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Abstract. Class diagrams are among the most popular modeling lan-
guages in industrial use. In a model-driven development process, class
diagrams evolve, so it is important to be able to assess differences be-
tween revisions, as well as to propagate differences using suitable merge
operations. Existing differencing and merging methods are mainly syntac-
tic, concentrating on edit operations applied to model elements, or they
are based on sampling: enumerating some examples of instances which
characterize the difference between two diagrams. This paper presents
the first known (to the best of our knowledge) automatic model merging
and differencing operators supported by a formal semantic theory guaran-
teeing that they are semantically sound. All instances of the merge of a
model and its difference with another model are automatically instances
of the second model. The differences we synthesize are represented using
class diagram notation (not edits, or instances), which allows creation
of a simple yet flexible algebra for diffing and merging. It also allows
presenting changes comprehensively, in a notation already known to users.

1 Introduction

Model management is an essential activity in a model-driven development pro-
cess. Numerous tools exist to visualize, validate, transform, refactor, compute
differences, or merge models and structured data. The basic management opera-
tions can be combined to realize complex maintenance and design tasks. In this
paper, we consider merging and differencing of models—two crucial management
operations—for class diagrams, the most popular modeling language used in the
industry [12]. Class diagrams are used to create domain models, structural system
models, and lower level design models. Class diagrams also serve as meta-models,
or abstract syntax types, in implementation of domain specific languages (DSLs).

Merging. When a single model is not sufficient to capture all the aspects of
a problem or a system, engineers have to merge several models to produce a
single integrated model [11, 13, 19, 20, 23, 25]. Model merging also arises when
factoring out commonalities of different variant models, e.g., following a product
line approach (e.g., see [1, 21,22]).

⋆ Supported by The Danish Council for Independent Research under Sapere Aude
project VARIETE
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Fig. 1. Two simple class diagrams (above) and their merge (below). Note that
the object models of the merge are precisely the ones which model both individual
aspects: here, the merge is both sound and complete.

Differencing. Models naturally evolve through editing operations (e.g., adding an
inheritance relationship in a class diagram) for refactoring or extending a system.
Computing differences of two revised models has applications in comprehension
of an evolution, identification of instances not supported by the two models [6,14],
etc. Merging and differencing operations can be combined when engineers have
to propagate differences from one version of the model to another, as in the case
of revision control systems.

Key requirements. We highlight two requirements that arise when merging
or differencing models. In many engineering scenarios, the result of a merge or
difference is subject to analysis : automated tools can ensure that certain instances
are still present in the composed diagram; engineers (humans) can visualize the
result and therefore understand the evolution of the system. Another important
requirement is that the result of a merge (resp. difference) advances the design
of a system, so it produces a new model that can later be used in construction.
Again, both automated tools and manual activities can operate over this model.
For instance, code can be generated from a class diagram; engineers can relate
the class diagram to other modeling artefacts or specify a transformation.

The two requirements impact the design of merging and differencing operations.
First, it is beneficial that a merge (resp. difference) of two class diagrams should be
a class diagram—in line with the vision exposed in [10] that a difference between
models should be a model. This allows engineers to visualize the difference and
to manipulate it using the usual tools for working with models. Second, merge
(resp. difference) operations should be ideally both sound and complete, to enable
further precise analysis by automated tools. In particular, an unsound merge
operator can authorize objects (instances) actually not conformant to the merged
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diagrams. Figure 1 introduces a simple example of a merge between two class
diagrams. The result (below) is a class diagram, and the merge is both sound and
complete. (Note that we assume an open-world semantics, which is consistent
with the view semantics used by most modeling tools, i.e. it attempts to compute
a minimal model such that the two original models can be derived as its views.)

As further discussed in Sect. 2, existing merging or differencing methods,
though extremely useful in practice, do not meet the two requirements. First,
syntactic methods suffer from possible lack of soundness, since they do not take
the semantics into account. Second, enumerative semantic methods (e.g., [15–17])
only synthesize a finite set of instance and are thus not complete. In both methods,
the result is no longer a class diagram, precluding an algebraic combination of
operations or a direct manipulation by tools and engineers.

