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Specification Theories for

Probabilistic and Real-Time Systems

Uli Fahrenberg, Axel Legay, and Louis-Marie Traonouez

Inria / IRISA, Rennes, France

Abstract. We survey extensions of modal transition systems to speci-
fication theories for probabilistic and timed systems.

1 Introduction

Many modern systems are big and complex assemblies of numerous components
called implementations. The implementations are often designed by independent
teams, working under a common agreement on what the specification of each
implementation should be.

Over the past, one has agreed that any good specification theory should
be equipped with a satisfaction relation (to decide whether an implementation
satisfies a specification), a consistency check (to decide whether the specification
admits an implementation), a refinement (to compare specifications in terms
of inclusion of sets of implementations), logical composition (to compute the
intersection of sets of implementations), and structural composition (to combine
specifications).

The design of “good” specification theories has been the subject of intensive
study, most of them for the case where implementations are represented by
transition systems. In this paper, we survey two seminal works on extending
specification theories to both probabilistic and timed systems.

Specification Theory for Probabilistic Systems. We consider implementa-
tions represented by probabilistic automata (PA). Probabilistic automata consti-
tute a mathematical framework for the description and analysis of non-determin-
istic probabilistic systems. They have been developed by Segala [30] to model
and analyze asynchronous, concurrent systems with discrete probabilistic choice
in a formal and precise way. PA are akin to Markov decision processes (MDP).
A detailed comparison with models such as MDP, as well as generative and
reactive probabilistic transition systems is given in [29]. PA are recognized as
an adequate formalism for randomized distributed algorithms and fault tolerant
systems. They are used as semantic model for formalisms such as probabilistic
process algebra [28] and a probabilistic variant of Harel’s statecharts [20]. An
input-output version of PA is the basis of PIOA and variants thereof [4, 7]. PA
have been enriched with notions such as weak and strong (bi)simulations [30],
decision algorithms for these notions [6] and a statistical testing theory [8].
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In [14], we have introduced abstract probabilistic automata (APA) as a specifi-
cation theory for PA. APA aims at model reduction by collapsing sets of concrete
states to abstract states, e.g. by partitioning the concrete state space. This pa-
per presents a three-valued abstraction of PA. The main design principle of our
model is to abstract sets of distributions by constraint functions. This generalizes
earlier work on interval-based abstraction of probabilistic systems [19,21,22]. To
abstract from action transitions, we introduce may- and must-modalities in the
spirit of modal transition systems [24, 26]. If all states in a partition p have a
must-transition on action a to some state in partition p′, the abstraction yields a
must-transition between p and p′. If some of the p-states have no such transition
while others do, it gives rise to a may-transition between p and p′. In this paper
we will summarize main results on APA. We will also show how the model can
be used as a specification theory for PA.

Specification Theory for Timed Systems. In [9,10], we represent both spec-
ifications and implementations by timed input/output transition systems [23],
i.e. timed transitions systems whose sets of discrete transitions are split into
Input and Output transitions. In contrast to [11] and [23], we distinguish be-
tween implementations and specifications by adding conditions on the models.
This is done by assuming that the former have fixed timing behavior and they
can always advance either by producing an output or delaying. In this paper,
we summarize the specification theory for timed systems of [9,10]. We also show
how a game-based methodology can be used to decide whether a specification is
consistent, i.e. whether it has at least one implementation. The latter reduces
to deciding existence of a strategy that despite the behavior of the environment
will avoid states that cannot possibly satisfy the implementation requirements.
Finally, we show that the approach extends to a robust theory for timed systems.

Acknowledgment. This survey paper presents research which we have con-
ducted with a number of coauthors; in alphabetical order, these are Alexandre
David, Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Ulrik Nyman,
Mikkel L. Pedersen, Falak Sher, and Andrzej Wąsowski. We acknowledge their
cooperation in this work; any errors in this presentation are, however, our own.

2 Abstract Probabilistic Automata

For any finite set S, Dist(S) denotes the set of all discrete probability distribu-
tions over S (i.e. all mappings µ : S → [0, 1] with

∑

s∈S µ(s) = 1). C(S) denotes

a set of probability constraints together with a mapping Sat : C(S) → 2Dist(S).

2.1 Abstract probabilistic automata

A probabilistic automaton (PA) [30] is a tuple (S,A,L,AP, V, s0), where S is
a finite set of states with the initial state s0 ∈ S, A is a finite set of actions,
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Fig. 1: Example PA P (left) and APA N with P |= N (right)

L : S×A×Dist(S) → {⊥,⊤} is a transition relation, AP is a finite set of atomic
propositions and V : S → 2AP is a state-labeling function.

