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Robust Control of Pneumatic Actuators Based on a
Simplified Model With Delayed Input

E. Edjekouane, S. Riachy, M. Ghanes and J-P. Barbot

Abstract— Due to frictions and air compressibility, the dy-
namics of pneumatic actuators is often described by a complex
fourth-order non linear model. Therefore, simplifying the model
of pneumatic actuators is of prime interest to design a controller.
In this paper a simple second order model is proposed by
modeling the pressure dynamics with a pure time delay on the
control input. The Artstein transformation is applied to th is
model to get a delay-free second order system. Then the delay-
free system is stabilized using a robust nonlinear controller. The
relevance of the proposed approach is demonstrated through
experimental tests.

I. INTRODUCTION

The control of pneumatic actuators remains a challenge
till today in order to obtain better results in positioning,
tracking and in terms of robustness (disturbance rejection).
This challenge is raised by both industrial and academic
partners, across several applications and publications. The
pneumatic actuators have a wide field of use ranging from
simple process to the complex ones, like in production
line, aeronautic and automotive industry. This large place
they hold is due to their ease of maintenance, rigidity and
safety. However, their dynamic modeling is quite difficult
since, the description of the air dynamic is often based on
empirical considerations. Moreover, accurate positioning of
such an actuator is a difficult task due to the presence of
discontinuous friction and air compressibility.

The model used to design controllers for this kind of
actuators is often a fourth order model (see [4], [7], [8], [9],
[10]). The major drawback of such a model is the difficulty
of controller design and closed loop stability analysis. The
first contribution of the present work is the introduction
of a simplified model which is based on the following
observation. A pure time delay is used to model the pressures
dynamics. This delay occurs between the moment of the
opening of the servovalve and the moment when the force
acts on the piston. Consequently, a double integrator with
delayed input is obtained. This idea has been raised in the
conclusion of [9].

The observation that the pressure dynamics induces a pure
time delay was already invoked in [10]. In order to minimize
the influence of the delay, the adopted method consisted in
fully opening the servovalve during a very short time at the
beginning of a piston displacement in order to force quick
pressure establishment in the cylinder compartment.
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The second contribution of this paper is the design of
a robust controller based on the proposed second order
model. The control synthesis is performed in two steps.
First, the Artstein transformation is applied to the second
order model in order to obtain a system free of delay.
Then, a controller based on the concepts of homogeneity and
finite-time stability [2] is used to stabilize the transformed
system. The proposed controller can be seen as a continuous
approximation of a standard second order sliding mode. The
stability of the closed loop is analyzed with and without
perturbations.

It is clear from [10], that the delay takes different values
depending on the opening rate of the servovalve. As a matter
of fact, the bigger the opening rate is, the faster the pressure
builds up in the cylinder chamber. The delay decreases then
as the opening rate of the servovalve increases. However, a
constant delay is assumed. The validity of this assumption is
supported by the experimental system positioning accuracy.

The paper is organized as follows. Section II recalls the
fourth order model, introduces the second order model with
input delay and experimentally estimates the delay value.
Section III is dedicated to the control design while section
IV deals with the stability analysis of the closed loop system.
The discretization of the controller is detailed in sectionV.
Section VI presents the experimental tests.

II. DYNAMIC MODEL

A. The fourth order model

The derivation of the dynamic equations of the pneumatic
actuator can be found in [9], [10] and [11]. It comes to a
model where the state vector is of dimension 4. Withy to
denote the position of the piston,v its velocity,P1 andP2 the
pressures in both compartments of the cylinder, the dynamic
equations writes:

9y = v

9v = M−1(P1A1 − P2A2 +∆)
9P1 = −kP1v

L + y +
Ω

A1

{1 + σ(u)
2

γ1bPs

L + y −
1 − σ(u)

2

γ1eP1

L + y } ∣u∣
9P2 = kP2v

L − y +
Ω

A2

{1 − σ(u)
2

γ2bPs

L − y −
1 + σ(u)

