reconstruction algorithms have been referenced to as

kt-SENSE [15, 18], kt-GRAPPA [19]. Compared to mSENSE where the centre of the

k-space is acquired only once at the beginning, these methods have to acquire the

central k-space area at each frame, which decreases the acceleration factor. More

recently, optimized versions of kt-BLAST and kt-SENSE reconstruction algorithms

referenced to as kt-FOCUSS [20, 21] have been designed to combine the CS theory

in space with Fourier or alternative transforms along the time axis. They enable

to further reduce data acquisition time without significantly compromising image

quality if the image sequence exhibits a high degree of spatio-temporal correlation,

either by nature or by design. Typical examples that enter in this context are i.)

dynamic MRI capturing an organ (liver, kidney, heart) during a quasi-periodic mo-

tion due to the respiratory cycle and cardiac beat and ii.) functional MRI based on
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periodic blocked design. However, this interleaved partial k-space sampling cannot

be exploited in aperiodic dynamic acquisition schemes like in resting state fMRI

(rs-fMRI) or during fast-event related fMRI paradigms [22, 23]. In rs-fMRI, spon-

taneous brain activity is recorded without any experimental design in order to

probe intrinsic functional connectivity [22, 24, 25]. In fast event-related designs,

the presence of jittering combined with random delivery of stimuli introduces a

trial-varying delay between the stimulus and acquisition time points [26]. This pre-

vents the use of an interleaved k-space sampling strategy between successive scans

since there is no guarantee that the BOLD response is quasi-periodic. Because

the vast majority of fMRI studies in neurosciences make use either of rs-fMRI or

fast event-related designs [26, 27], the most reliable acquisition strategy in such

contexts remains the “scan and repeat” approach, although it is suboptimal. To

our knowledge, only one kt-contribution (kt-GRAPPA [19]) has claimed its ability

to accurately reconstruct fMRI images in aperiodic paradigms.

Overview of our contribution

The present paper therefore aims at proposing a new 3D/(3D+t)-dimensional

pMRI reconstruction algorithm that can be adopted irrespective of the nature

of the encoding scheme or the fMRI paradigm. In particular, we show that our

approach outperforms its SENSE-like alternatives not only in terms of artifact

removal for anatomical image reconstruction, but also in terms of statistical sen-

sitivity at the subject and group-levels in fast event-related fMRI.

In the fMRI literature, few studies have been conducted to measure the impact

of the parallel imaging reconstruction algorithm on EPI volumes and subsequent

statistical sensitivity for detecting evoked brain activity [28, 29, 30, 3]. In these

works, reliable activations were detected for an acceleration factor up to 3. More

recently, a special attention has been paid in [31] to assess the performance of

dynamic MRI reconstruction algorithms on BOLD fMRI sensitivity. In [31], the

authors have reported that kt-based approaches perform better than conventional



6 Chaari et al.

SENSE for BOLD fMRI in the sense that reliable sensitivity may be achieved at

higher undersampling factors (up to 5). However, most of the time, these com-

parisons are made on a small group of individuals and statistical analysis is only

performed at the subject level. Here, we perform the comparison of several parallel

MRI reconstruction algorithms both at the subject and group levels for different

acceleration factors.

To remove reconstruction artifacts that occur at high acceleration factors, regular-

ized SENSE methods have been proposed in the literature [32, 33, 34, 35, 36]. Some

of them apply quadratic or Total Variation (TV) regularizations while others resort

to 2D regularization in the wavelet transform domain (e.g. UWR-SENSE: Uncon-

strained Wavelet Regularized SENSE) [37]). The latter strategy has proved its effi-

ciency on the reconstruction of anatomical or functional (resting-state only) data,

compared to standard SENSE and TV-based regularization [35, 37]. More recently,

unconstrained Wavelet Regularized SENSE (or UWR-SENSE) has been assessed

on EPI images and compared with mSENSE on a brain activation fMRI dataset [38].

This comparison was performed at the subject level only. Besides, except some

non-regularized contributions like 3D GRAPPA [39], most of the available recon-

struction methods in the literature operate slice by slice and thus reconstruct each

slice irrespective of its neighbours. Iterating over slices is thus necessary to recover

the whole 3D volume. This observation led us to consider 3D or full FOV image

reconstruction as a single step in which all slices are treated together. For doing

so, we introduce 3D wavelet transform and 3D sparsity-promoting regularization

term in the wavelet domain. This approach can still apply even if the acquisition is

performed in 2D instead of 3D. Following the same principle, an fMRI run usually

consists of several tens of successive scans that are reconstructed independently

one to another. Iterating over all acquired 3D volumes remains the classical ap-

proach to reconstruct the 4D or 3D + t dataset. However, it has been shown for

a long while that fMRI data are serially correlated in time even under the null

hypothesis (i.e., ongoing activity only) [40, 41, 42]. To capture this dependence
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between successive time points, an autoregressive model has demonstrated its rel-

evance [43, 44, 45, 46]. Hence, we propose to account for this temporal structure

at the reconstruction step.

These two key ideas have played a central role to extend the UWR-SENSE ap-

proach [37] through a more general regularization scheme that relies on a convex

but nonsmooth criterion to be minimized. This criterion is made up of three terms.

The first one (data fidelity) accounts for 3D spatial and temporal dependencies

between successive slices and repetitions (i.e., scans) by combining all repetitions

and involving a 3D wavelet transform. The second and third terms promote spar-

sity in the 3D wavelet domain as well as the temporal smoothness of the sought

(3D + t) image sequence, respectively. The minimization of this criterion relies

on the Parallel ProXimal Algorithm (PPXA) [47] which can address a broader

scope of optimization problems than the forward-backward and Douglas-Rachford

methods employed in [37], or even FISTA as used in [48].

The rest of this paper is organized as follows. Section 2 recalls the principle of

parallel MRI and describes the proposed reconstruction algorithms and optimiza-

tion aspects. In Section 3, experimental validation of the 3D/4D-UWR-SENSE ap-

proaches is performed on anatomical T1 MRI and BOLD fMRI data, respectively.

In Section 4, we discuss the pros and cons of our method. Finally, conclusions and

perspectives are drawn in Section 5.

2 Materials and Methods

2.1 Parallel imaging in MRI

In parallel MRI, an array of L coils is employed to indirectly measure the spin

density ρ ∈ R
X×Y [49] within the object under investigation1. For Cartesian 2D

acquisition schemes, the sampling period along the phase encoding direction is R

times larger than the one used for conventional acquisition, R ≤ L being the reduc-

1 The overbar is used to distinguish the “true” data from a generic variable.
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tion factor. To recover full FOV images, many algorithms have been proposed but

only SENSE-like [5] and GRAPPA-like [6] methods are provided by scanner man-

ufacturers. For more details about the parallel MRI formalism, interested readers

can refer to [49, 5, 6, 37]. In what follows, we focus on SENSE-like methods operat-

ing in the image domain. Under coil-dependent additive zero-mean Gaussian noise

assumptions, and denoting by r = (x, y)T ∈ X×Y the spatial position in the image

domain (·T being the transpose operator), SENSE amounts to solving the following

one-dimensional inversion problem at each spatial position r = (x, y)T [5, 37]:

d(r) = S(r)ρ(r) + n(r), (1)

where n(r) (L×1) is the noise term, d (L×1) the acquired signal and ρ (R×1) the

target image. The sensitivity matrix S (L×R) is estimated using a reference scan

and varies according to the coil geometry. Note that the coil images as well as the

sought image ρ are complex-valued, although |ρ| is only considered for visualization

purposes. Indeed, keeping the complex nature of the data allows accounting for

both magnitde and phase of the acquired signals. The phase signal in MRI has

been demonstrated to be informative in some recent studies such as [50].