PA were introduced in [30] as a model suitable for systems which encompass
both non-deterministic and stochastic behavior. Hence they generalize both LTS
(non-determinism) and Markov chains (stochasticity). The notation L : S×A×
Dist(S) → {⊥,⊤} instead of L ⊆ S × A × Dist(S) is traditional and will be
convenient below. The left part of Fig. 1 shows an example of a PA.

As specifications of PA we use abstract probabilistic automata [14]. These
can be seen as a common generalization of modal transition systems [16] and
constraint Markov chains [3].

Definition 1. An abstract probabilistic automaton (APA) [14] is a tuple
(S,A,L,AP, V, s0), where S is a finite set of states, s0 ∈ S is the initial state,
A is a finite set of actions, and AP is a finite set of atomic propositions. L :
S×A×C(S) → {⊥, ?,⊤} is a three-valued distribution-constraint function, and

V : S → 22
AP

maps each state in S to a set of admissible labelings.

It is natural to think that distribution constraints should be intervals on
transition probabilities as e.g. in interval Markov chains [19]. However, we will
later see that natural constructions on APA such as conjunction or structural
composition make it necessary to allow other, more expressive types of con-
straints.

The following notation will be convenient later: for s, t ∈ S and a ∈ A,
let succs,a(t) = {s′ ∈ S | V (s′) = V (t), ∃ϕ ∈ C(S), µ ∈ Sat(ϕ) : L(s, a, ϕ) 6=
⊥, µ(s′) > 0} be the set of potential a-successors of s that have V (t) as their
valuation. Remark that when N is deterministic, we have |succs,a(v)| ≤ 1 for all
s, t, a.

An APA is deterministic if (1) there is at most one outgoing transition for
each action in all states and (2) two states with overlapping atomic propositions
can never be reached with the same transition. An APA is in single valuation
normal form (SVNF) if the valuation function V assigns at most one valuation
to all states, i.e. ∀s ∈ S, |V (s)| ≤ 1. From [14], we know that every APA can be
turned into an APA in SVNF with the same set of implementations, and that
this construction preserves determinism.
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Note that every PA is an APA in SVNF where all constraints represent a
single distribution. As a consequence, all the definitions we present for APA in
the following can be directly extended to PA.

Let S and S′ be non-empty sets and µ ∈ Dist(S), µ′ ∈ Dist(S′). We say that
µ is simulated by µ′ with respect to a relation R ⊆ S ×S′ and a correspondence
function δ : S → (S′ → [0, 1]) if

1. for all s ∈ S with µ(s) > 0, δ(s) is a distribution on S′,
2. for all s′ ∈ S′,

∑

s∈S µ(s) · δ(s)(s′) = µ′(s′), and
3. whenever δ(s)(s′) > 0, then (s, s′) ∈ R.

We write µ ⋐
δ
R µ′ if µ is simulated by µ′ w.r.t. R and δ, µ ⋐R µ′ if there exists

δ with µ ⋐
δ
R µ′, and µ ⋐

δ µ′ for µ ⋐
δ
S×S′ µ′.

For ϕ ∈ C(S), ϕ′ ∈ C(S′) and R ⊆ S×S′, we write ϕ ⋐R ϕ′ if ∀µ ∈ Sat(ϕ) :
∃µ′ ∈ Sat(ϕ′) : µ ⋐R µ′.

Definition 2. Let N1 = (S1, A, L1, AP, V1, s
1
0) and N2 = (S2, A, L2, AP, V2, s

2
0)

be APA. A relation R ⊆ S1×S2 is a (weak) modal refinement if, for all (s1, s2) ∈
R, we have V1(s1) ⊆ V2(s2) and

1. ∀a ∈ A, ∀ϕ2 ∈ C(S2), if L2(s2, a, ϕ2) = ⊤, then ∃ϕ1 ∈ C(S1) such that
L1(s1, a, ϕ1) = ⊤ and ϕ1 ⋐R ϕ2,

2. ∀a ∈ A, ∀ϕ1 ∈ C(S1), if L1(s1, a, ϕ1) 6= ⊥, then ∃ϕ2 ∈ C(S2) such that
L2(s2, a, ϕ2) 6= ⊥ and ϕ1 ⋐R ϕ2.

We say that N1 refines N2 and write N1 ≤m N2, if there is a modal refinement
relation R ⊆ S1 × S2 with (s10, s

2
0) ∈ R.