We follow the methodology presented by us in an earlier work [10]—we
develop the difference operator systematically, via a number of well-defined formal
definition steps. We believe that these steps yield a substantial understanding of
what the differences between diagrams can be (unlike methods that simply encode
a lot of knowledge in a large constraint system solved by an external solver). This
knowledge can later be used to advance language design for structural modeling.

The contributions of the paper include:

– A concise formal semantics for the core language of class diagrams (concise
and mathematically mature definitions of such are surprising hard to find).
The semantics relies purely on set theory, which is crucial for avoiding
dependencies on description logics, reasoners and proof systems.

– A formalisation of the standard (conjunctive) merge operator used to compute
the conjunction of class diagrams (by “putting them on the same page”). To
the best of our knowledge, no previous such formalisations exist; using our
formalization, we can show that merge is always, automatically, sound.

– An intuitive notion of subtyping which is closely related to the merge operator
(which is the greatest lower bound for subtyping), and a corresponding notion
of a disjunctive merge, which computes disjunctions of class diagrams (and
is the lowest upper bound for subtyping). Using our formalization, we show
that disjunctive merge is semantically complete.

– A compositional algebra for class diagrams: We can show that using only
(conjunctive) merge, all class diagrams can be constructed from a few elemen-
tary class diagrams. Together with subtyping, this gives an algebra which
allows for high-level computations with class diagrams.

– A difference operator which computes, in a precise sense, the best possible
approximation to an inverse to conjunctive merge. Our difference operator is
semantically sound, computable entirely automatically, and produces finite
syntactic descriptions of infinite (semantic) differences.

The intended audience are researchers interested in semantics of structural
modeling, evolution of meta-models and builders of differencing or merging tools.

We proceed by discussing related work in Sect. 2. Section 3 introduces a
simple abstract syntax for class diagrams, along with subtyping and compositions.
Sect. 4 defines differencing. Both sections work at syntactic level. In Sect. 5, we
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justify these constructions by showing that they are semantically sound. We
introduce a concise, set-based semantics for class diagrams and show that our
operators respect it. We conclude in Sect. 6, indicating possible variants and
extensions.

2 Related Work

Our objective is to represent merges and differences of two class diagrams as a
class diagram, overcoming limitations of enumerative and syntactical methods
in terms of soundness, completeness, and further exploitation by engineers. We
achieve this by developing syntactic methods (with sound theoretical basis),
which guarantee representation of difference in one description as a diagram.

Limitations of existing syntactic approaches. A syntactic approach to differencing
operates purely by manipulating syntactic elements of diagrams, mostly without
paying attention whether these manipulations are sound with respect to semantics
of the language (for example that they do not ignore some instances).

Syntactic differencing methods are extremely useful in practice, for example,
users can visualize a set of syntactic edit operations (e.g., create, modify, delete [3])
and easily understand the evolution of two models. Most of the studies in
the field of model differencing (see, e.g., [6]) present syntactic differencing at
either the concrete or the abstract syntax level. However, syntactic methods
are inherently incomplete and unsound. They may not be able to expose and
represent the semantic (meaningful) differences between two versions of a class
diagram. They can also report false positives by operating at the syntactical level.
The incompleteness and unsoundness can both disturb automated analysis and a
further exploitation by an engineer.

Limitations of enumerative approaches. As argued in some papers and illustrated
for some formalisms [2,7,10,15–17], models that are syntactically very similar may
induce very different semantics, and a list of differences should be best addressed
semantically. Recently, semantic approaches have been proposed which enumerate
some examples of instances of one model that are not instances of the other [17].
For instance, Maoz et al. tackle the problem of semantic model differencing,
specifically for class and activity diagrams [15, 16]. The cddiff operator for
class diagrams [16] computes diff witnesses using the Alloy Analyzer, a solver
for relational logic with transitive closure. For the addiff operator for activity
diagrams, they present algorithms that take as input activity diagrams [15].
The advantage of enumerative methods is that they operate at the semantic
level and are sound by construction: no false positives can be reported. However
they are clearly incomplete since only a small, finite number of examples can be
synthesized. In fact, the set of instances in the difference might well be infinite. A
related problem is that engineers cannot visualize and manipulate the (infinite) set
of witnesses—a concrete and compact representation is missing. It also precludes
an algebraic combination of merging and differencing operations, as in the case
of versioning control systems (see Fig. 3, page 10 for more details).
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Other approaches and existing tools. Model matching is another important related
problem [6,7, 9]. Numerous algorithms and techniques are already integrated in
model-based tools (e.g., see [14, 19, 23]). For simplicity the theoretical framework
we develop assume a basic matching strategy (based on names, see next section).
Numerous “diff” or merging tools (e.g., EMF Diff4, Kompose [11,20], Epsilon [13],
UMLDiff [25], TReMer+ [19,23], etc.) offer the means to specify user directives
(using a specific language or an API). Users can override (customize) the default
behaviour of the merging or differencing algorithm and thus handle the semantics
of the models. However, the manual specification, if not properly defined, does not
guarantee semantic properties and can lead to unsound or incomplete merging
(resp. differencing). The objective of the paper is precisely to study the soundness
and completeness of operations that can be incorporated into modeling tools.
Our approach is both algebraically and semantically justified: to the best of
our knowledge, no previous effort guarantees such properties of merging and
differencing of class diagrams. Any matching strategy that defines an equivalence
on the space of class names could be naturally incorporated in our framework.