The 1D-SENSE reconstructionmethod [5] actually minimizes a Weighted Least

Squares (WLS) criterion JWLS given by:

JWLS(ρ) =
∑

r∈{1,...,X}×{1,...,Y/R}

‖ d(r)− S(r)ρ(r) ‖2
Ψ

−1 , (2)

where Ψ is the noise covariance matrix and ‖ · ‖
Ψ−1 =

√
(·)HΨ−1(·). Hence, the

SENSE full FOV image is nothing but the maximum likelihood estimate which

admits the following closed-form expression at each spatial position r:

ρ̂WLS(r) =
(
S

H(r)Ψ−1
S(r)

)♯
S

H(r)Ψ−1
d(r), (3)

where (·)H (respectively (·)♯) stands for the transposed complex conjugate (respec-

tively pseudo-inverse). It should be noticed here that the described 1D-SENSE
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reconstruction method has been designed to reconstruct one slice (2D image). To

reconstruct a full volume, the 1D-SENSE reconstruction algorithm has to be iter-

ated over all slices. In practice, the performance of the SENSE method is limited

because of i) different sources of noise such as distortions in the measurements d(r),

and ii) distortions in estimation and ill-conditioning of S(r) mainly at brain/air

interfaces. To enhance the robustness of the solution to this ill-posed problem, a

regularization is usually introduced in the reconstruction process. To go beyond

the over-smoothing effects of quadratic regularization [32, 33], edge-preserving

penalties have been widely investigated in the pMRI reconstruction literature.

For instance, the Total Variation (TV) regularization has been proposed in re-

cent works [51, 52]. However, TV is mostly adapted to piecewise constant images,

which doesn’t reflect the prior knowledge in fMRI. As investigated by Chaari et

al. [37], Liu et al. [36] and Guerquin-Kern et al. [48], regularization in the Wavelet

Transform (WT) domain is a powerful tool to improve SENSE reconstruction. In

what follows, we summarize the principles of wavelet-based regularization.

2.2 Proposed wavelet-based regularized SENSE

Akin to [37] where a regularized reconstruction algorithm relying on 2D separable

WTs was investigated, to the best of our knowledge, all the existing approaches

in the pMRI regularization literature proceed slice by slice. The drawback of this

strategy is that no spatial continuity between adjacent slices is taken into account.

Similarly in fMRI, the whole brain volume is acquired repeatedly during an fMRI

run. Hence, it becomes necessary to iterate over all volumes to reconstruct 4D

datasets. Consequently, the 3D volumes are supposed independent in time whereas

it is known that fMRI time-series are serially correlated [43] because of two distinct

effects: the BOLD signal itself is a low-pass filtered version of the neural activity,

and physiological artifacts make the fMRI time series strongly dependent. For

these reasons, modeling temporal dependence across scans at the reconstruction
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step may impact subsequent statistical analysis. This has motivated the extension

of the wavelet regularized reconstruction approach in [37] in order to:

– account for 3D spatial dependencies between adjacent slices by using 3D WTs,

– exploit the temporal dependency between acquired 3D volumes by applying an

additional regularization term along the temporal dimension of the 4D dataset.

This additional regularization will help us in increasing the Signal to Noise

Ratio (SNR) through the acquired volumes, and therefore enhance the reliability

of the statistical analysis in fMRI. These temporal dependencies have also been

used in the dynamic MRI literature in order to improve the reconstruction quality

in conventional MRI [53]. However, since the imaged object geometry in the latter

context generally changes during the acquisition, taking the temporal regulariza-

tion in the reconstruction process into account becomes very difficult. An optimal

design of 3D reconstruction should integrate slice-timing and motion correction in

the reconstruction pipeline. For the sake of computational efficiency, our approach

only performs 3D reconstruction before considering slice-timing and motion cor-

rection. To deal with a 4D reconstruction of the Nr acquired volumes, we will first

rewrite the observation model in Eq. (1) as follows:

d
t(r) = S(r)ρt(r) + n

t(r), (4)

where t ∈ {1, . . . , Nr} is the frame index and r = (x, y, z) is the 3D spatial po-

sition, z ∈ {1, . . . , Z} being the slice index. At a given frame t, the full FOV 3D

complex-valued image ρt of size X × Y × Z can be seen as an element of the Eu-

clidean space C
K with K = X × Y × Z endowed with the standard inner product

〈 · | · 〉 and norm ‖ · ‖. We employ a dyadic 3D orthonormal wavelet decomposition

operator T over jmax resolution levels (typically 3 as used in our results). To per-

form 3D wavelet decomposition using a given filter (Symmlet for instance), the

same filter is applied across lines (X), columns (Y ) and slices (Z). The coefficient

field resulting from the wavelet decomposition of a target image ρt is defined as

ζt =
(
ζta, (ζ

t
o,j)o∈O,1≤j≤jmax

)
with o ∈ O = {0, 1}3\{(0,0, 0)}, ζta = (ζta,k)1≤k≤Kjmax
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and ζto,j = (ζto,j,k)1≤k≤Kj
where Kj = K2−3j is the number of wavelet coefficients

in a given subband at resolution j (by assuming that X, Y and Z are multiple of

2jmax). Note that if the image size is not a power of 2, and as usually performed

in the wavelet literature, zero-padding can be used for example to reach a power

of 2 matrix size.

Adopting such a notation, the wavelet coefficients have been reindexed so that

ζta denotes the approximation coefficient vector at the resolution level jmax, while

ζto,j denotes the detail coefficient vector at the orientation o and resolution level

j. Using 3D dyadic WTs allows us to smooth reconstruction artifacts along the

slice selection direction that may appear at the same spatial position, which is

not possible using a slice by slice processing. Also, even if reconstruction artifacts

do not exactly appear in the same positions, the proposed method allows us to

incorporate reliable information from adjacent slices in the reconstruction model.

The proposed regularization procedure relies on the introduction of two penalty

terms. The first penalty term describes the prior 3D spatial knowledge about the

wavelet coefficients of the target solution and it is expressed as:

g(ζ) =

Nr∑

t=1

[Kjmax∑

k=1

Φa(ζ
t
a,k) +

∑

o∈O

jmax∑

j=1

Kj∑

k=1

Φo,j(ζ
t
o,j,k)

]
, (5)

where ζ = (ζ1, ζ2, . . . , ζNr) and we have, for every o ∈ O and j ∈ {1, . . . , jmax} (and

similarly for Φa relative to the approximation coefficients),

∀ξ ∈ C, Φo,j(ξ) = ΦRe
o,j(ξ) + ΦIm

o,j(ξ) (6)

where ΦRe
o,j(ξ) = αRe

o,j |Re(ξ − µo,j)|+
βRe

o,j

2 |Re(ξ − µo,j)|
2 and ΦIm

o,j(ξ) = αIm
o,j |Im(ξ −

µo,j)|+
βIm

o,j

2 |Im(ξ−µo,j)|
2 with µo,j = µRe

o,j + ıµIm
o,j ∈ C, and αRe

o,j, β
Re
o,j, α

Im
o,j, β

Im
o,j are

some positive real constants. Hereabove, Re(·) and Im(·) (or ·Re and ·Im) stand for

the real and imaginary parts, respectively. For both real and imaginary parts, this

regularization term allows us to keep a compromise between sparsity and smooth-

ness of the wavelet coefficients due to the ℓ1 and ℓ2 terms, respectively. This ℓ1−ℓ2
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regularization is therefore more flexible and can model a larger panel of images

than a simple ℓ1 regularization. The usefulness of this kind of penalization has

been demonstrated in [37].