2.2 Conjunction

Definition 3. Let N = (S,A,L,AP, V, s0), N ′ = (S′, A, L′, AP, V ′, s′0) be de-
terministic APA which share actions and propositions. The conjunction of N
and N ′ is the APA N ∧ N ′ = (S × S′, A, L̃, AP, Ṽ , (s0, s

′
0)), with Ṽ ((s, s′)) =

V (s) ∩ V ′(s′) and L̃ defined as follows, for all a ∈ A and (s, s′) ∈ S × S′:

– If there exists ϕ ∈ C(S) such that L(s, a, ϕ) = ⊤ and for all ϕ′ ∈ C(S′), we
have L′(s′, a, ϕ′) = ⊥, or if there exists ϕ′ ∈ C(S′) such that L′(s′, a, ϕ′) = ⊤
and for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥, then L̃((s, s′), a, false) = ⊤.

– Else, if either for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥ or for all ϕ′ ∈ C(S′),
we have L′(s′, a, ϕ′) = ⊥, then for all ϕ̃ ∈ C(S × S′), L̃((s, s′), a, ϕ̃) = ⊥.

– Otherwise, for all ϕ ∈ C(S) and ϕ′ ∈ C(S′) such that L(s, a, ϕ) 6= ⊥
and L′(s′, a, ϕ′) 6= ⊥, define L̃((s, s′), a, ϕ̃) = L(s, a, ϕ) ⊔ L′(s′, a, ϕ′) with
ϕ̃ the constraint in C(S × S′) such that µ̃ ∈ Sat(ϕ̃) iff the distribution
t →

∑

t′∈S′ µ̃((t, t′)) ∈ Sat(ϕ), and the distribution t′ →
∑

t∈S µ̃((t, t′)) ∈
Sat(ϕ′).

– Finally, for all other ϕ̃′ ∈ C(S × S′), let L̃((s, s′), a, ϕ̃′) = ⊥.

Observe that the conjunction of two deterministic APA is again deterministic.
By the following theorem, conjunction is indeed the greatest lower bound.
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Fig. 2: Two APA with interval constraints (top) and their conjunction (bottom)

Theorem 1. Let N1, N2, N3 be deterministic APA. We have N1 ∧N2 ≤m N1

and N1∧N2 ≤m N2, and if N3 ≤m N1 and N3 ≤m N2, then also N3 ≤m N1∧N2.

We finish this section with an example in which the conjunction of two APA
with interval constraints is not an APA with interval constraints; hence inter-
val constraints are not closed under conjunction. For the two APA N , N ′ in
Fig. 2, which employ only interval constraints, the conjunction N ∧ N ′ creates
a constraint 0.4 ≤ z22 + z32 ≤ 0.8 which is not an interval.

2.3 Structural composition

Definition 4. Let N = (S,A,L,AP, V, s0), N
′ = (S′, A, L′, AP ′, V ′, s′0) be APA

with AP ∩ AP ′ = ∅. The structural composition of N and N ′ is N‖N ′ = (S ×
S′, A, L̃, AP∪AP ′, Ṽ , (s0, s

′
0)), with Ṽ ((s, s′)) = {B∪B′ | B ∈ V (s), B′ ∈ V ′(s′)}

and L̃ defined as follows, for all (s, s′) ∈ S × S′ and a ∈ A:

– For all ϕ ∈ C(S), ϕ′ ∈ C(S′) for which L(s, a, ϕ) 6= ⊥ and L′(s′, a, ϕ′) 6=
⊥, let ϕ̃ ∈ C(S × S′) be a constraint for which µ̃ ∈ Sat(ϕ̃) iff ∃µ ∈
Sat(ϕ), µ′ ∈ Sat(ϕ′) : ∀t ∈ S, t′ ∈ S′ : µ̃(t, t′) = µ(t)µ(t′). Now if L(s, a, ϕ) =
L′(s′, a, ϕ′) = ⊤, let L̃((s, s′), a, ϕ̃) = ⊤, otherwise let L̃((s, s′), a, ϕ̃) = ?.

– If L(s, a, ϕ) = ⊥ for all ϕ ∈ C(S) or L′(s′, a, ϕ′) = ⊥ for all ϕ′ ∈ C(S′), let
L̃((s, s′), α, ϕ̃) = ⊥ for all ϕ̃ ∈ C(S × S′).
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By the next theorem, structural composition respects refinement (or, in other
words, refinement is a pre-congruence with respect to ‖). This entails indepen-
dent implementability : any composition of implementations of N1 and N2 is
automatically an implementation of N1‖N2.

Theorem 2. For all APA N1, N ′
1, N2, N ′

2, N1 ≤m N ′
1 and N2 ≤m N ′

2 imply
N1‖N2 ≤m N ′

1‖N
′
2.