3 Compositional Algebra of Class Diagrams

We start by introducing an abstract syntax for class diagrams. We remark that
the operators defined in this section are entirely syntactical; no reference to the
semantics of class diagrams is made. The same holds for the properties we expose:
they are proven at the syntactic level. In Sect. 5 we will introduce a semantics
for class diagrams and show that our operators are semantically sound, but their
properties as shown in the present section are completely independent of any
semantics one wishes to give to class diagrams.

Let N be the set of all finite unions of finite or unbounded intervals of
natural numbers (including the empty set of intervals). N is closed under union,
intersection and complementation; let ¬A = ◆\A be the complement of A∈N .

3.1 Abstract syntax

Let Σc, Σa and Σe be disjoint infinite sets of names, for classes, associations and
association ends, respectively.

Definition 1. A class diagram is a tuple C = (cla, asc, gen, disj, ccard, aends, acards)
consisting of

(i) A finite set cla ⊆ Σc of classes,
(ii) A finite set asc ⊆ Σa of associations,
(iii) A reflexive transitive relation gen ⊆ cla × cla ∪ asc × asc capturing general-

izations between classes and between associations,
(iv) An irreflexive symmetric relation disj ⊆ cla× cla representing class disjoint-

ness constraints,

4 http://eclipse.org/diffmerge/

http://eclipse.org/diffmerge/


6 Uli Fahrenberg, Mathieu Acher, Axel Legay, and Andrzej Wąsowski

(v) A mapping ccard : cla → N encoding class cardinality constraints,
(vi) A partial function aends : asc → Σe ⇀ cla mapping each association to its

endpoints, and
(vii) A partial function acards : asc → Σe ⇀ N mapping each association to its

endpoint cardinality constraints.

Also |dom(aends(a))|=2 and dom(acards(a))=dom(aends(a)) for all a∈asc.

Note that we handle generalizations of both classes and associations; this
is common in modern modeling approaches. In the usual concrete syntax of
class diagrams, the generalization relation is essentially transitively reduced, but
in (iii) we require it to be transitively closed, in order to simplify presentation.
Given that the sets of classes and associations are finite, switching between both
viewpoints is just a technicality. Another common assumption in class modeling
is that two classes which do not share a common subclass are disjoint. This
default assumption does not work well with the open-world semantics that we
will build up in this paper. It would make the semantics non-monotonic—adding
a shared subclass would relax constraints on instances. To prevent this, we prefer
to add, in (iv), an explicit representation of binary disjointness constraints in
the abstract syntax. Again, switching between explicit and implicit disjointness
constraints is just a technicality, but it will allow us to simplify presentation later
on. The last condition means that we only consider binary associations. With
this in mind, the function aends (vi) maps the two association ends (or, more
precisely, their names) of each association to their classes. Similarly, the function
acards (vii) associates cardinality constraints to association ends.

As mentioned we will use an open-world semantics, which can be summarized
by the slogan that anything which is not forbidden is allowed. So, intuitively, there
will be no semantic difference between a class c that does not appear in a given
class diagram, and one which does, but has unrestricted cardinality. Formally,
we call a class c ∈ cla in some class diagram C restricted if ccard(c) 6= ◆, and let
rcla ⊆ cla denote the subset of restricted classes.