The second regularization term penalizes the temporal variation between succes-

sive 3D volumes:

h(ζ) = κ

Nr∑

t=2

‖T ∗ζt − T ∗ζt−1‖pp (7)

where T ∗ is the 3D wavelet reconstruction operator. The prior parameters αo,j =

(αRe
o,j , α

Im
o,j), βo,j = (βRe

o,j , β
Im
o,j), µo,j = (µRe

o,j , µ
Im
o,j), κ ∈ [0,+∞[ and p ∈ [1,+∞[ are

unknown and they need to be estimated. The used ℓp norm gives more flexibility

to the temporal penalization term by allowing it to promote different levels of

sparsity depending on the value of p. Such a penalization has been chosen based

on empirical studies that have been conducted on the time-course of the BOLD

signal at the voxel level. This parameter has been finally fixed to p = 1.

Based on the formulation hereabove, the criterion to be minimized in order to get

the 4D-UWR-SENSE solution can be written as follows:

JST(ζ) = JTWLS(ζ) + g(ζ) + h(ζ) (8)

where JTWLS is defined as

JTWLS(ζ) =

Nr∑

t=1

JWLS(ζ
t)

=
Nr∑

t=1

∑

r∈{1,...,X}×{1,...,Y/R}×{1,...,Z}

‖dt(r)− S(r)(T ∗ζt)(r)‖2
Ψ−1 . (9)

If only the 3D spatial regularization is considered, the 3D-UWR-SENSE solution

is obtained by minimizing the following criterion for every acquisition frame t =

1 . . . Nr:

JS(ζ
t) = JWLS(ζ

t) + gs(ζ
t), (10)



3D+t wavelet regularization for parallel MRI reconstruction 13

where JWLS is defined in Eq. (2) and gs is defined as

gs(ζ
t) =

Kjmax∑

k=1

Φa(ζ
t
a,k) +

∑

o∈O

jmax∑

j=1

Kj∑

k=1

Φo,j(ζ
t
o,j,k). (11)

The operator T ∗ is then applied to each component ζt of ζ to obtain the re-

constructed 3D volume ρt related to acquisition frame t. It should be noticed here

that other choices for the penalty functions are also possible provided that the

convexity of the resulting optimality criterion is ensured. This condition enables

the use of fast and efficient convex optimization algorithms. Adopting this formu-

lation, the minimization procedure plays a prominent role in the reconstruction

process. The proposed optimization procedure is detailed in Appendix A.

3 Results

This section is dedicated to the experimental validation of the reconstruction al-

gorithm we proposed in Section 2.2. Experiments have been conducted on both

anatomical and functional data which was acquired on a 3T Siemens Trio magnet.

For fMRI acquisition, ethics approval was delivered by the local research ethics

committee (Kremlin-Bicêtre, CPP: 08 032) and fifteen volunteers gave their written

informed consent for participation.

For anatomical data, the proposed 3D-UWR-SENSE algorithm (4D-UWR-

SENSE without temporal regularization) is compared to the scanner reconstruc-

tion pipeline. As regards fMRI validation, results of subject and group-level fMRI

statistical analyses are compared for two reconstruction pipelines: the one available

on the scanner workstation and our own pipeline which, for the sake of complete-

ness, involves either the early UWR-SENSE [37] or the 4D-UWR-SENSE version

of the proposed pMRI reconstruction algorithm.
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3.1 Anatomical data

Anatomical data has been acquired using a 3D T1-weighted MP-RAGE pulse se-

quence at a 1 × 1 × 1.1 mm3 spatial resolution (TE = 2.98 ms, TR = 2300 ms,

TI = 900 ms, flip angle = 9◦, slice thickness = 1.1 mm, transversal orientation,

FOV = 256×240×176 mm3, TR between two RF pulses: 7.1 ms, antero-posterior

phase encoding). Data has been collected using a 32-channel receiver coil (no par-

allel transmission) at two different acceleration factors, R = 2 and R = 4.

To compare the proposed approach to the mSENSE
2 one, Fig. 1 illustrates coro-

nal anatomical slices reconstructed with both algorithms while turning off the

temporal regularization in 4D-UWR-SENSE. Red circles clearly show reconstruc-

tion artifacts and noise in the mSENSE reconstruction, which have been removed

using our 3D-UWR-SENSE approach. Comparison may also be made through re-

constructed slices for R = 2 and R = 4, as well as with the conventional acquisition

(R = 1). This figure shows that increasing R generates more noise and artifacts

in mSENSE results whereas the impact on our results is attenuated. Artifacts are

smoothed by using the continuity of spatial information across contiguous slices

in the wavelet space. Depending on the used wavelet basis and the number of

vanishing moments, more or less (4 or 8 for instance) adjacent slices are involved

in the reconstruction of a given slice. Here we used Symmlet filters of length 8 (4

vanishing moments) which makes 8 adjacent slices involved in the reconstruction

of a given slice. The smoothing level inherent to the proposed method strongly de-

pends on the regularization parameters that are used to set the thresholding level

of wavelet coefficients. Images reconstructed using our algorithm present higher

smoothing level than mSENSE without altering key information in the images. When

carefully analysing the image background, one can notice the presence of motion-

like artifacts that only affect the background and do not alter the brain mask. Such

artifacts are nothing but boundary effects due to the use of wavelet transforms.

Note also that mSENSE images present higher contrast level, which is due to the

2 SENSE reconstruction implemented by the Siemens scanner, software ICE, VB 17.
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contrast homogenization step applied by the scanner manufacturer. Our pipeline

does not involve any contrast homogenization in order to preserve data integrity.

R = 1 R = 2 R = 4

Fig. 1 Coronal reconstructed slices using mSENSE (top row) and 3D-UWR-SENSE (bottom
row) for R = 2 and R = 4 with 1×1×1.1 mm3 spatial resolution. Reconstructed slices are also
provided for a conventional acquisition (non accelerated with R = 1) as the Sum Of Squares
(SOS). Red ellipsoids indicate the position of reconstruction artifacts using mSENSE.

In order to evaluate the impact of such smoothing, classification tests have

been conducted based on images reconstructed with both methods. Gray and

white matter classification results using the Morphologist 2012 pipeline of T1-MRI

toolbox of Brainvisa software3 at R = 2 and R = 4 are compared to those obtained

without acceleration (i.e. at R = 1), considered as the ground truth. Displayed re-

sults in Fig. 2 show that classification errors occur close to reconstruction artifacts

for mSENSE, especially at R = 4. The obtained results using our 3D-UWR-SENSE

algorithm show that the gray matter is better classified especially close to the

artifact into the red circle (left red circle in Fig. 2 [R = 4]), which lies at the

frontier between the white and gray matters. Moreover, reconstruction noise with

3 http://brainvisa.info
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mSENSE in the centre of the white matter (right red circle in Fig 2 [R = 4]) also

causes miss-classification errors far from the gray/while matter frontier. However,

at R = 1 and R = 2 classification performance is rather similar for both methods,

which confirms the ability of the proposed method to attenuate reconstruction

artifacts while keeping classification results unbiased.