It can be shown that structural composition of APA with interval constraints
may yield APA with polynomial constraints, e.g. of the form k1 ≤ x1x2+x2x3 ≤
k2. APA with polynomial constraints are, however, closed under both structural
composition and conjunction. The tool APAC [15] implements most of APA
operations, for APA with polynomial constraints, and uses the Z3 solver [12] for
algorithms on polynomial constraints.

2.4 Over-approximating difference

We now turn to computing differences of APA. For APA N1, N2, we are interested
in computing an APA representation of their implementation difference JN1K \
JN1K. This is based on work presented in [13].

Let N1 = (S1, A, L1, AP, V1, {s
1
0}), N2 = (S2, A, L2, AP, V2, {s

2
0}) be deter-

ministic APA in SVNF. Because N1 and N2 are deterministic, we know that
the difference JN1K \ JN2K is non-empty iff N1 6≤m N2. So let us assume that
N1 6≤m N2, and let R be a maximal refinement relation between N1 and N2.
Since N1 6≤m N2, we know that (s10, s

2
0) 6∈ R. Given (s1, s2) ∈ S1 × S2, we can

distinguish between the following cases:

1. (s1, s2) ∈ R,
2. V1(s1) 6= V2(s2), or
3. (s1, s2) 6∈ R and V1(s1) = V2(s2), and

(a) there exists e ∈ A and ϕ1 ∈ C(S1) such that
L1(s1, e, ϕ1) = ⊤ and ∀ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) = ⊥,

s2

ϕ1

s1

e,⊤
e

(b) there exists e ∈ A and ϕ1 ∈ C(S1) such that
L1(s1, e, ϕ1) = ? and ∀ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) = ⊥,

s2

ϕ1

s1

e, ?
e

(c) there exists e ∈ A and ϕ1 ∈ C(S1) such that
L1(s1, e, ϕ1) ≥ ? and ∃ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) =
?, ∃µ ∈ Sat(ϕ1) such that ∀µ′ ∈ Sat(ϕ2) : µ 6⋐R µ′,

ϕ2

s2

ϕ1

s1

6=

e, {?,⊤}
e, ?

(d) there exists e ∈ A and ϕ2 ∈ C(S2) such that
L2(s2, e, ϕ2) = ⊤ and ∀ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = ⊥,

ϕ2

s2s1

e
e,⊤
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(e) there exists e ∈ A and ϕ2 ∈ C(S2) such that
L2(s2, e, ϕ2) = ⊤ and ∃ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = ?,

ϕ2

s2

ϕ1

s1

e, ?
e,⊤

(f) there exists e ∈ A and ϕ2 ∈ C(S2) such that
L2(s2, e, ϕ2) = ⊤, ∃ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = ⊤ and
∃µ ∈ Sat(ϕ1) such that ∀µ′ ∈ Sat(ϕ2) : µ 6⋐R µ′.

s2s1

ϕ1 ϕ26=

e,⊤
e,⊤

Remark that due to determinism and SVNF, cases 1, 2 and 3 cannot happen
at the same time. Moreover, although the cases in 3 can happen simultaneously,
they cannot be triggered by the same action. We define the following sets.

Given a pair of states (s1, s2), let Ba(s1, s2) be the set of actions in A such
that case 3.a above holds. If there is no such action, then Ba(s1, s2) = ∅. Sim-
ilarly, we define Bb(s1, s2), Bc(s1, s2), Bd(s1, s2), Be(s1, s2) and Bf (s1, s2) to be
the sets of actions such that case 3.b, c, d, e and 3.f holds, respectively. Given
a set X ⊆ {a, b, c, d, e, f}, let BX(s1, s2) = ∪x∈XBx(s1, s2). In addition, let
B(s1, s2) = B{a,b,c,d,e,f}(s1, s2).

Definition 5. Let N1 = (S1, A, L1, AP, V1, {s
1
0}), N2 = (S2, A, L2, AP, V2, {s

2
0})

be deterministic APA in SVNF. If N1 ≤m N2, then N1 \∗ N2 is undefined;
if V1(s

1
0) 6= V2(s

2
0), we let N1 \∗ N2 = N1. Otherwise, define N1 \∗ N2 =

(S,A,L,AP, V, S0), where S = S1× (S2∪{⊥})× (A∪{ε}), V (s1, s2, a) = V (s1),
and S0 = {(s10, s

2
0, f) | f ∈ B(s10, s

2
0)}. L is defined as follows:

– If s2 = ⊥ or e = ε or (s1, s2) in case 1 or 2, then for all a ∈ A and ϕ ∈ C(S1)
such that L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e), a, ϕ

⊥) = L1(s1, a, ϕ), with ϕ⊥

defined below. For all other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e), b, ϕ) = ⊥.
– Else, we have (s1, s2) in case 3 and B(s1, s2) 6= ∅ by construction. The

definition of L is given in Table 1, with the constraints ϕ⊥ and ϕB
12 defined

below.