3.2 Merge

Ultimately, we want to create class diagrams by composing smaller chunks of
them. This reflects the practice of modeling with views, as supported by many
modeling tools (for example Eclipse Modeling Framework, Papyrus, or IBM
Rational Modeler). Users of such tools work with projections of one large single
model represented implicitly in a unified syntax tree. From the users’ perspective
it may often appear that they work with a number of diagrams that are unified
(composed) as if they were put together on the same page, merging entities (e.g.,
classes) that have the same name. In the following, we propose a conjunctive
merge operator, written 7, that composes two diagrams, as if they were put on
the same page, interpreted as views of the same underlying model.

Due to syntactic restrictions, it is not possible for us to merge diagrams that
have the same association with different association ends. Since we only allow
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one name per endpoint in abstract syntax, there is no way to merge different
names. This is consistent with the behavior of common modeling tools, where
different views of the same association always maintain the same end points.

Definition 2. Two class diagrams C1, C2 are said to be composable if it holds
for all a ∈ asc1 ∩ asc2 that aends1(a) = aends2(a).

Definition 3. The (conjunctive) merge of two composable class diagrams C1, C2
is C7 = C1 7 C2 defined as follows:

– cla7 = cla1 ∪ cla2, asc7 = asc1 ∪ asc2, gen7 = (gen
1
∪ gen

2
)∗, disj7 =

disj
1
∪ disj

2
,

– aends7 = aends1 ∪ aends2, and

ccard7(c) =











ccard1(c) if c ∈ cla1 \ cla2,

ccard2(c) if c ∈ cla2 \ cla1,

ccard1(c) ∩ ccard2(c) if c ∈ cla1 ∩ cla2,

acards7(a)(e) =











acards1(a)(e) if a ∈ asc1 \ asc2,

acards2(a)(e) if a ∈ asc2 \ asc1,

acards1(a)(e) ∩ acards2(a)(e) if a ∈ asc1 ∩ asc2

for all c ∈ cla7, a ∈ asc7, and e ∈ dom(aends(a)).

Intuitively, the above merging attempts to approximate conjunction of class
diagrams. Due to our open-world semantics (“anything which is not mentioned is
unrestricted”), we have to apply a disjunction to the syntactic elements (classes,
associations, etc.) to get a conjunctive merge. The merge in Fig. 1 in the intro-
duction gives a simple example of the operation.

3.3 Subtyping

With the above definitions we have gathered enough structure to propose a
definition of subtyping between two class diagrams:

Definition 4. For class diagrams C1, C2, we say that C1 (syntactically) refines
C2, denoted C1 ≤ C2, if all the following conditions hold:

(i) cla1 ⊇ rcla2, asc1 ⊇ asc2
(C1 is an extension of C2)

(ii) gen
1
⊇ gen

2
, disj

1
⊇ disj

2

(generalization and disjointness constraints are inherited)
(iii) ccard1(c) ⊆ ccard2(c) for all c ∈ rcla2

(class cardinalities are restricted)
(iv) aends1(a) = aends2(a) for all a ∈ asc2

(association ends are preserved)
(v) acards1(a)(e) ⊆ acards2(a)(e) for all a ∈ asc2 and all e ∈ dom(acards2(a))

(association cardinalities are restricted)
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Due to the open-world semantics, subtyping on syntactic elements becomes
reversed subset inclusion. Also, we have to use restricted classes in the inclusion
cla1 ⊇ rcla2 above; otherwise one could easily find subtypings which were not
sound, i.e., where the subtype admits models which the supertype does not.

Our selections of subtyping and merging are strongly related, in the sense
that 7 is the greatest lower bound for ≤. In practice, this means that the merge
does indeed “behave like a conjunction”.

Theorem 1. For all class diagrams C1, C2, D with C1 and C2 composable, D ≤
C1 7 C2 iff D ≤ C1 and D ≤ C2.

We believe that this compatibility of subtyping and merging is of fundamental
importance. Subtyping captures the intuitive notion of constraining the set of
instances during modeling. A merge operator considered without subtyping can
create merges that admit far fewer, or many more, instances than the user would
expect. Introducing the above subtyping preorder on diagrams will later allow us
to follow the method presented in [10] for defining differences. Intuitively, we need
an order because notions of difference, distance and order are intimately related.
It is surprising that so few works on merging and differencing structural models
consider subtypes or other orderings (unlike for behavioral models, e.g. [8]).