R = 1 R = 2 R = 4

Fig. 2 Coronal view of classification results based on reconstructed slices using mSENSE (top
row) and 3D-UWR-SENSE (bottom row) for R = 2 and R = 4 with 1 × 1 × 1.1 mm3 spatial
resolution. Classification results based on the SOS of a non-accelerated acquisition (R = 1) are
also provided as a ground truth. Red circles indicate the position of reconstruction artifacts
using mSENSE for R = 4.

To further investigate the smoothing effect of our reconstruction algorithm,

gray matter interface of the cortical surface has bee extracted using the above

mentioned BrainVISA pipeline. Extracted surfaces (medial and lateral views) from

mSENSE and 3D-UWR-SENSE images are show in Fig. 3 for R = 4. For comparison

purpose, we provide results with mSENSE at R = 1 as ground truth. For the lateral

view, one can easily conclude that extracted surfaces are very similar. However,

the medial view shows that mSENSE is not able to correctly segment the brain-

stem (see right red ellipsoid in the mSENSE medial view). Moreover, results with
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Ground truth: R = 1 mSENSE 3D-UWR-SENSE

medial view

lateral view

Fig. 3 Gray matter surface extraction based on reconstructed slices using mSENSE and 3D-
UWR-SENSE for R = 4. Results obtained with R = 1 are also provided as a ground truth.

mSENSE are more noisy compared to 3D-UWR-SENSE (see left red ellipsoid in the

mSENSE medial view). In contrast, the calcarine sulcus is slightly less accurately

extracted by our approach.

It is worth noticing that similar results have been obtained on 14 other subjects.

3.2 Functional datasets

For fMRI data, a Gradient-Echo EPI (GE-EPI) sequence has been used (TE =

30 ms, TR = 2400 ms, slice thickness = 3 mm, transversal orientation, FOV =

192× 192 mm2, flip angle = 81◦) during a cognitive localizer [54] protocol. Slices

have been collected in a sequential order (slice n◦1 in feet, last slice to head) using

the same 32-channel receiver coil to cover the whole brain in 39 slices for the

two acceleration factors R = 2 and R = 4. This leads to a spatial resolution of

2× 2× 3 mm3 and a data matrix size of 96× 96× 39 for accelerated acquisitions.

This experiment has been designed to map auditory, visual and motor brain

functions as well as higher cognitive tasks such as number processing and language

comprehension (listening and reading). It consisted of a single session of Nr = 128

scans. The paradigm was a fast event-related design (ISI=3.75 s) comprising sixty

auditory, visual and motor stimuli, defined in ten experimental conditions (audi-

tory and visual sentences, auditory and visual calculations, left/right auditory and
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visual clicks, horizontal and vertical checkerboards). Since data at R = 1, R = 2

and R = 4 were acquired for each subject, acquisition orders have been equally

balanced between these three reduction factors over the fifteen subjects.

3.2.1 FMRI reconstruction pipeline

For each subject, fMRI data were collected at the 2 × 2 mm2 spatial in-plane

resolution using different reduction factors (R = 2 or R = 4). Based on the raw

data files delivered by the scanner, reduced FOV EPI images were reconstructed

as detailed in Fig. 4. This reconstruction is performed in two stages:

i) the 1D k-space regridding (blip gradients along phase encoding direction applied

in-between readout gradients) to account for the non-uniform k-space sampling

during readout gradient ramp, which occurs in fast MRI sequences like GE-

EPI;

ii) the Nyquist ghosting correction to remove the odd-even echo inconsistencies

during k-space acquisition of EPI images.

scanner

Siemens MRI Reading raw FID

data

Regridding

1D

Nyquist ghosting

correction

Reduced FOV

images
IFFT

Fig. 4 Reconstruction pipeline of reduced FOV EPI images from the raw FID data.

It must be emphasized here that since no interleaved k-space sampling is per-

formed during the acquisition, and since the central lines of the k-space are not

acquired for each TR due to the available imaging sequences on the Siemens scan-

ner, kt-FOCUSS-like methods are not applicable on the available dataset.

Once the reduced FOV images are available, the proposed pMRI 4D-UWR-SENSE

algorithm and its early UWR-SENSE version have been utilized in a final step to

reconstruct the full FOV EPI images and compared to the mSENSE solution. For

the wavelet-based regularization, dyadic Symmlet orthonormal wavelet bases [55]

associated with filters of length 8 have been used over jmax = 3 resolution levels.
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The reconstructed EPI images then enter in our fMRI study in order to mea-

sure the impact of the reconstruction method choice on brain activity detection.

Note also that the proposed reconstruction algorithm requires the estimation of

the coil sensitivity maps (matrix S(·) in Eq. (1)). As proposed in [5], the latter

were estimated by dividing the coil-specific images by the module of the Sum Of

Squares (SOS) images, which are computed from the specific acquisition of the

k-space centre (24 lines) before the Nr scans. The same sensitivity map estima-

tion is then used for all the compared methods. Fig. 5 compares the two pMRI

reconstruction algorithms to illustrate on axial, coronal and sagittal EPI slices

how the mSENSE reconstruction artifacts have been removed using the 4D-UWR-

SENSE approach. Reconstructed mSENSE images actually present large artifacts

located both at the centre and boundaries of the brain in sensory and cognitive

regions (temporal lobes, frontal and motor cortices, ...). This results in SNR loss

and thus may have a dramatic impact for activation detection in these brain re-

gions. Note that these conclusions are reproducible across subjects although the

artifacts may appear on different slices (see red circles in Fig. 5). One can also

notice that some residual artifacts still exist in the reconstructed images with our

pipeline especially for R = 4. Such strong artifacts are only attenuated and not

fully removed because of the high level of information loss at R = 4.

Regarding computational load, the mSENSE algorithm is carried out on-line and

remains compatible with real time processing. On the other hand, our pipeline is

carried out off-line and requires more computations. For illustration purpose, on

a biprocessor quadcore Intel Xeon CPU@ 2.67GHz, one EPI slice is reconstructed

in 4 s using the UWR-SENSE algorithm. Using parallel computing strategy and

multithreading (through the OMP library), each EPI volume consisting of 40 slices

is reconstruced in 22 s. This makes the whole series of 128 EPI images available

in about 47 min. By contrast, the proposed 4D-UWR-SENSE achieves the recon-

struction of the series in about 40 min, but requires larger memory space
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mSENSE 4D-UWR-SENSE

Axial

R = 2 Coronal

Sagittal

Axial

R = 4 Coronal

Sagittal

Fig. 5 Axial, Coronal and Sagittal reconstructed slices using mSENSE and 4D-UWR-SENSE
for R = 2 and R = 4 with 2 × 2 mm2 in-plane spatial resolution. Red circles and ellipsoids
indicate the position of reconstruction artifacts using mSENSE.

3.2.2 Subject-level analysis

Statistical fMRI data analyses have been conducted to investigate the impact of

the proposed reconstruction method on the sensitivity/specificity compromise of

brain activity detection. Before handling the statistical analysis using the SPM

software4, full FOV fMRI images were preprocessed using the following steps: i)

realignment, ii) slice-timing correction, iii) anatomo-functional coregistration, iv)

spatial normalization (for group-level analysis), and v) smoothing with an isotropic

Gaussian kernel of 4 mm full-width at half-maximum. Anatomical normalization

4 http://www.fil.ion.ucl.ac.uk/spm/software/spm5
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to the MNI5 space was performed on the coregistration of the functional images

with the anatomical T1 scan (using SPM5).