For ϕ ∈ C(S1), ϕ
⊥ ∈ C(S) is defined as follows: µ ∈ Sat(ϕ⊥) iff ∀s1 ∈ S1,

∀s2 6= ⊥, ∀b 6= ε, µ(s1, s2, b) = 0 and the distribution s1 7→ µ(s1,⊥, ε) ∈ Sat(ϕ).
For a state (s1, s2, e) ∈ S with s2 6= ⊥, e 6= ε and two constraints ϕ1 ∈ C(S1),

ϕ2 ∈ C(S2) such that L1(s1, e, ϕ1) 6= ⊥ and L2(s2, e, ϕ2) 6= ⊥, the constraint
ϕB
12 ∈ C(S) is defined as follows: µ ∈ Sat(ϕB

12) iff

1. for all (s′1, s
′
2, c) ∈ S with µ(s′1, s

′
2, c) > 0, c ∈ B(s′1, s

′
2) ∪ {ε} and either

succs2,e(s
′
1) = ∅ and s′2 = ⊥, or s′2 = succs2,e(s

′
1),

2. the distribution s′1 7→
∑

c∈A∪{ε},s′
2
∈S2∪{⊥} µ(s

′
1, s

′
2, c) ∈ Sat(ϕ1), and

3. either (a) there exists (s′1,⊥, c) such that µ(s′1,⊥, c) > 0, or (b) the distribu-
tion s′2 7→

∑

c∈A∪{ε},s′
1
∈S1

µ(s′1, s
′
2, c) /∈ Sat(ϕ2), or (c) there exists s′1 ∈ S1,

s′2 ∈ S2 and c 6= ε such that µ(s′1, s
′
2, c) > 0.
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Table 1: Definition of the transition function L in N1 \
∗ N2.

e ∈ N1, N2 N1 \
∗ N2 Definition of L

Ba(s1, s2)

s2

ϕ1

s1

e,⊤
e

ϕ⊥
1

e,⊤

(s1, s2, e) For all a 6= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e), e, ϕ

⊥
1 ) =

⊤. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e), b, ϕ) = ⊥.

Bb(s1, s2)

s2

ϕ1

s1

e, ?
e

Bd(s1, s2)

ϕ2

s2s1

e
e,⊤ e

(s1, s2, e) For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) 6=
⊥, let L((s1, s2, e), a, ϕ

⊥) = L1(s1, a, ϕ). For all
other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e), b, ϕ) =
⊥.

Be(s1, s2)

ϕ2

s2

ϕ1

s1

e, ?
e,⊤

ϕB
12

e, ?

(s1, s2, e)
For all a 6= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e), e, ϕ

B
12) =

?. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e), b, ϕ) = ⊥.

Bc(s1, s2)

ϕ2

s2

ϕ1

s1

6=

e, {?,⊤}
e, ?

(s1, s2, e)

ϕB
12

e,⊤

ϕ⊥
1

e, {?,⊤}

For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) 6=
⊥ (including e and ϕ1), let L((s1, s2, e), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e), e, ϕ

B
12) =

⊤. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e), b, ϕ) = ⊥.

Bf (s1, s2)

s2s1

ϕ1 ϕ26=

e,⊤
e,⊤

Informally, distributions in ϕB
12 must (1) follow the corresponding execution

in N1 and N2 if possible, (2) satisfy ϕ1 and (3) either (a) reach a state in N1 that
cannot be matched in N2 or (b) break the constraint ϕ2, or (c) report breaking
the relation to at least one successor state.

The following theorem shows that the ∗-difference over-approximates the real
difference.

Theorem 3. For all deterministic APA N1 and N2 in SVNF such that N1 6≤m

N2, we have JN1K \ JN2K ⊆ JN1 \
∗ N2K.

2.5 Under-approximating differences

Instead of the over-approximating difference N1 \∗ N2, we can also compute
under-approximating differences. Intuitively, this is done by unfolding the APA
N1, N2 up to some level K and then compute the difference of unfoldings:

Definition 6. Let N1 = (S1, A, L1, AP, V1, {s
1
0}), N2 = (S2, A, L2, AP, V2, {s

2
0})

be deterministic APA in SVNF and K ∈ ◆. If N1 ≤m N2, then N1 \
K N2 is un-
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Table 2: Definition of the transition function L in N1 \
K N2.

e ∈ N1, N2 N1 \
K N2 Definition of L

Ba(s1, s2)

s2

ϕ1

s1

e,⊤
e

ϕ⊥
1

e,⊤

(s1, s2, e, k) For all a 6= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e, k), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e, k), e, ϕ

⊥
1 ) =

⊤. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e, k), b, ϕ) = ⊥.

