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Robust Control of Pneumatic Actuators Based on a
Simplified Model With Delayed Input

E. Edjekouane, S. Riachy, M. Ghanes and J-P. Barbot

Abstract— Due to frictions and air compressibility, the dy- The second contribution of this paper is the design of
namics of pneumatic actuators is often described by a compte g robust controller based on the proposed second order
fourth-order non linear model. Therefore, simplifying the model model. The control synthesis is performed in two steps.

of pneumatic actuators is of prime interest to design a conwiller. . . Lo .
In this paper a simple second order model is proposed by First, the Artstein transformation is applied to the second

modeling the pressure dynamics with a pure time delay on the order model in order to obtain a system free of delay.
control input. The Artstein transformation is applied to this  Then, a controller based on the concepts of homogeneity and

model to get a delay-free second order system. Then the defay finjte-time stability [2] is used to stabilize the transfadh
free system is stabilized using a robust nonlinear controdir. The system. The proposed controller can be seen as a continuous
relevance of the proposed approach is demonstrated through N .
experimental tests. appr_O_X|mat|0n of a standard _second order s_I|d|ng mO(_je. The
stability of the closed loop is analyzed with and without
. INTRODUCTION perturbations.

The control of pneumatic actuators remains a challenge 't iS clear from [10], that the delay takes different values
till today in order to obtain better results in positioning,dePending on the opening rate of the servovalve. As a matter
tracking and in terms of robustness (disturbance rejectiorP! fact, the bigger the opening rate is, the faster the pressu
This challenge is raised by both industrial and academRuilds up in the cylinder chamber. The delay decreases then
partners, across several applications and publicatiohs. TaS the opening rate of the servovalve increases. However, a
pneumatic actuators have a wide field of use ranging froffPnstant delay is assumed. The validity of this assumpgion i
simple process to the complex ones, like in productioftPPorted by the experimental system positioning accuracy
line, aeronautic and automotive industry. This large place The paper is organized as follows. Sectioh Il recalls the
they hold is due to their ease of maintenance, rigidity anfpurth order model, introduces the second order model with
safety. However, their dynamic modeling is quite difficultinPut delay and experimentally estimates the delay value.
since, the description of the air dynamic is often based opectionllll is dedicated to the control design while section
empirical considerations. Moreover, accurate positigrofi L//deals with the stability analysis of the closed loop syste
such an actuator is a difficult task due to the presence dhe discretization of the controller is detailed in secfidn
discontinuous friction and air compressibility. Sectionl V] presents the experimental tests.

The model used to design controllers for this kind of
actuators is often a fourth order model (see [4], [7], [8], [9 Il. DYNAMIC MODEL
[10]). The major drawback of such a model is the difficultyA. The fourth order model
of controller design and closed loop stability analysiseTh  The derivation of the dynamic equations of the pneumatic
first contribution of the present work is the introductionactuator can be found in [9], [10] and [11]. It comes to a
of a simplified model which is based on the followingmodel where the state vector is of dimension 4. Wjtio
observation. A pure time delay is used to model the pressurgénote the position of the pistonijts velocity, P, and P, the

dynamics. This delay occurs between the moment of thgressures in both compartments of the cylinder, the dynamic
opening of the servovalve and the moment when the forgguations writes:

acts on the piston. Consequently, a double integrator with

delayed input is obtained. This idea has been raised in the

conclusion of [9]. o
The observation that the pressure dynamics induces a pure

v
= Mﬁl(PlAl—P2A2+A)

. ; - T kPiv  Q [l+o(u)v1pPs 1-0(u) vieP

time delay was already invoked in [10]. In order to minimize 1 = *L—:y + A_l{ 2( ) Lu;y - 2( ) L1+y1 } Jul

the influence of the delay, the adopted method consisted in kPoo  Q (1-o0(u)yapPs 1 +0(u) v2e P

fully opening the servovalve during a very short time at the 2 = L—y A 2 L-y 2 L-y [ul,
beginning of a piston displacement in order to force quick _

pressure establishment in the cylinder compartment. whereQ = kv RET A, /U, o(u) denotes the signum func-

tiorf] and A, the area of the orifice of the servovalve. The
E. Edjekouane, S. Riachy, M. Ghanes and J-P Barbot are witS-EC controlu represents the input voltage to the servovalve while
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the supply pressure\ represents an external load and can ‘ ‘ ‘ " [=Experimental time delay evaluation|
also represent gravity when the cylinder is mounted in a . ]
vertical position.T" denotes the air temperature, assumed
to be constant. The heat coefficient for airkis while R 0.04- .
is the perfect gas constaritL. denotes the total length of
the cylinder whileM the mass of the moving part (piston, %
payload etc.)q1y, y2¢, v1e and~yqy, are given by:

0.02r b

kE+1 1-k
2 (Pi)2F Pk ; P
=1 VE(E) TV (B) T -1 it o528 N
: P
0.58 if Fi <0.528. Fig. 1. Time delay (second) versus percentage of servovaleaing
P, % P, % P,
2 a Loy _ La
roe =1 VT (%) (%) -1 it fe>o0528 lIl. CONTROL DESIGN
. P(l
0.58 if 7 <0:528. The Artstein transformation [1] permits to get rid of the
delay. For the systeni](1), it is given by:
k+1 1-k
L & 2k & k _ & t
Vie = k-1 (Pl ) (Pl ) Lot 520528 21 = x1+hre+ MG / (t—7)u(r)dr
0.58 if £ <0528 , vt
zo = X+ MGf u(T)dr. 2
k+l 1-k t-h
2 P. 2k P. K . P . P .
oy = 4\ [+ (FZ) (FZ) -1 if P 20.528 Differentiating [2) and usind{1) lead to the delay-freeteys
0.58 if 7 <0.528. 4 o= m+hp
and P, denotes atmospheric pressure. Zo = MGu+p. 3)

Instead of this model, a second order model with an ) o
input delay is proposed. The validity of such a model foth the sequel, the following notation is used
the control design purpose is supported by the experimental o _ i @
o ) : . . =i ,EeR a>0
results. In addition, an interpretation via singular pdyation €] (oIl ¢ “
theory can be given [5]. In fact a two-time scale analysis cawhere|-| denotes the Euclidean norm and corresponds to the
be conducted with the fast dynamics consisting of the aabsolute value for scalar entries. Note that the followings
pressure and a slow one consisting of the mechanical pistdor derivative arel \{erified exceptat 0, where the derivative
; ; dlg” _ a-1 dlgl* _ a-1
B. The proposed model with input delay 'Ig not dTe;:lned. i< al]*™" and T = al€]", VE e
The control design is based on the following second order\{o}' e control input
model:

. Lél]z_a]m ; € [Oa 1]7 (4)
X = T2

MGu(t-h)+p (1) taken from [2] with positive constants;, k, and ks, leads

. " .. to the closed loop system:
wherez; and s represent the piston position and velocity

respectively. The delay is denoted bywhile M denotes 21 =zy+hp
the piston and payload mass. Friction forces and gravity are. o a3
represented by while G represents an open loop gain. 2~ Kz + hpl® - Kz |21+ Ksl22+ o[ +p(’5)
As previously discussed in sectigh I, the delayis not

necessarily constant. However, the following assumpt®n i, = MGk, Ky = MGks, K3 = 22 In @), , can be

2-«

k
u = —kll_,él]a - k/’g lzl + 5 3

-

T

adopted. computed by using a differentiator. The contfdl (4) witt

Hypothesis 1: The delays > 0 is assumed to have a[( 1) ensures, according to [3], a finite time stabilzation of
bounded constant value. B) with p = 0. A bloc diagram of the closed loop system is
C. Estimation of the delay given in figure2.

We now proceed to an estimation of the delayThis is In particular, witha = 0 the system[(S) leads to:

done_ byfoper(l) I(§)1OF; teosgsé Wheredvariablhe delqy ifs_ oe{veg1 =20+ hp
ranging from0.01 to 0.06 second as shown in figuid 1. . . . 2
In fact, the experiment confirm that the delay decreases a&> ~ ~K1Sign(z: + hp) — Kasign(z1 + Ks| 22 + hpl”) +pé

the opening rate of the servovalve increases. However, as (6)
required for the control design, the assumption of a comstawhich is a standard second order sliding mode system with
delay is adopted. The validity of this assumption is confiilmeunmatched perturbation. Note that due to the perturbation a
by the experiments. chattering may appear near the equilibrium= z5 = 0.



Controller 1 attracts any trajectory of 9) initialized within the congpa
»| Actuator
Eq. @) T2 set N
— - Bo = { (s v)ilnl < 1. Joal < Ll + 5=l < 1
2 (12[)' < i Proof: Consider the Lyapunov function:
2
2-« k M
. . V=K Y1+ ——[y2] + Zyg (10)
Fig. 2. Bloc diagram of the closed loop system 2 2-« 2

and takey in order to satisfyK;(1 - K1ks) = vKo.

IV. STABILITY ANALYSIS
The stability analysis is conducted in two steps. In section
IV-A] the unperturbed systenp & 0) is analyzed while the
perturbed one is investigated in section IV-B.
A. Sability of the unperturbed system
The system[{5) withp = 0 leads to,

The derivative ofl/ is rewritten as:

Ly

ﬁ —
-P

2-e -«
k3ly2| x

+kj3
Y1 5

V< -K;
ks

K
{ 2 2-«

= Yyel[K1ly2|* - p].