A General Linear Model (GLM) was then constructed to capture stimulus-related

BOLD response. As shown in Fig. 6, the design matrix relies on ten experimental

conditions and is thus made up of twenty one regressors corresponding to stick

functions convolved with the canonical Haemodynamic Response Function (HRF)

and its first temporal derivative, the last regressor modelling the baseline. This

GLM was then fitted to the same acquired images but reconstructed using ei-

ther mSENSE or our own pipeline, which in the following is derived from the early

UWR-SENSE method [37] and from its 4D-UWR-SENSE extension we propose

here. The estimated contrast images for motor responses and higher cognitive

Fig. 6 (a): Design matrix and the Lc-Rc contrast involving two conditions (grouping auditory
and visual modalities); (b): design matrix and the Ac-As contrast involving four conditions (sen-
tence, computation, left click, right click).

functions (computation, language) where entered in subsequent analysis. These

contrasts of interest are complementary since the expected activations lie in dif-

ferent brain regions and thus can be differentially corrupted by reconstruction

artifacts as outlined in Fig. 5. More precisely, we studied:

– the Left click vs. Right click (Lc-Rc) contrast for which we expect evoked

activity in the right motor cortex (precentral gyrus, middle frontal gyrus).

Indeed, the Lc-Rc contrast defines a compound comparison involving two motor

stimuli which are presented either in the visual or auditory modality. This

5 Montreal Neurological Institute
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comparison aims therefore at detecting lateralization effect in the motor cortex:

see Fig. 6(a).

– the Auditory computation vs. Auditory sentence (Ac-As) contrast which

is supposed to elicit evoked activity in the frontal and parietal lobes, since

solving mental arithmetic task involves working memory and more specifically

the intra-parietal sulcus [56]: see Fig. 6(b);

Interestingly, these two contrasts were chosen because they summarized well dif-

ferent situations (large vs small activation clusters, distributed vs focal activation

pattern, bilateral vs unilateral activity) that occurred for this paradigm when look-

ing at sensory areas (visual, auditory, motor) or regions involved in higher cognitive

functions (reading, calculation). In the following, our results are reported in terms

of Student’s t-maps thresholded at a cluster-level p = 0.05 corrected for multiple

comparisons according to the FamilyWise Error Rate (FWER) [57, 58]. Com-

plementary statistical tables provide corrected cluster and voxel-level p-values,

maximal t-scores and corresponding peak positions both for R = 2 and R = 4.

Note that clusters are listed in a decreasing order of significance. In this table,

Size refers the cluster size in 3D and Position denotes the position of the absolute

maximum of the related cluster in millimeters (in the normalized MNI template

space). As regards the T-score, it denotes the Student-t statistical score.

Concerning the Lc-Rc contrast on the data acquired with R = 2, Fig. 7 [top]

shows that all reconstruction methods enable to retrieve the expected activation in

the right precentral gyrus. However, when looking more carefully at the statistical

results (see Tab. 1), our pipeline and especially the 4D-UWR-SENSE algorithm

retrieves an additional cluster in the right middle frontal gyrus. On data acquired

with R = 4, the same Lc-Rc contrast elicits similar activations, i.e. in the same

region. As demonstrated in Fig. 7 [bottom], this activity is enhanced when pMRI

reconstruction is performed with our pipeline. Quantitative results in Tab. 1 con-

firm numerically what can be observed in Fig. 7: larger clusters with higher local

t-scores are detected using the 4D-UWR-SENSE algorithm, both for R = 2 and
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R = 4. Also, a larger number of clusters is retrieved for R = 2 using wavelet-based

regularization.

R = 2 R = 4

Fig. 7 Student’s t-maps superimposed to anatomical MRI for the Lc-Rc contrast. Data have
been reconstructed using the mSENSE (top row), UWR-SENSE (middle row) and 4D-UWR-
SENSE (bottom row), respectively. Neurological convention. The blue cross shows the global
maximum activation peak.
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Table 1 Significant statistical results at the subject-level for the Lc-Rc contrast (corrected
for multiple comparisons at p = 0.05). Images were reconstructed using the mSENSE, UWR-
SENSE and 4D-UWR-SENSE (with and without spatial smoothing for the latter) algorithms
for R = 2 and R = 4.

cluster-level voxel-level
p-value Size p-value T-score Position

R = 2

mSENSE < 10−3 79 < 10−3 6.49 38 -26 66

UWR-SENSE
< 10−3 144 0.004 5.82 40 -22 63
0.03 21 0.064 4.19 24 -8 63

4D-UWR-SENSE
< 10−3 189 0.001 7.03 34 -24 69
< 10−3 53 0.001 4.98 50 -18 42
< 10−3 47 0.001 5.14 32 -6 66

R = 4

mSENSE 0.006 21 0.295 4.82 34 -28 63
UWR-SENSE < 10−3 33 0.120 5.06 40 -24 66

4D-UWR-SENSE < 10−3 51 0.006 5.57 40 -24 66

Fig. 8 reports outlines that the proposed pMRI pipeline is robust to the

between-subject variability for this motor contrast. Since sensory functions are

expected to generate larger BOLD effects (higher SNR) and appear more stable,

our comparison takes only place at R = 4. The Student’s t-maps for two indi-

viduals are compared in Fig. 8. For the second subject, one can observe that the

mSENSE algorithm fails to detect any activation cluster in the right motor cortex.

In contrast, our 4D-UWR-SENSE method retrieves more coherent activity for this

second subject in the expected region.

For the Ac-As contrast, Fig. 9 [top] shows, for the most significant slice and

R = 2, that all pMRI reconstruction algorithms succeed in finding evoked activ-

ity in the left parietal and frontal cortices, more precisely in the inferior parietal

lobule and middle frontal gyrus according to the AAL template6. Tab. 2 also

confirms a bilateral activity pattern in parietal regions for R = 2. Moreover, for

R = 4, Fig. 9 [bottom] illustrates that our pipeline (UWR-SENSE and 4D-UWR-

SENSE) and especially the proposed 4D-UWR-SENSE scheme enables to retrieve

reliable frontal activity elicited by mental calculation, which is lost by the the

mSENSE algorithm. From a quantitative viewpoint, the proposed 4D-UWR-SENSE

algorithm finds larger clusters whose local maxima are more significant than the

6 available in the xjView toolbox of SPM5.
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Subj. 1 Subj. 2

Fig. 8 Between-subject variability of detected activation for the Lc-Rc contrast at R = 4.
Displayed results correspond to mSENSE (top row), UWR-SENSE (middle row) and 4D-UWR-
SENSE (bottom row). Neurological convention. The blue cross shows the global maximum
activation peak.

ones obtained using mSENSE and UWR-SENSE, as reported in Tab. 2. Concerning

the most significant cluster for R = 2, the peak positions remain stable whatever

the reconstruction algorithm. However, examining their significance level, one can
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realize the benefit of wavelet-based regularization when comparing UWR-SENSE

with mSENSE results and then captures additional positive effects of temporal reg-

ularization when looking at the 4D-UWR-SENSE results. These benefits are also

demonstrated for R = 4.