Bb(s1, s2)

s2

ϕ1

s1

e, ?
e

Bd(s1, s2)

ϕ2

s2s1

e
e,⊤ e

(s1, s2, e, k) For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) 6=
⊥, let L((s1, s2, e, k), a, ϕ

⊥) = L1(s1, a, ϕ). For all
other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) =
⊥.

Be(s1, s2)

ϕ2

s2

ϕ1

s1

e, ?
e,⊤

ϕB,k
12

e, ?

(s1, s2, e, k)
For all a 6= e ∈ A and ϕ ∈
C(S1) such that L1(s1, a, ϕ) 6= ⊥, let
L((s1, s2, e, k), a, ϕ

⊥) = L1(s1, a, ϕ). In addi-
tion, let L((s1, s2, e, k), e, ϕ

B,k
12

) = ?. For all other
b ∈ A and ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) = ⊥.

Bc(s1, s2)

ϕ2

s2

ϕ1

s1

6=

e, {?,⊤}
e, ?

(s1, s2, e, k)

ϕB,k
12

e,⊤

ϕ⊥
1

e, {?,⊤}

For all a ∈ A and ϕ ∈ C(S1) such that
L1(s1, a, ϕ) 6= ⊥ (including e and ϕ1), let
L((s1, s2, e, k), a, ϕ

⊥) = L1(s1, a, ϕ). In addition, let
L((s1, s2, e, k), e, ϕ

B,k
12

) = ⊤. For all other b ∈ A and
ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) = ⊥.

Bf (s1, s2)

s2s1

ϕ1 ϕ26=

e,⊤
e,⊤

defined; if V1(s
1
0) 6= V2(s

2
0), we let N1 \

KN2 = N1. Otherwise, define N1 \
KN2 =

(S,A,L,AP, V, SK
0 ), where S = S1 × (S2 ∪ {⊥}) × (A ∪ {ε}) × {1, . . . ,K},

V (s1, s2, a, k) = V (s1), and SK
0 = {(s10, s

2
0, f,K) | f ∈ B(s10, s

2
0)}. L is defined

as follows:

– If s2 = ⊥ or e = ε or (s1, s2) in case 1 or 2, then for all a ∈ A and ϕ ∈ C(S1)
such that L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e, k), a, ϕ

⊥) = L1(s1, a, ϕ), with ϕ⊥

defined below. For all other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) = ⊥.
– Else we have (s1, s2) in case 3 and B(s1, s2) 6= ∅ by construction. The def-

inition of L is given in Table 2, with the constraints ϕ⊥ and ϕB,k
12 defined

below.

For ϕ ∈ C(S1), ϕ⊥ ∈ C(S) is defined as follows: µ ∈ Sat(ϕ⊥) iff ∀s1 ∈
S1, ∀s2 6= ⊥, ∀b 6= ε, ∀k 6= 1, µ(s1, s2, b, k) = 0 and the distribution s1 7→
µ(s1,⊥, ε, 1) ∈ Sat(ϕ).

For a state (s1, s2, e, k) ∈ S with s2 6= ⊥, e 6= ε and two constraints ϕ1 ∈
C(S1) and ϕ2 ∈ C(S2) such that L1(s1, e, ϕ1) 6= ⊥ and L2(s2, e, ϕ2) 6= ⊥, the

constraint ϕB,k
12 ∈ C(S) is defined as follows: µ ∈ Sat(ϕB,k

12 ) iff
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1. for all (s′1, s
′
2, c, k

′) ∈ S, if µ(s′1, s
′
2, c, k

′) > 0, then c ∈ B(s′1, s
′
2) ∪ {ε} and

either succs2,e(s
′
1) = ∅, s′2 = ⊥ and k′ = 1, or s′2 = succs2,e(s

′
1),

2. the distribution s′1 7→
∑

c∈A∪{ε},s′
2
∈S2∪{⊥},k′≥1 µ(s

′
1, s

′
2, c, k

′) ∈ Sat(ϕ1), and

3. either (a) there exists (s′1,⊥, c, 1) such that µ(s′1,⊥, c, 1) > 0, or (b) the
distribution s′2 7→

∑

c∈A∪{ε},s′
1
∈S1,k′≥1 µ(s

′
1, s

′
2, c, k

′) /∈ Sat(ϕ2), or (c) k 6= 1

and there exists s′1 ∈ S1, s
′
2 ∈ S2, c 6= ε and k′ < k such that µ(s′1, s

′
2, c, k

′) >
0.