2

γ2eP2

L − y } ∣u∣,

whereΩ = k√RkTAo/U , σ(u) denotes the signum func-
tion1 andAo the area of the orifice of the servovalve. The
controlu represents the input voltage to the servovalve while
U denotes the maximal input voltage (∣u∣ ≤ U ). Ps denotes

1σ(u) = 1 if u > 0, σ(u) = 0 if u = 0, σ(u) = −1 if u < 0.



the supply pressure.∆ represents an external load and can
also represent gravity when the cylinder is mounted in a
vertical position.T denotes the air temperature, assumed
to be constant. The heat coefficient for air isk, while R

is the perfect gas constant.2L denotes the total length of
the cylinder whileM the mass of the moving part (piston,
payload etc.).γ1b, γ2e, γ1e andγ2b are given by:

γ1b =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√

2
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) 1−k
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√
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andPa denotes atmospheric pressure.

Instead of this model, a second order model with an
input delay is proposed. The validity of such a model for
the control design purpose is supported by the experimental
results. In addition, an interpretation via singular perturbation
theory can be given [5]. In fact a two-time scale analysis can
be conducted with the fast dynamics consisting of the air
pressure and a slow one consisting of the mechanical piston.

B. The proposed model with input delay

The control design is based on the following second order
model:

9x1 = x2

9x2 = MGu(t − h) + p (1)

wherex1 andx2 represent the piston position and velocity
respectively. The delay is denoted byh while M denotes
the piston and payload mass. Friction forces and gravity are
represented byp while G represents an open loop gain.
As previously discussed in section I, the delayh is not
necessarily constant. However, the following assumption is
adopted.

Hypothesis 1: The delayh > 0 is assumed to have a
bounded constant value.

C. Estimation of the delay

We now proceed to an estimation of the delayh. This is
done by open loop tests, where variable delay is observed
ranging from 0.01 to 0.06 second as shown in figure 1.
In fact, the experiment confirm that the delay decreases as
the opening rate of the servovalve increases. However, as
required for the control design, the assumption of a constant
delay is adopted. The validity of this assumption is confirmed
by the experiments.
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Fig. 1. Time delay (second) versus percentage of servovalveopening

III. CONTROL DESIGN

The Artstein transformation [1] permits to get rid of the
delay. For the system (1), it is given by:

z1 = x1 + hx2 +MG∫
t

t−h
(t − τ)u(τ)dτ

z2 = x2 +MG∫
t

t−h
u(τ)dτ. (2)

Differentiating (2) and using (1) lead to the delay-free system

9z1 = z2 + hp
9z2 = MGu + p. (3)

In the sequel, the following notation is used

⌊ξ⌉α = sign(ξ)∣ξ∣α, ξ ∈ R, α > 0
where∣ ⋅ ∣ denotes the Euclidean norm and corresponds to the
absolute value for scalar entries. Note that the following rules
for derivative are verified except atξ = 0, where the derivative
is not defined:d⌊ξ⌉

α

dξ
= α∣ξ∣α−1 and d∣ξ∣α

dξ
= α⌊ξ⌉α−1, ∀ξ ∈

R/{0}. The control input

u = −k1⌊ 9z1⌉α − k2 ⌊z1 + k3

2 − α ⌊ 9z1⌉2−α⌉
α

2−α

, α ∈ [0,1], (4)

taken from [2] with positive constantsk1, k2 andk3, leads
to the closed loop system:

9z1 = z2 + hp
9z2 = −K1⌊z2 + hp⌉α −K2 ⌊z1 +K3⌊z2 + hp⌉2−α⌉ α

2−α + p,
(5)

K1 = MGk1, K2 = MGk2, K3 = k3

2−α . In (4), 9z1 can be
computed by using a differentiator. The control (4) withα ∈[0,1) ensures, according to [3], a finite time stabilzation of
(5) with p = 0. A bloc diagram of the closed loop system is
given in figure 2.