Theorem 1 immediately entails that the merge operator has the core properties
expected of composition, viz. commutativity and associativity. Also, merge is
monotonic with respect to the subtyping order, or, in other words, subtyping is
compositional. This is a highly desirable property that introduces some regularity
in the framework.

Theorem 2. The 7 operator is commutative and associative, and for all class
diagrams C1, C2, D2, D2 with C1 and D1 composable and C2 and D2 composable,
C1 ≤ C2 and D1 ≤ D2 imply C1 7 D1 ≤ C2 7 D2.

3.4 Class Diagram Algebra

Compositionality allows us to develop an algebra for class diagrams, using a few
elementary diagrams and the composition operator 7. What we obtain is a small
structural modeling calculus that is of interest by itself — class diagrams can be
written concisely, in a manner that is friendly to a linear mathematically oriented
text, unlike the concrete syntax representation of class diagrams, and unlike the
rather unwieldy abstract syntax presented in Def. 1.

The calculus is built around a set of elementary class diagrams which are
merged to obtain bigger structures. The elementary diagrams are as follows:

– ⊤ = (∅, ∅, ∅, ∅, ∅, ∅, ∅): the empty class diagram that admits all object models;
– 〈cn〉, for c ∈ Σc and n ∈ N : the class diagram with cla = {c}, asc = ∅,

gen = {(c, c)}, disj = ∅, ccard(c) = n, and aends = acards = ∅;
– 〈c1 a

e1 e2

n1 n2

c2〉, for c1, c2 ∈ Σc, e1, e2 ∈ Σe and n1, n2 ∈ N : the class
diagram with cla = {c1, c2}, asc = {a}, gen = {(c1, c1), (c2, c2)}, disj = ∅,
ccard(c1) = ccard(c2) = ◆, dom(aends(a)) = {e1, e2}, aends(a)(e1) = c1,
aends(a)(e2) = c2, acards(a)(e1) = n1, and acards(a)(e2) = n2;
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⊤ 〈cn〉 〈c1 a
e1 e2

n1 n2

c2〉 〈c1
� ,2
c2〉 〈c1 // c2〉

Employee
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Task

manages

managedBy 0..1

*

1 0..2

〈E◆〉 7 〈T◆〉 7 〈M◆〉7

〈E
{1} {0,1,2}

T〉 7 〈E
ms mB

◆ {0,1}
M〉

7〈M
� ,2 E〉

7〈E // T〉 7 〈M // T〉

Fig. 2. The five types of elementary class diagrams (above), a simple class
diagram in concrete syntax (below left), and its decomposition into elementary
class diagrams (below right, where we have abbreviated names).

– 〈c1
� ,2 c2〉, for c1, c2 ∈ Σc: the class diagram with cla = {c1, c2}, asc = ∅,

gen = {(c1, c1), (c2, c2), (c1, c2)}, disj = ∅, ccard(c1) = ccard(c2) = ◆, and
aends = acards = ∅;

– 〈c1 // c2〉, for c1, c2 ∈ Σc: the class diagram with cla = {c1, c2}, asc = ∅,
gen = {(c1, c1), (c2, c2)}, disj = {(c1, c2), (c2, c1)}, ccard(c1) = ccard(c2) = ◆,
and aends = acards = ∅.

However simple, the above language of class diagrams is quite powerful—it is
fully expressive in the sense that it can express every finite diagram as a finite
composition; see also Fig. 2 for an example:

Theorem 3. Every class diagram can be written as a finite conjunctive merge
of elementary class diagrams.

4 Difference and Disjunctive Merge

We enrich our algebra with two more operators, difference and disjunctive merge.
The difference operator, which is a formal adjoint to the conjunctive merge, will
have the property that merging a class diagram C1 with a difference C2 � C1
is semantically sound, i.e., the composition C1 7 (C2 � C1) is a subtyping of C2.
Later this will translate to a perhaps more intuitive semantic property that
the difference does not admit too many instances; adding them to instances of
diagram C1 still obeys the constraints of C2.