Theorem 4. For all deterministic APA N1, N2 in SVNF such that N1 6≤m N2,

1. for all K ∈ ◆, we have N1 \
K N2 ≤m N1 \

K+1 N2,
2. for all K ∈ ◆, JN1 \

K N2K ⊆ JN1K \ JN2K, and
3. for all PA P ∈ JN1K \ JN2K, there exists K ∈ ◆ such that P ∈ JN1 \

K N2K.

Note that item 3 implies that for all PA P ∈ JN1K \ JN2K, there is a finite
specification capturing JN1K\JN2K “up to” P . Hence lim

−→
JN1\

KN2K = JN1K\JN2K,
the direct limit.

2.6 Distances

In order to better assess how close the differences N1 \
∗ N2 and N1 \

K N2 ap-
proximate the real difference JN1K \ JN2K, we define distances on APA. These
distances are based on work in [2, 17,18]; see also [16].

Let λ ∈ ❘ with 0 < λ < 1 be a discounting factor.

Definition 7. The modal refinement distance between the states of APA N1 =
(S1, A, L1, AP, V1, S

1
0), N2 = (S2, A, L2, AP, V2, S

2
0) is defined to be the least fixed

point to the equations

dm(s1, s2) =



















1 if V1(s1) 6⊆ V2(s2),

max











sup
a,ϕ1:L1(s1,a,ϕ1) 6=⊥

inf
ϕ2:L2(s2,a,ϕ2) 6=⊥

D(ϕ1, ϕ2)

sup
a,ϕ2:L2(s2,a,ϕ2)=⊤

inf
ϕ1:L1(s1,a,ϕ1)=⊤

D(ϕ1, ϕ2)











otherwise,

where

D(ϕ1, ϕ2) = sup
µ1∈Sat(ϕ1)

inf
µ2∈Sat(ϕ2)

inf
δ:µ1⋐

δµ2

∑

(s1,s2)∈S1×S2

λµ1(s1)δ(s1, s2)dm(s1, s2).

We let dm(N1, N2) = maxs0
1
∈S0

1
mins0

2
∈S0

2
dm(s

0
1, s

0
2).

Note that sup ∅ = 1. The through refinement distance is

dt(N1, N2) = sup
P1∈JN1K

inf
P2∈JN2K

dm(P1, P2).

We need to extend this to general sets of PA; for S1, S2 sets of PA, we let
dt(S1,S2) = supP1∈S1

infP2∈S2
dm(P1, P2). The next proposition shows that our

distances behave as expected, cf. [16].
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Proposition 1. For all APA N1, N2, dt(N1, N2) ≤ dm(N1, N2), and N1 ≤m N2

implies dm(N1, N2) = 0.

Theorem 5. Let N1, N2 be deterministic APA in SVNF such that N1 6≤m N2.

1. The sequence (N1 \
K N2)K∈◆ converges in the distance dm, and

lim
K→∞

dm(N1 \
∗ N2, N1 \

K N2) = 0.

2. The sequence (JN1 \
K N2K)K∈◆ converges in the distance dt, and

lim
K→∞

dt(JN1K \ JN2K, JN1 \
K N2K) = 0.

3. The distance dt(JN1 \
∗ N2K, JN1K \ JN2K) = 0.

Note that item 3 follows directly from items 1 and 2. It implies that even
though N1 \∗ N2 is an over-approximation of the real difference, the two are
infinitesimally close in the distance dt. Similarly, the under-approximating dif-
ferences N1 \K N2 come arbitrarily close to the real difference for sufficiently
large K.

3 Real-Time Specifications

In this section we consider that Σ = Σi⊎Σo is a finite set of actions partitioned
into inputs Σi and outputs Σo. We first define basic models for timed systems,
namely TIOTS and TIOA.

A timed I/O transition system (TIOTS) is a tuple (S, s0, Σ,−→), where S is
an infinite set of states, s0 ∈ S is the initial state, and −→ : S×(Σ∪❘≥0)×S is a
transition relation. We assume that any TIOTS satisfies the following conditions:

1. Time determinism: ∀s, s′, s′′ ∈ S.∀d ∈ ❘≥0, if s
d

−→ s′ and s
d

−→ s′′,
then s′ = s′′.

2. Time reflexivity: ∀s ∈ S. s
0

−→ s.

3. Time additivity: ∀s, s′′ ∈ S.∀d, d′ ∈ ❘≥0, s
d+d′

−→ s′′ iff ∃s′ ∈ S. s
d

−→ s′

and s′
d′

−→ s′′.