In particular, withα = 0 the system (5) leads to:

9z1 = z2 + hp
9z2 = −K1sign(z2 + hp) −K2sign(z1 +K3⌊z2 + hp⌉2) + p,

(6)

which is a standard second order sliding mode system with
unmatched perturbation. Note that due to the perturbation a
chattering may appear near the equilibriumz1 = z2 = 0.
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Fig. 2. Bloc diagram of the closed loop system

IV. STABILITY ANALYSIS

The stability analysis is conducted in two steps. In section
IV-A, the unperturbed system (p = 0) is analyzed while the
perturbed one is investigated in section IV-B.

A. Stability of the unperturbed system

The system (5) withp = 0 leads to,

9z1 = z2

9z2 = −K1⌊z2⌉α −K2 ⌊z1 +K3⌊z2⌉2−α⌉ α

2−α . (7)

Proposition 4.1: The system (7) is asymptotically stable.
Consequently,x1 = x2 = 0 is an asymptotically stable
equilibrium.

Proof: Consider the Lyapunov function

V =K1

2 − α
2
∣z1 + k3

2 − α ⌊z2⌉2−α∣
2

2−α + γ

2
z2
2

(8)

with, γ a positive constant, chosen such thatK1(1−K1k3) =
γK2. The derivative of (8) is given by:

9V = −K1K2k3∣z2∣1−α ∣z1 + k3

2 − α ⌊z2⌉2−α∣
2α

2−α − γK1∣z2∣1+α
which is negative semidefinite. Then by LaSalle’s theorem,(z1, z2) = (0,0) is an asymptotically stable equilibrium point
and consequently is(x1, x2) = (0,0) according to (2).

B. Stability of the perturbed system

Consider now, the perturbed system (5). With,y1 = z1,
y2 = 9z1 andy = [y1 y2]T , it can be rewritten as follows:

9y1 = y2 (9)

9y2 = −K1⌊y2⌉α −K2 ⌊y1 + k3

2 − α ⌊y2⌉2−α⌉
α

2−α + p.
Hypothesis 2: The perturbationp is nonzero but constant.

Moreover, a positive constant̄p exists such that∣p∣ < p̄.
Proposition 4.2: Let assumptions

1 and 2 be verified. Set θ1 =
max( 2k3

2−α [ (K1k3+γ)p̄
γK1

] 2−α1+α

, 2 ( 2p̄

K2

) 2−α

α

, 2 [ (1−K1k3)p̄
4K1K2k3

] 2−αα )
and θ2 = max( k3

2−α [ (K1k3+γ)p̄
γK1

] 2−α1+α

, 2 ( 2p̄

K2

) 2−α

α

,

2 [ (1−K1k3)p̄
4K1K2k3

] 2−αα ) with γ = K1(1−K1k3)
K2

and α ∈ (0,1).
Assume thatp̄ is sufficiently small such thatθ1 < 1 and
θ2 < 1. Then the ball

B = {(y1, y2); ∣y1∣ ≤ θ1, ∣y2∣ ≤ θ2}

attracts any trajectory of (9) initialized within the compact
set

B0 = {(y1, y2); ∣y1∣ ≤ 1, ∣y2∣ ≤ 1, ∣y1∣ + k3

2 − α ∣y2∣2−α ≤ 1} .
Proof: Consider the Lyapunov function:

V =K1

2 − α
2
∣y1 + k3

2 − α ⌊y2⌉2−α∣
2

2−α + γ

2
y22 (10)

and takeγ in order to satisfyK1(1 −K1k3) = γK2.
The derivative ofV is rewritten as:

9V ≤ −K1 ∣y1 + k3

2 − α ⌊y2⌉2−α∣
α

2−α

k3∣y2∣1−α y
y

y

×

{K2 ∣y1 + k3

2 − α ⌊y2⌉2−α∣
α

2−α − p̄}
− γ∣y2∣[K1∣y2∣α − p̄].