Table 2 Significant statistical results at the subject-level for the Ac-As contrast (corrected for
multiple comparisons at p = 0.05). Images were reconstructed using the mSENSE, UWR-SENSE
and 4D-UWR-SENSE algorithm for R = 2 and R = 4.

cluster-level voxel-level
p-value Size p-value T-score Position

mSENSE

< 10−3 320 < 10−3 6.40 -32 -76 45

R = 2

< 10−3 163 < 10−3 5.96 -4 -70 54
< 10−3 121 < 10−3 6.34 34 -74 39
< 10−3 94 < 10−3 6.83 -38 4 24

UWR-SENSE

< 10−3 407 < 10−3 6.59 -32 -76 45
< 10−3 164 < 10−3 5.69 -6 -70 54
< 10−3 159 < 10−3 5.84 32 -70 39
< 10−3 155 < 10−3 6.87 -44 4 24

4D-UWR-SENSE

< 10−3 454 < 10−3 6.54 -32 -76 45
< 10−3 199 < 10−3 5.43 -6 26 21
< 10−3 183 < 10−3 5.89 32 -70 39
< 10−3 170 < 10−3 6.90 -44 4 24

R = 4

mSENSE < 10−3 58 0.028 5.16 -30 -72 48

UWR-SENSE
< 10−3 94 0.003 5.91 -32 -70 48
< 10−3 60 0.044 4.42 -6 -72 54

4D-UWR-SENSE
< 10−3 152 < 10−3 6.36 -32 -70 48
< 10−3 36 0.009 5.01 -4 -78 48
< 10−3 29 0.004 5.30 -34 6 27

To summarize, for these two contrasts our 4D-UWR-SENSE algorithm always

outperforms the alternative reconstruction methods used in this paper in terms of

statistical significance (number of clusters, cluster extent, peak values,...) but also

in terms of robustness.

3.2.3 Group-level analysis

Due to between-subject anatomical and functional variability, group-level anal-

ysis is necessary in order to derive robust and reproducible conclusions at the

population level. For this validation, random effect analyses (RFX) involving fif-
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R = 2 R = 4

Fig. 9 Student’s t-maps superimposed to anatomical MRI for the Ac-As contrast. Data have
been reconstructed using the mSENSE (top row), UWR-SENSE (middle row) and 4D-UWR-
SENSE (bottom row). Neurological convention: left is left. The blue cross shows the global
maximum activation peak.
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teen healthy subjects have been conducted on the contrast maps we previously

investigated at the subject level. More precisely, one-sample Student’s t test was

performed on the subject-level contrast images (eg, Lc-Rc, Ac-As,... images) using

SPM5.

mSENSE UWR-SENSE 4D-UWR-SENSE

R = 2

R = 4

Fig. 10 Group-level Student’s t-maps for the Ac-As contrast where data have been recon-
structed using the mSENSE, UWR-SENSE and 4D-UWR-SENSE for R = 2 and R = 4. Neuro-
logical convention. Red arrows indicate the global maximum activation peak.

For the Ac-As contrast, Maximum Intensity Projection (MIP) Student’s t-maps

are shown in Fig. 10. First, they illustrate that irrespective of the reconstruction

method larger and more significant activations are found on datasets acquired

with R = 2 providing the better SNR. Second, for R = 2, visual inspection of

Fig. 10 [top] confirms that only the 4D-UWR-SENSE algorithm allows us to re-

trieve significant bilateral activations in the parietal cortices (see axial MIP slices)

in addition to larger cluster extent and a gain in significance level for the sta-

ble clusters across the different reconstructors. Similar conclusions can be drawn

when looking at Fig. 10 [bottom] for R = 4. Complementary results are available

in Tab. 3 for R = 2 and R = 4. These results allow us to numerically validate this

visual comparison:
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Table 3 Significant statistical results at the group-level for the Ac-As contrast (corrected for
multiple comparisons at p = 0.05). Images were reconstructed using the mSENSE, UWR-SENSE
and 4D-UWR-SENSE algorithms for R = 2 and R = 4.

cluster-level voxel-level
p-value Size p-value T-score Position

R = 2

mSENSE

< 10−3 361 0.014 7.68 -6 -22 45
< 10−3 331 0.014 8.23 -40 -38 42
< 10−3 70 0.014 7.84 -44 6 27

UWR-SENSE
< 10−3 361 0.014 7.68 -6 22 45
< 10−3 331 0.014 7.68 -44 -38 42
< 10−3 70 0.014 7.84 -44 6 27

4D-UWR-SENSE
< 10−3 441 < 10−3 9.45 -32 -50 45
< 10−3 338 < 10−3 9.37 -6 12 45
< 10−3 152 0.010 7.19 30 -64 48

R = 4

mSENSE 0.003 14 0.737 5.13 -38 -42 51

UWR-SENSE
< 10−3 41 0.274 5.78 -50 -38 -48
< 10−3 32 0.274 5.91 2 12 54

4D-UWR-SENSE
< 10−3 37 0.268 6.46 -40 -40 54
< 10−3 25 0.268 6.37 -38 -42 36
< 10−3 18 0.273 5 -42 8 36

– Whatever the reconstructionmethod in use, the statistical performance is much

more significant using R = 2, especially at the cluster level since the cluster

extent decreases by one order of magnitude.

– Voxel and cluster-level results are enhanced using the 4D-UWR-SENSE ap-

proach instead of the mSENSE reconstruction or its early UWR-SENSE version.

Fig. 11 reports similar group-level MIP results for R = 2 and R = 4 concerning

the Lc-Rc contrast. It is shown that whatever the acceleration factor R in use,

our pipeline enables to detect a much more spatially extended activation area

in the motor cortex. This visual inspection is quantitatively confirmed in Tab. 4

when comparing the detected clusters using our 4D-UWR-SENSE approach with

those found by mSENSE, again irrespective of R. Finally, the 4D-UWR-SENSE algo-

rithm outperforms the UWR-SENSE one, which corroborates the benefits of the

proposed spatio-temporal regularization scheme.



30 Chaari et al.

mSENSE UWR-SENSE 4D-UWR-SENSE

R = 2

R = 4

Fig. 11 Group-level Student’s t-maps for the Lc-Rc contrast where data have been recon-
structed using the mSENSE, UWR-SENSE and 4D-UWR-SENSE for R = 2 and R = 4. Neuro-
logical convention. Red arrows indicate the global maximum activation peak.

Table 4 Significant statistical results at the group-level for the Lc-Rc contrast (corrected for
multiple comparisons at p = 0.05). Images were reconstructed using the mSENSE, UWR-SENSE
and 4D-UWR-SENSE algorithms for R = 2 and R = 4.

cluster-level voxel-level
p-value Size p-value T-score Position

R = 2

mSENSE
< 10−3 354 < 10−3 9.48 38 -22 54
0.001 44 0.665 6.09 -4 -68 -24

UWR-SENSE
< 10−3 350 0.005 9.83 36 -22 57
< 10−3 35 0.286 7.02 4 -12 51

4D-UWR-SENSE
< 10−3 377 0.001 11.34 36 -22 57
< 10−3 53 < 10−3 7.50 8 -14 51
< 10−3 47 < 10−3 7.24 -18 -54 -18

R = 4
mSENSE < 10−3 38 0.990 5.97 32 -20 45

UWR-SENSE < 10−3 163 0.128 7.51 46 -18 60
4D-UWR-SENSE < 10−3 180 0.111 7.61 46 -18 60

4 Discussion

Through illustrated results, we showed that whole brain acquisition can be rou-

tinely used at a spatial in-plane resolution of 2 × 2 mm2 in a short and constant

repetition time (TR = 2.4 s) provided that a reliable pMRI reconstruction pipeline

is chosen. In this paper, we demonstrated that our 4D-UWR-SENSE reconstruc-

tion algorithm meets this goal. To draw this conclusion, qualitative comparisons

have been made directly on reconstructed images using our pipeline involving the
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3D and 4D-UWR-SENSE algorithms or mSENSE. On anatomical data where the

acquisition scheme is fully 3D, our results confirm the usefulness of the 3D wavelet

regularization for attenuating 3D spatially propagating artifacts. However, as usu-

ally observed in the wavelet restoration literature, we can notice the presence of

slight motion-like artifacts in the reconstructed image background. Compared to

mSENSE images, our method provides lower contrast level, which is actually not

a drawback since the improved contrast in mSENSE images is the result of post-

processings embedded in the reconstruction pipeline of the scanner manufacturer.