Definition 5. The difference of two composable class diagrams C1, C2 is C� =
C2 � C1 defined as follows:

– cla� = cla2, asc� = asc2 \ asc1, disj� = disj
2
\ disj

1
, and

gen� =
(

⋂

{r ⊆ cla2 × cla2 | (gen
1
∪ r)∗ ⊇ gen

2
}
)∗
,
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C

��

≤ D

��

D′
� D // D′

� Doo

C 7 (D′
� D) ≤ D′

Fig. 3. Use of difference for automatic evolving of subtypes: If C is a subtype of
D, then C merged with the difference D′ � D is a subtype of D′.

– aends� = aends2 \ aends1, and

ccard�(c) =

{

ccard2(c) if c /∈ cla1,

ccard2(c) ∪ ¬ccard1(c) otherwise,

acards�(a)(e) =

{

acards2(a)(e) if a /∈ asc1,

acards2(a)(e) ∪ ¬acards1(a)(e) otherwise

for all c ∈ cla�, a ∈ asc�, and e ∈ dom(aends(a)).

Let us give some intuition about the rather complicated formula for gen�:
Like ordinary set difference, e.g. in asc� = asc2 \ asc1, is an adjoint to set union,
what is on the right-hand side of the gen� formula is an adjoint to transitive
union of transitive relations. That is, gen� is the smallest transitive relation for
which (gen� ∪ gen

1
)∗ ⊇ gen

2
. The next theorem states the fundamental property

of the difference operator.

Theorem 4. For all class diagrams C1, C2, C3, C1 7 C2 ≤ C3 iff C1 ≤ C3 � C2.

This means that C3 � C2 is the most permissive class diagram for which (C3 �
C2) 7 C2 ≤ C3 still holds; in that sense, � is the natural diff operator induced
by 7. In this sense, � is the most precise difference operator which can be
soundly represented using the class diagram syntax defined in this paper. Since
the language elements that we omit do not deal with restricting those that we
include, there is no hope that using a richer selection of language elements from
the standard set can lead to a better operator. One could, instead, resort to using
Object Constraint Language to obtain more precise differencing.

Example 1. Consider a situation as presented in Fig. 3. We have a class diagram
C which is a subtype of another, D. Now the diagram D is evolved, e.g. by
adding more classes or streamlining its associations, into a new class diagram,
D′. Our abstract properties of composition and difference now ensure that C can
be evolved to a subtyping of D′, automatically, by merging it with D′ � D:

C 7 (D′ � D) ≤ D 7 (D′ � D) ≤ D′ ⊓⊔
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Employee

Manager

Task

manages

managedBy 0..1

*

1 *
Employee

Manager

Task

Car

manages

managedBy 0..2

*

1 0..2

1 1

Employee

Manager

Task

manages

managedBy 0..2

*

1 *

〈E◆〉 7 〈T◆〉 7 〈M◆〉7

〈E
{1} ◆

T〉 7 〈E
ms mB

◆ {0,1}
M〉

7〈E // T〉 7 〈M // T〉

Fig. 4. A disjunctive merge of two diagrams (top) presented in concrete syntax
(bottom left) and as a composition of elementary diagrams (bottom right). The
overlap between “Manager” and “Employee” seen in the abstract syntax to the
right (no disjointness constraint) is not visible in the concrete syntax on the left.
The classes can overlap due to the generalization in the rightmost input diagram.

We turn now to another kind of merge operator that can also be induced by
subtyping: a “merge in union mode”, the least upper bound for subtyping:

Definition 6. The disjunctive merge of two composable class diagrams C1, C2
is C6 = C1 6 C2 defined as follows:

cla6 = cla1 ∩ cla2, asc6 = asc1 ∩ asc2, gen6 = gen
1
∩ gen

2

disj6 = disj
1
∩ disj

2
, ccard6(c) = ccard1(c) ∪ ccard2(c)

aends6 = aends1 ∩ aends2, acards6(a)(e) = acards1(a)(e) ∪ acards2(a)(e)

for all c ∈ cla6, a ∈ asc6, and e ∈ dom(aends(a)).

Note the “contravariance” again: disjunctive merge becomes a conjunction of
syntactic elements. As expected, 6 is least upper bound for ≤:

Theorem 5. For all class diagrams C1, C2, D with C1 and C2 composable, C1 6
C2 ≤ D iff C1 ≤ D and C2 ≤ D.

