Skip to Main content Skip to Navigation
Journal articles

Uniqueness results for inverse Robin problems with bounded coefficient

Laurent Baratchart 1 Laurent Bourgeois 2 Juliette Leblond 1
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
CNRS - Centre National de la Recherche Scientifique : UMR7231, UMA - Unité de Mathématiques Appliquées, Inria Saclay - Ile de France
Abstract : In this paper we address the uniqueness issue in the classical Robin inverse problem on a Lipschitz domain $\Omega\subset\RR^n$, with $L^\infty$ Robin coefficient, $L^2$ Neumann data and isotropic conductivity of class $W^{1,r}(\Omega)$, $r>n$. We show that uniqueness of the Robin coefficient on a subpart of the boundary given Cauchy data on the complementary part, does hold in dimension $n=2$ but needs not hold in higher dimension. We also raise on open issue on harmonic gradients which is of interest in this context.
Document type :
Journal articles
Complete list of metadatas

Cited literature [53 references]  Display  Hide  Download

https://hal.inria.fr/hal-01084428
Contributor : Juliette Leblond <>
Submitted on : Thursday, February 11, 2016 - 6:43:33 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:03 AM
Document(s) archivé(s) le : Thursday, May 12, 2016 - 5:40:18 PM

Files

YJFAN_7429-fin.pdf
Files produced by the author(s)

Identifiers

Citation

Laurent Baratchart, Laurent Bourgeois, Juliette Leblond. Uniqueness results for inverse Robin problems with bounded coefficient. Journal of Functional Analysis, Elsevier, 2016, ⟨10.1016/j.jfa.2016.01.011⟩. ⟨hal-01084428v2⟩

Share

Metrics

Record views

689

Files downloads

446