Functional data results show that, even when the acquisition scheme is 2D sequen-

tial, reconstruction artifacts are attenuated by resorting simultaneously to the 3D

wavelet and temporal regularizations. In the case of interleaved 2D acquisition

scheme where contiguous slices are acquired every TR/2, motion artifacts may

dramatically alter the reconstruction quality using the mSENSE method. Although

the actual version of the proposed algorithm does not account for such artifacts,

a trade-off between the two regularizers may be found to cope with this issue.

Quantitatively speaking, our comparison took place at the statistical analysis

level and relied on quantitative criteria (voxel- and cluster-level corrected p-values,

t-scores, peak positions) at the subject and group levels. In particular, we showed

that our 4D-UWR-SENSE approach outperforms both its UWR-SENSE ances-

tor [37] and the mSENSE reconstruction [17] in terms of statistical significance and

robustness. This emphasized the benefits of combining temporal and 3D wavelet-

based regularization. The usefulness of 3D regularization in reconstructing 3D

anatomical images was also shown, especially in more degraded situations (R = 4)

where regularization plays a prominent role. The validity of our conclusions lies in

the reasonable size of our datasets: the same 15 participants were scanned using

two different pMRI acceleration factors (R = 2 and R = 4).

At the considered spatio-temporal compromise (2×2×3 mm3 and TR = 2.4 s),

we also illustrated the impact of increasing the acceleration factor (passing from

R = 2 to R = 4) on the statistical sensitivity at the subject and group levels for a
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given reconstruction algorithm. We performed this comparison to anticipate what

could be the statistical performance for detecting evoked brain activity on data

requiring this acceleration factor, such as high spatial resolution EPI images (e.g.,

1.5×1.5 mm2 in-plane resolution) acquired in the same short TR. Our conclusions

were balanced depending on the contrast of interest: when looking at the Ac-As

contrast involving the fronto-parietal network, it turned out that R = 4 was not

reliable enough to recover significant group-level activity at 3 Tesla: the SNR

loss was too important and should be compensated by an increase of the static

magnetic field (e.g. passing from 3 to 7 Tesla). However, the situation becomes

acceptable for the Lc-Rc motor contrast, which elicits activation in motor regions:

our results brought evidence that the 4D-UWR-SENSE approach enables the use

of R = 4 for this contrast.

5 Conclusion

Two main contributions have been developed. First, we proposed a novel recon-

struction method that relies on a 3D wavelet transform and accounts for tempo-

ral dependencies in successive fMRI volumes. As a particular case, the proposed

method allows us to deal with 3D acquired anatomical data when a single vol-

ume is acquired. Second, when artifacts were superimposed to brain activation,

we showed that the choice of the pMRI reconstruction algorithm has a significant

influence on the statistical sensitivity in fMRI and may enable whole brain neu-

roscience studies at high spatial resolution. Our results brought evidence that the

compromise between acceleration factor and spatial in-plane resolution should be

selected with care depending on the regions involved in the fMRI paradigm. As

a consequence, high resolution fMRI studies can be conducted using high speed

acquisition (short TR and large R value) provided that the expected BOLD effect

is strong, as experienced in primary motor, visual and auditory cortices.

A direct extension of the present work consists of studying the impact of tight

frames instead of wavelet bases to define more suitable 3D transforms. However,
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unsupervised reconstruction becomes more challenging in this framework since the

estimation of hyper-parameters becomes cumbersome (see [59] for details). Inte-

grating some pre-processing steps in the reconstruction model may also be of great

interest to account for motion artifacts in the regularization step, especially for

interleaved 2D acquisition schemes. Such an extension deserves integration of re-

cent works on joint correction of motion and slice-timing such as [60]. Another

extension of our work would concern the combination of our wavelet-regularized

reconstruction with the WSPM approach [64] in which statistical analysis is di-

rectly performed in the wavelet transform domain.

Appendix

A Optimization procedure for the 4D reconstruction

The minimization of JST in Eq. (8) is performed by resorting to the concept of proximity op-

erators [65], which was found to be fruitful in a number of recent works in convex optimization

[66, 67, 68]. In what follows, we recall the definition of a proximity operator.

Definition 1 [65] Let Γ0(χ) be the class of proper lower semicontinuous convex functions

from a separable real Hilbert space χ to ]−∞,+∞] and let ϕ ∈ Γ0(χ). For every x ∈ χ, the

function ϕ+‖·−x‖2/2 achieves its infimum at a unique point denoted by proxϕx. The operator

proxϕ : χ→ χ is the proximity operator of ϕ.

In this work, as the observed data are complex-valued, the definition of proximity operators

is extended to a class of convex functions defined for complex-valued variables. For the function

Φ : CK →]−∞,+∞] (12)

x 7→ φRe(Re(x)) + φIm(Im(x)),

where φRe and φIm are functions in Γ0(RK) and Re(x) (respectively Im(x)) is the vector of the

real parts (respectively imaginary parts) of the components of x ∈ CK , the proximity operator

is defined as

proxΦ : CK → C
K (13)

x 7→ proxφRe (Re(x)) + ıproxφIm(Im(x)).
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Let us now provide the expressions of proximity operators involved in our reconstruction

problem.

A.1 Proximity operator of the data fidelity term

According to standard rules on the calculation of proximity operators [68, Table 1.1] while

denoting ρt = T ∗ζt, the proximity operator of the data fidelity term JWLS is given for every

vector of coefficients ζt (with t ∈ {1, . . . , Nr}) by proxJWLS
(ζt) = Tut, where the image ut is

such that ∀r ∈ {1, . . . , X} × {1, . . . , Y/R} × {1, . . . , Z},

ut(r) =
(

IR + 2SH(r)Ψ−1S(r)
)−1(

ρt(r) + 2SH(r)Ψ−1dt(r)
)

. (14)

A.2 Proximity operator of the spatial regularization function

According to [37], for every resolution level j and orientation o, the proximity operator of the

spatial regularization function Φo,j is given by

∀ξ ∈ C, proxΦo,j
ξ =

sign(Re(ξ − µo,j))

βRe
o,j + 1

max{|Re(ξ − µo,j)| − α
Re
o,j , 0}

+ ı
sign(Im(ξ − µo,j))

βIm
o,j + 1

max{|Im(ξ − µo,j)| − α
Im
o,j , 0}+ µo,j (15)

where the sign function is defined as follows:

∀ξ ∈ R, sign(ξ) =











+1 if ξ ≥ 0

−1 otherwise.

A.3 Proximity operator of the temporal regularization function

A simple expression of the proximity operator of function h is not available. We thus propose

to split this regularization term as a sum of two more tractable functions h1 and h2:

h1(ζ) =κ

Nr/2
∑

t=1

‖T ∗ζ2t − T ∗ζ2t−1‖pp (16)

h2(ζ) =κ

Nr/2−1
∑

t=1

‖T ∗ζ2t+1 − T ∗ζ2t‖pp. (17)
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Since h1 (respectively h2) is separable w.r.t the time variable t, its proximity operator can

easily be calculated based on the proximity operator of each of the involved terms in the sum

of Eq. (16) (respectively Eq. (17)). Indeed, let us consider the following function

Ψ : CK × C
K −→ R (18)

(ζt, ζt−1) 7→ κ‖T ∗ζt − T ∗ζt−1‖pp = ψ ◦H(ζt, ζt−1),

where ψ = κ‖T ∗ · ‖pp and H is the linear operator defined as

H : CK × C
K −→ C

K (19)

(a, b) 7→ a− b.