Seta = ∣y1 + k3

2−α ⌊y2⌉2−α∣ and consider the following cases.
● Pick a positive constantθ1 and assume that∣y1∣ > θ1,

two cases occur:
– if a < θ1

2
: Notice first that one hasθ1− k3

2−α ∣y2∣2−α <
θ1
2

which ensures that∣y2∣ > ( 2−αk3

θ1
2
) 1

2−α

. Then the
following inequalities

9V ≤K1 (θ1
2
)

α

2−α

k3∣y2∣1−αp̄ − γK1∣y2∣1+α + γ∣y2∣p̄
≤ −γK1∣y2∣1+α + [K1 (θ1

2
)

α

2−α

k3 + γ] p̄
≤ −γK1 (2 − α

k3

θ1

2
)

1+α

2−α + [K1k3 + γ] p̄
are verified whenever

θ1 > 2k3

2 − α [
(K1k3 + γ)p̄

γK1

]
2−α

1+α

which ensures that9V < 0.
– if a > θ1

2
: then one has

9V ≤ −K1 (θ1
2
)

α

2−α [k3∣y2∣1−α {K2 (θ1
2
)

α

2−α − p̄}]
− γ∣y2∣[K1∣y2∣α − p̄].
= −∣y2∣1−α (γK1 (∣y2∣α)2 − γp̄∣y2∣α y

y

+K1 (θ1
2
)

α

2−α

k3 {K2 (θ1
2
)

α

2−α − p̄})
which corresponds to a second order polynomial in∣y2∣α. The polynomial has definite sign (positive) if
its parameters satisfies the conditions:

1) K2 ( θ12 )
α

2−α > 2p̄ and

2) (γp̄)2 < 4γK2

1k3 ( θ12 )
α

2−α {K2 (θ12 )
α

2−α − p̄}.
These conditions lead to the following ones appear-
ing in the proposition statement:

1) θ1 > 2( 2p̄
K2

)
2−α

α

and



2) θ1 > 2 [(1 −K1k3)p̄
4K1K2k3

]
2−α

α

In addition, 9V can be zero ify2 = 0. This is not possible

whenever∣y1∣ > ( p̄

K2

) 2−α

α

according to (9).

● Pick a positive constantθ2 and assume that∣y2∣2−α >
2−α
k3

θ2, two cases occur:

– if a < θ2
2

: Notice first that sinceθ2 − ∣y1∣ < θ2
2

then∣y1∣ > θ2
2

. The following inequalities

9V ≤K1

θ2

2
k3∣y2∣1−αp̄ − γK1∣y2∣1+α + γ∣y2∣p̄

≤ −γK1∣y2∣1+α + [K1

θ2

2
k3 + γ] p̄

≤ −γK1 (2 − α
k3

θ2)
1+α

2−α + [K1k3 + γ] p̄
are verified whenever

θ2 > k3

2 − α [
(K1k3 + γ)p̄

γK1

]
2−α

1+α

– if a > θ2
2

: Then one has

9V ≤ −K1 (θ2
2
)

α

2−α [k3∣y2∣1−α {K2 (θ2
2
)

α

2−α − p̄}]
− γK1∣y2∣α+1 + γp̄∣y2∣
= −∣y2∣1−α (γK1 (∣y2∣α)2 − γp̄∣y2∣α y

y

+K1 (θ2
2
)

α

2−α

k3 {K2 (θ2
2
)

α

2−α − p̄})
which corresponds to a second order polynomial in∣y2∣α. The polynomial has definite sign (positive) if
its parameters satisfies the conditions:

1) K2 ( θ22 )
α

2−α > 2p̄ and

2) (γp̄)2 < 4γK2

1
k3 ( θ22 )

α

2−α {K2 (θ22 )
α

2−α − p̄}.
These conditions lead to the following ones appear-
ing in the proposition statement:

1) θ2 > 2( 2p̄
K2

)
2−α

α

and

2) θ2 > 2 [(1 −K1k3)p̄
4K1K2k3

]
2−α

α

According to proposition 4.2, the trajectories of (5) con-
verges within the ball