Example 2. Figure 4 shows two variants of the simple class diagram from Fig. 2
together with their disjunctive merge. We see that 6 extracts precisely the
common features of the two diagrams. Hence disjunctive merge can be used for
factoring out common features in diagrams. ⊓⊔

5 Semantic Soundness

In this section we give a precise semantics to class diagrams and use this to
show that our constructions of subtyping ≤, composition 7, and difference �
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are semantically sound. That is, subtypings of a class diagram C have fewer
implementations than C, the implementations of a merge C 7 D are all also
implementations of both C and D, and the implementations of a difference D � C
merged with C are also implementations of D.

The semantics of a class diagram is given by a set of instance diagrams, or
object models, which implement the class diagram. An instance diagram essentially
consists of objects and links which are typed by classes and associations:

Definition 7. An instance diagram is a tuple M = (obj, lnk, oty, lty, lends) of

– A finite set obj of objects,
– A finite set lnk of links,
– A total relation oty ⊆ obj ×Σc associating objects with their object types,
– A total relation lty ⊆ lnk ×Σa associating links with their link types,
– A partial function lends : lnk → Σe ⇀ obj mapping each link to its endpoints.

We require that |dom(lends(ℓ))| = 2 for each ℓ ∈ lnk.

We use the common notation “a : A” for object and link typing, instead of
the more cumbersome “(a,A)”. An object type relation specifying one object a of
type A and another, b, of type B, will thus be denoted by oty = {a : A, b : B}.

Definition 8. An instance model M is said to implement a class diagram C,
denoted M |= C, if there exist extended typing relations Oty ⊇ oty, Lty ⊇ lty such
that the following hold:

1. |{o ∈ obj | Oty(o, c)}| ∈ ccard(c) for all c ∈ cla

(class cardinalities are respected)
2. For all o ∈ obj and all c, c′ ∈ cla with Oty(o, c) and gen(c, c′), also Oty(o, c′)

(object types are consistent with generalizations)
3. For all ℓ ∈ lnk and all a, a′ ∈ asc with Lty(ℓ, a) and gen(a, a′), also Lty(ℓ, a′)

(link types are consistent with generalizations)
4. For all ℓ ∈ lnk and all a ∈ asc with Oty(ℓ, a), dom(lends(ℓ)) = dom(aends(a))

(link endpoints inherit their names from their type)
5. For all ℓ ∈ lnk and all a ∈ asc with Lty(ℓ, a), it holds for all e ∈ dom(lends(ℓ))

that Oty(lends(ℓ)(e), aends(a)(e))
(link endpoints are well-typed)

6. For all o ∈ obj, a ∈ asc and e ∈ dom(aends(a)) with Oty(o, aends(a)(e)), we
have |{ℓ ∈ lnk | Lty(ℓ, a) & lends(ℓ)(e) = o}| ∈ acards(a)(e)

(association end cardinalities are respected)
7. There are no o ∈ obj, c, c′ ∈ cla for which disj(c, c′), Oty(o, c) and Oty(o, c′)

(disjointness constraints are respected)

The set of implementations of C is JCK = {M | M |= C}.

The first, and most important, theorem in this section shows that subtyping
is semantically sound. The proof is basically a careful inspection of the conditions
for subtyping and implementation.

Theorem 6. For all class diagrams C1, C2, C1 ≤ C2 implies JC1K ⊆ JC2K.
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We sum up the semantic properties of our operators; all follow easily from
their syntactic properties and Theorem 6. Note that 7 and � are semantically
sound, i.e., under-approximations, whereas 6 is semantically complete.

Theorem 7. For all pairs of class diagrams C1, C2: JC1 7 C2K ⊆ JC1K ∩ JC2K,
JC1 7 (C2 � C1)K ⊆ JC2K, and JC1 6 C2K ⊇ JC1K ∪ JC2K

Intuitively, Thm. 7 states that our operators behave as expected not only with
respect to the syntactic subtyping, as shown in Sections 3–4, but also with
respect to the semantics (our ultimate goal). Crucially, Thm. 7 follows almost
directly from the theorems of those sections, once we have Thm. 6. So the main
work required to transfer the results of this paper to another semantic variation
for class diagrams, is to obtain the equivalent of Thm. 6 for the new semantics.