‘|2—oc

Y1+ |2

Seta = |y1 + #2-|y2]*>~*| and consider the following cases.
21 = 29 « Pick a positive constart; and assume thay;| > 61,
By = —Ki|22]* - Ky [21 +K3l22]2—a]ﬂ . two cases occur:

Proposition 4.1: The system[{7) is asymptotically stable.
Consequently,z; = zo = 0 is an asymptotically stable

equilibrium.
Proof: Consider the Lyapunov function
_ i =
V= Kl z21+ 5 3 I\ZQ‘|27Q + gz% (8)

with, v a positive constant, chosen such that(1- K1 k3) =
~vK>. The derivative of[(B) is given by:

2

2-a

- vK1|z

LZQ]27Q |1+a

k3
+
Z1 5

V = —K1K2k3|2:2|17a

which is negative semidefinite. Then by LaSalle’s theorem,
(21,22) = (0,0) is an asymptotically stable equilibrium point
and consequently iz, z2) = (0,0) according to[(R). m

B. Sability of the perturbed system

Consider now, the perturbed syste (5). With, = 21,
yo = 21 andy = [y1 y2]7, it can be rewritten as follows:

)

Y1 = Y2
O @ k?) 22—« %
g2 = ~Kaly2]" — Ko |y + 5] +p-

Hypothesis 2: The perturbatiom is nonzero but constant.
Moreover, a positive constaptexists such thafp| < p.

Proposition 4.2: Let assumptions
M and [2 be  verified. Set 6; =
2-a 2-a 2—-a
2ks [ (Kiks+7)p |1+ 25\ o (1-Ki1ks)p] &
max 2*;[ v;ﬁ ] ’ 2(K2) ’ 2[ 4K1K;193] )
_ ks [ (Kikstiy)p]iva 25 \ 5
and 0, - [T o (22)

2-«

1-Ki1ks)p | « . K (1=K k-
2| R ] ™) with 4 = S0 and o e (0,1).

Assume thatp is sufficiently small such tha#; < 1 and
0> < 1. Then the ball

B = {(y1,y2):[y1] <01, |y2| < 02}

— if a < & Notice first that one h<3\%1—%’i—3a|yg|2‘CY <

(2‘—0‘9—1)E. Then the

9 .
5 which ensures thdy,| > ( 7= 3

following inequalities
y K ﬁ 2 k l-a = K 1+« —
V<Kl slyal ™D = YKy + yly2|p

0\ ==
< =YK lyo| 7+ [Kl (51) ks +7]P

l+a
2-a

2—-ab
< —vK; (——1) +[Kiks +7]p
ks 2
are verified whenever
9 2]{33 |:(K1]{/’3 +’}/)p:|1:_a
1>
2-« vK1

which ensures that’ < 0.
if a>%:then one has

. 0\ = ~ 0.\ 7=
Vs—Kl(gl) [k’3|y2|1a{K2(51) —p}]

= Y|y2| [ Kilya|* - p].

_ 2 |
— e (m (192l®)? = 7Bl

o (845

which corresponds to a second order polynomial in
ly2|*. The polynomial has definite sign (positive) if
its parameters satisfies the conditions:

1) K»(%)>" >2pand ) )

2) (vp)? < 47K{ks (%)27& {Kz (971)27& —17}-
These conditions lead to the following ones appear-
ing in the proposition statement:

25\ &
91 > 2 (—p)
Ky

1) and




2)

(1- K1k3)p = This estimator, which has been used in [9], is first introduce
0. > 9 3)P . . . . .
1 [7“( Kok ] in [5]. The convolu_tlonlﬂll) is numerically fapprpxmated k_)y
i 17h2ms a discrete one. Withi to denote the sampling timd, (11) is
In addition,V” can bezzero ifj2 = 0. This is not possible approximated byz,((k +1)d) = 7o hi (i) x 1 ((k - i)d),
= k € N whereh; is a finite impulse response linear filter. It is
given byh, =[13.89, 37.04, 9.26, 0, —9.26, —37.04, -
13.89] for our application withd = 0.004 andT = d x 7 =
0.028 second.

o

whenevely; | > (K%) according to[(D).
« Pick a positive constand, and assume thdy, > >

2,;—30‘92, two cases occur:

— if a < %: Notice first that sincd — |y1| < £ then

ly1| > Z. The following inequalities B. Numerical approximation of z;, z» and u

We assume that the deldyis a multiple of the sampling
time d, that ish = nd andn € N. Z;, 2, andu are given by
the following discrete convolutions:

. 0 o _
VS Ky ksl = v Kl 4y lp

0
< —yK|ys|" + [Klfka +7]I5

1ra H((k+1)d) = z1(kd) + hia(kd)
<—7K1(2_a92)2_a +[Kiks +7]p hu(kd - h) "=
= k3 + M(ﬁ + Z(jd)u((k—j)d))
are verified whenever =2
K s .
g, » s | (Kiks +7)p S((k+1)d) = Fa(kd)
2ral vk (kd—h) nt (kd)
u - u
Mm|2=— k- j)d) + ——2
— if a> %: Then one has ( 2 +§2u(( DD+ =3 )
. 03\ 7= La 0\ ) ) N
V<-K; ? k3|y2| Ky 5 -p u((kz+1)d):—k1|_z2(kdﬂ
— YK [ya|** + plye —ky [él(kd) + 2k3 [zQ(kd)]Hr’“
-
- _ - K a2 o a
el (7 1 (ly2l*)” = 7Pl VI. EXPERIMENTATION
0o\ 2o 0o\ 2o
+K1(52) ks {KQ(EQ) —ﬁ}) A. Platform description

which corresponds to a second order polynomial in AS depicted in figuré3, the platform is composed by the

ly|*. The polynomial has definite sign (positive) if following elements: a servovalve (Festo, MP‘BEl—l/S—LF—

its parameters satisfies the conditions: 010-B), a compressor ano_l a pneumatic c_ylmder Festo, DNCI-
9,125 - 32-200-P-A-MU). This cylinder can be briefly described as a

1) K> (%)™ >2p and double effect cylinder with a piston diameter3¥mm and a

2) (vp)% <4yKiks (%)™ {KQ (2)>= —15}. stroke length oR00Omm. It is equipped with a built-in piston
These conditions lead to the following ones appeaiosition sensor. The control law which is implemented in
ing in the proposition statement: Matlab/Simulink is performed through a dSPAGE03 mi-
95\ 52 crocontroller. The system monitoring in real time is readiz
1) |65 >2 (—p) and by the ControlDesk software. Several experiments have been
Ko conducted in order to test the performances of the contnol la
(1- Kiks)p 2o and to find the bgst value for the delay. In the sequel, all the
2) |62 >2 [7] parameters are fixed except the delayNote that tests are
4K Koks carried out with and without load for each delay value. The

) - ) ] B following tuning parameters are uségq = 14, ky = 1 and
According to propositiofl 412, the trajectories bf (5) cony,, — .1,

verges within the ball
By = {(21, 22), |21| < 61, |22| < 02 + hp}. B. Experimental tests

V. NUMERICAL ISSUES 1) Test 1, h = 0 second: The objective of this test is
A. Derivative estimation to demonstrate that a second order delay-free model is not

The system is equipped with a position sensor. Howeveﬂe’presentatwe of the pneur_natlc actyator. With= 0, one
its velocity is also needed for the controller implememtati hasz = z = y. Through this test with no load added to
A derivative estimator is given by: the cylinder, we can deduce that the vafue 0 is not the

6 T convenient one, because figlide 4 shows oscillations caused
Z2(t) = 73 fo (T'-2s)z1(t - s)ds. (11) by the miss-modelling of the delay.



Measurement and control|
signals adaptation

Fig. 3. Experimental setup
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Fig. 4. Error versus timeh = 0, « = 0.1, no load.
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Fig. 5. Error versus timek = 0.02, o = 0.1, no load.
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Fig. 6. Error versus timek = 0.02, o = 0.1, with added load.

Fig. 7. Control effort versus timeh = 0.02, « = 0.1, no load.

Fig. 8. Control effort versus timeh = 0.02, o = 0.1, with added load.

2) Test 2, h = 0.02 second: Better results are observed
with a delay valueh = 0.02. The robustness of the control
law is clearly proved in this case as depicted in figdre 5 and
[6. Indeed, the static error is less th@admm without load
and it is about).6mm with an added load. Figufé 7 and
correspond to the input control signal where a chattering
(see equationl6) with frequency approximately ab@litiz
can be perceived. It is an acceptable frequency since the
natural frequency of oscillation of the servovalvel ®Hz.

3) Test 3, h = 0.06 second: A delay of 0.06 second is
not adequate since the experiments revealed a much bigger
static error (see figurés 9,110,111 dnd 12).

VIl. CONCLUSION

A second order model with delayed input is proposed to
represent the dynamics of the pneumatic actuator. A homo-
geneous robust nonlinear controller is synthesized based o
the proposed model. The validity of the model as well as the
controller were demonstrated experimentally.
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