Its associated adjoint operator H∗ is therefore given by

H∗ : CK −→ C
K × C

K (20)

a 7→ (a,−a).

Since HH∗ = 2Id, the proximity operator of Ψ can easily be calculated using [69, Prop. 11]:

proxΨ = proxψ◦H = Id +
1

2
H∗ ◦ (prox2ψ − Id) ◦H. (21)

The calculation of prox2ψ is discussed in [66].

A.4 Parallel Proximal Algorithm (PPXA)

The function to be minimized has been reexpressed as

JST(ζ) =

Nr
∑

t=1

∑

r∈{1,...,X}×{1,...,Y/R}×{1,...,Z}

‖dt(r)− S(r)(T ∗ζt)(r)‖2
Ψ−1

+ g(ζ) + h1(ζ) + h2(ζ). (22)

Since JST is made up of more than two non-necessarily differentiable terms, an appropriate

solution for minimizing such an optimality criterion is PPXA [47]. In particular, it is important

to note that this algorithm does not require subiterations as was the case for the constrained

optimization algorithm proposed in [37]. In addition, the computations in this algorithm can
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be performed in a parallel manner and the convergence of the algorithm to an optimal solution

to the minimization problem is guaranteed.

The resulting algorithm for the minimization of the optimality criterion in Eq. (22) is

given in Algorithm 1. In this algorithm, the weights ωi have been fixed to 1/4 for every

i ∈ {1, . . . , 4}. The parameter γ has been set to 200 since this value was observed to lead to

the fastest convergence in practice. The stopping parameter ε has been set to 10−4. Using

these parameters, the algorithm typically converges in less than 50 iterations.

Algorithm 1 4D-UWR-SENSE: spatio-temporal regularized reconstruction.

Set γ ∈]0,+∞[, ε ∈]0, 1[, (ωi)1≤i≤4 ∈]0, 1[4 such that
∑4
i=1 ωi = 1, n = 0,

(ζ
(n)
i )1≤i≤4 ∈ (CK×Nr )4 where ζ

(n)
i = (ζ

1,(n)
i , ζ

2,(n)
i , . . . , ζ

Nr ,(n)
i ), and ζ

t,(n)
i =

(

(ζ
t,(n)
i,a ), ((ζ

t,(n)
i,o,j ))o∈O,1≤j≤jmax

)

for every i ∈ {1, . . . , 4} and t ∈ {1, . . . , Nr}. Set also

ζ(n) =
∑4
i=1 ωiζ

(n)
i and J

(n)
ST = 0.

1: repeat

2: Set p
1,(n)
4 = ζ

1,(n)
4 .

3: for t = 1 to Nr do

4: Compute p
t,(n)
1 = proxγJWLS/ω1

(ζ
t,(n)
1 ).

5: Compute p
t,(n)
2 =

(

proxγΦa/ω2
(ζ
t,(n)
2,a ), (proxγΦo,j/ω2

(ζ
t,(n)
2,o,j ))o∈O,1≤j≤jmax

)

.

6: if t is even then

7: Compute (p
t,(n)
3 , p

t−1,(n)
3 ) = proxγΨ/ω3

(ζ
t,(n)
3 , ζ

t−1,(n)
3 )

8: else if t is odd and t > 1 then

9: Compute (p
t,(n)
4 , p

t−1,(n)
4 ) = proxγΨ/ω4

(ζ
t,(n)
4 , ζ

t−1,(n)
4 ).

10: end if

11: if t > 1 then

12: Set P t−1,(n) =
∑4
i=1 ωip

t−1,(n)
i .

13: end if

14: end for

15: Set p
Nr,(n)
4 = ζ

Nr,(n)
4 .

16: Compute PNr,(n) =
∑4
i=1 ωip

Nr,(n)
i .

17: Set P (n) = (P 1,(n), P 2,(n), . . . , PNr ,(n)).
18: Set λn ∈ [0, 2].
19: for i = 1 to 4 do

20: Set p
(n)
i = (p

1,(n)
i , p

2,(n)
i , . . . , p

Nr ,(n)
i ).

21: Compute ζ
(n)
i = ζ

(n)
i + λn(2P (n) − ζ(n) − p

(n)
i ).

22: end for

23: Compute ζ(n+1) = ζ(n) + λn(P (n) − ζ(n)).
24: n← n+ 1.
25: until |JST(ζ

(n))− JST(ζ
(n−1))| ≤ εJST(ζ

(n−1)).

26: Set ζ̂ = ζ(n).
27: return ρ̂t = T ∗ζ̂t for every t ∈ {1, . . . , Nr}.
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53. Sümbül U, Santos JM, Pauly JM (2009) Improved time series reconstruction for dynamic

magnetic resonance imaging. IEEE Trans on Med Imag 28(7):1093–1104

54. Pinel P, Thirion B, Mériaux S, Jobert A, Serres J, Le Bihan D, Poline JB, Dehaene S

(2007) Fast reproducible identification and large-scale databasing of individual functional

cognitive networks. BMC Neuroscience 8(1):91

55. Daubechies I (1992) Ten Lectures on Wavelets. Society for Industrial and Applied Math-

ematics, Philadelphia

56. Dehaene S (1999) Cerebral bases of number processing and calculation. In: Gazzaniga M

(ed) The New Cognitive Neurosciences, MIT Press, Cambridge,, chap 68, pp 987–998



3D+t wavelet regularization for parallel MRI reconstruction 41

57. Nichols TE, Hayasaka S (2003) Controlling the Familywise Error Rate in Functional Neu-

roimaging: A Comparative Review. Stat Methods in Med Res 12(5):419–446

58. Brett M, Penny W, Kiebel S (2004) Introduction to random field theory. In: Frackowiak

RSJ, Friston KJ, Fritch CD, Dolan RJ, Price CJ, Penny WD (eds) Hum. Brain Funct., 2nd

edn, Academic Press, pp 867–880

59. Chaari L, Pesquet JC, Tourneret JY, Ciuciu P, Benazza-Benyahia A (2010) A hierarchical

Bayesian model for frame representation. IEEE Trans on Signal Process (11):5560–5571

60. Roche A (2011) A four-dimensional registration algorithm with application to joint cor-

rection of motion and slice timing in fMRI. IEEE Trans on Med Imag 30(8):1546–1554

61. Makni S, Idier J, Vincent T, Thirion B, Dehaene-Lambertz G, Ciuciu P (2008) A fully

Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI. Neu-

roimage 41(3):941–969

62. Vincent T, Risser L, Ciuciu P (2010) Spatially adaptive mixture modeling for analysis of

within-subject fMRI time series. IEEE Trans on Med Imag 29(4):1059–1074

63. Badillo S, Vincent T, Ciuciu P (2013) Group-level impacts of within- and between-subject

hemodynamic variability in fMRI. Neuroimage 82:433–448

64. Van De Ville D, Seghier M, Lazeyras F, Blu T, Unser M (2007) WSPM: Wavelet-based

statistical parametric mapping. Neuroimage 37(4):1205–1217
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