B1 = {(z1, z2), ∣z1∣ ≤ θ1, ∣z2∣ ≤ θ2 + hp}.
V. NUMERICAL ISSUES

A. Derivative estimation
The system is equipped with a position sensor. However,

its velocity is also needed for the controller implementation.
A derivative estimator is given by:

x̃2(t) = 6

T 3 ∫
T

0

(T − 2s)x1(t − s)ds. (11)

This estimator, which has been used in [9], is first introduced
in [6]. The convolution (11) is numerically approximated by
a discrete one. Withd to denote the sampling time, (11) is
approximated bỹ̃x2((k + 1)d) = ∑7

i=0 h1(i) × x1((k − i)d),
k ∈ N whereh1 is a finite impulse response linear filter. It is
given byh1 = [13.89, 37.04, 9.26, 0, − 9.26, − 37.04, −
13.89] for our application withd = 0.004 and T = d × 7 =
0.028 second.

B. Numerical approximation of z1, z2 and u

We assume that the delayh is a multiple of the sampling
time d, that ish = nd andn ∈ N. z̃1, z̃2 and ũ are given by
the following discrete convolutions:

z̃1((k + 1)d) = x1(kd) + h˜̃x2(kd)
+ M

⎛
⎝
hu(kd − h)

2
+

n−1

∑
j=2

(jd)u((k − j)d)⎞⎠

z̃2((k + 1)d) = ˜̃x2(kd)
+ M

⎛
⎝
u(kd − h)

2
+

n−1

∑
j=2

u((k − j)d) + u(kd)
2

⎞
⎠

ũ((k + 1)d) = −k1⌊z̃2(kd)⌉α
− k2 ⌊z̃1(kd) + k3

2 − α ⌊z̃2(kd)⌉2−α⌉
α

2−α

VI. EXPERIMENTATION

A. Platform description

As depicted in figure 3, the platform is composed by the
following elements: a servovalve (Festo, MPYE-5-1-1/8-LF-
010-B), a compressor and a pneumatic cylinder Festo, DNCI-
32-200-P-A-MU). This cylinder can be briefly described as a
double effect cylinder with a piston diameter of32mm and a
stroke length of200mm. It is equipped with a built-in piston
position sensor. The control law which is implemented in
Matlab/Simulink is performed through a dSPACE1103 mi-
crocontroller. The system monitoring in real time is realized
by the ControlDesk software. Several experiments have been
conducted in order to test the performances of the control law
and to find the best value for the delay. In the sequel, all the
parameters are fixed except the delayh. Note that tests are
carried out with and without load for each delay value. The
following tuning parameters are usedk1 = 14, k2 = 1 and
k3 = 0.1.

B. Experimental tests

1) Test 1, h = 0 second: The objective of this test is
to demonstrate that a second order delay-free model is not
representative of the pneumatic actuator. Withh = 0, one
has x = z = y. Through this test with no load added to
the cylinder, we can deduce that the valueh = 0 is not the
convenient one, because figure 4 shows oscillations caused
by the miss-modelling of the delay.
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2) Test 2, h = 0.02 second: Better results are observed
with a delay valueh = 0.02. The robustness of the control
law is clearly proved in this case as depicted in figure 5 and
6. Indeed, the static error is less than0.4mm without load
and it is about0.6mm with an added load. Figure 7 and
8 correspond to the input control signal where a chattering
(see equation 6) with frequency approximately about50Hz
can be perceived. It is an acceptable frequency since the
natural frequency of oscillation of the servovalve is100Hz.

3) Test 3, h = 0.06 second: A delay of 0.06 second is
not adequate since the experiments revealed a much bigger
static error (see figures 9, 10, 11 and 12).

VII. C ONCLUSION

A second order model with delayed input is proposed to
represent the dynamics of the pneumatic actuator. A homo-
geneous robust nonlinear controller is synthesized based on
the proposed model. The validity of the model as well as the
controller were demonstrated experimentally.
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