Using simple examples, we can show that subtyping and composition are not
semantically complete. For subtyping, we use inconsistency: Let C1 = 〈A∅〉 and
C2 = 〈B∅〉. Then JC1K = JC2K = ∅, but C1 6≤ C2, because C2 contains a restricted
class which is not in C1; for the same reason, C2 6≤ C1.

This also exposes the fact that ≤ does not have a unique bottom element;
there is no class diagram B such that B ≤ C for all class diagrams C.

For incompleteness of composition, we observe that generalizations can im-
plicitly force object typing in one diagram which is forbidden in another: Let

C1 = 〈A � ,2 B〉, C2 = 〈B1〉,

then C1 7 C2 = 〈A � ,2 B1〉. Now let M = {a : A, b : B}, the instance model
with one object a of type A and another, b, of type B. Then M |= C1, as witnessed
by the extended object typing Oty

1
= {a : A, a : B, b : B}, and M |= C2, witness

by Oty
2
= otyM = {a : A, b : B}. However, M 6|= C1 7 C2, as any witness to this

would have to include the typing {a : A, a : B, b : B} with two objects of type B.

6 Conclusion and Final Remarks

We have presented a compositional algebra of class diagrams with subtyping,
conjunctive and disjunctive merge and difference. All operators are described by
means of manipulations of minimal syntactic elements of the diagrams, which
are also basic terms of our class diagram algebra. To the best of our knowledge,
this is the first attempt to define these syntactic operations in a provably sound
manner. The operations are all efficiently computable and thus can be automated.
The results of operations are represented in the syntax of the input language
(they are class diagrams themselves), so that they can later be further processed
using regular tooling for class diagrams.

We have worked with a simple core part of the class diagram language,
which has allowed us to include all the technical constructions in the paper.
Some extensions to other language elements are straightforward, some others
require more extensive work. From the point of view of differencing, treating
attributes is relatively simple, e.g. by boxing these as classes and treat them in
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the same way as classes. This is somewhat unsatisfactory though, as treating
attributes specially would allow presenting the differences in a more concise and
clear manner. Operations would require also computing differences between their
signatures—we have decided not to discuss this, as it is not specific to structural
modeling, but can be done using techniques for textual programming languages.
To handle n-ary associations, one could introduce association classes and treat
them in the same way as we treat regular classes. Allowing association classes
to be evolved into regular classes (and vice-versa) would require more extensive
changes though. Handling abstract classes is not much different from handling
concrete ones, and the same goes for directed associations (vs. undirected ones).
However, computing differences between diagrams where classes are changed
from concrete to abstract, or associations from directed to undirected, or where
association endpoints are moved, seems more challenging. Finally, note that we
have used element identities to match them for the purpose of merging and
differencing. Clearly, in a real application one should use an externally computed
mapping, using for instance existing matching heuristics.

We have chosen to work with sound approximations for simplicity and clarity.
Experience with building theories for behavioral models shows that a search for
precise (i.e., both sound and complete) refinements and compositions leads to
complex constructions with high computational complexity [4, 5], so it should
only be done once the overall structure and properties of the design space are
well understood on simpler cases. We speculate that more precise operators could
be expressed in our algebra if we had a complementation for class diagrams.
Unfortunately, in our current framework, complements of class diagrams will need
infinitely many classes, hence are outside the syntax. Alternatively, to overcome
the limitations of the class diagram notation, one can consider using Object
Constraint Language to specify more precise differences and merges. We intend
to investigate these possibilities in future work.

We remark that the semantics we give to class diagrams in this paper is only
one out of a plethora of different existing class diagram semantics which are being
used, c.f. [18]. We have shown that our constructions are semantically sound for
our particular semantics, but this soundness may break if other semantics are
used. However, to check that the constructions are sound, one only needs to see
that subtyping is semantically sound, i.e. that the semantics is monotonic with
respect to subtyping; if this is in place, then all other semantic properties follow.
Hence our work lends itself easily to different semantics configurations [18], a
point we intend to elaborate in the future. The work reported here is part of
a larger project on model management. Our long term objective is to develop
semantically sound (and reasonably complete) model management operations for
other formalisms, beyond class diagrams and feature models [1, 2, 10].
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