We now consider a finite set C of real-time clocks. A clock valuation u over
C is a mapping C 7→ ❘≥0. Let d ∈ ❘≥0, we denote u+d the valuation such that
∀x ∈ C. (u+ d)(x) = u(x)+ d. Let λ ⊆ C, we denote u[λ] the valuation agreeing
with u on clocks in C \ λ, and assigning 0 on clocks in λ. Let B(C) denote all
clock constraints ϕ generated by the grammar ϕ ::= x ≺ k | x − y ≺ k | ϕ ∧ ϕ,
where k ∈ ◗, x, y ∈C and ≺∈ {<,≤, >,≥}. By U(C) ⊂ B(C), we denote the
set of constraints restricted to upper bounds and without clock differences. We
write u |= ϕ if u satisfies ϕ. Let Z ⊆ ❘C

≥0, we write Z |= ϕ if ∀u ∈ Z. u |= ϕ and

we denote JϕK = {u ∈ ❘C
≥0 | u |= ϕ}.

A timed I/O automaton is a tuple A = (L, l0, C,E,Σ, I), where L is a finite
set of locations, l0 ∈ L is the initial location, C is a finite set of real valued clocks,
E ⊆ L×Σ ×B(C)× 2C ×L is a set of edges, I : L 7→ U(C) assigns an invariant
to each location.
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The semantics of a TIOA is a TIOTS 〈〈A〉〉 = (L×❘C
≥0, (l

0,0), Σ,−→), where
0 is the valuation mapping all clocks to zero, and −→ is the largest transition
relation generated by the following rules:

(l, a, ϕ, λ, l′) ∈ E u |= ϕ u′ = u[λ]

(l, u)
a
−→ (l′, u′)

d ∈ ❘≥0 u+ d |= I(l)

(l, u)
d
−→ (l, u+ d)

Examples of TIOA are shown on Fig. 3. Edges with input actions are drawn
with continuous lines, while edges with output actions are drawn with dashed
lines.

3.1 Timed specifications

A timed specification theory is introduced in [9, 10] using TIOA and TIOTS.
Specifications and implementations models are defined with TIOA with addi-
tional requirements for their TIOTS semantics.

Definition 8. A specification S is a TIOA whose semantics 〈〈S〉〉 satisfies the
following conditions:

1. Action determinism: ∀s, s′, s′′ ∈ S.∀a ∈ Σ∪❘≥0, if s
a

−→ s′ and s
a

−→ s′′,
then s′ = s′′.

2. Input-enabledness: ∀s ∈ S.∀i? ∈ Σi. ∃s′ ∈ S. s
i?
−→ s′.

An implementation I is a specification whose semantics 〈〈I〉〉 satisfies the addi-
tional conditions:

3. Output urgency: ∀s, s′, s′′ ∈ S, if ∃o! ∈ Σo. s
o!
−→ s′ and ∃d ∈

❘≥0. s
d

−→ s′′, then d = 0.

4. Independent progress: ∀s ∈ S, either ∀d ∈ ❘≥0.∃s
′ ∈ S. s

d
−→ s′, or ∃d ∈

❘≥0.∃o! ∈ Σo.∃s′, s′′ ∈ S. s
d

−→ s′ and s′
o!
−→ s′′.

An alternating timed simulation between two TIOTS P1 = (S1, s
0
1, Σ,−→1)

and P2 = (S2, s
0
2, Σ,−→2) is a relation R ⊆ S1 × S2 such that ∀(s1, s2) ∈ R,

1. if s1
a

−→1 t1 for some a ∈ Σo ∪❘≥0, then s2
a

−→2 t2 and (t1, t2) ∈ R.

2. if s2
a

−→2 t2 for some a ∈ Σi, then s1
a

−→1 t1 and (t1, t2) ∈ R.

We write P1 ≤ P2 if there exits an alternating simulation R ⊆ S1 × S2 with
(s01, s

0
2) ∈ R. For two specifications S1 and S2, we say that S1 refines S2, written

S1 ≤ S2, iff 〈〈S1〉〉 ≤ 〈〈S2〉〉.
An implementation I satisfies a specification S, denoted I |= S, iff 〈〈I〉〉 ≤

〈〈S〉〉. A specification S is consistent iff there exists an implementation I such
that I |= S. We write JSK = {I | I is an implementation and I |= S} the set
of all implementations of a specification.

It is shown in [10] that timed specifications also define timed games between
two players: an input player that represents the environment and plays with
input actions, and an output player that represents the component and plays
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tea!

coin?

tea!

cof! coin?

Idle

Serving

y=0y>=4

y<=6

y>=2

(a) Specification M

coin?

tea!

y=0
cof!

coin?

Idle

y<=5

Serving

y=0

y>=5

y<=10

y>=10

(b) Implementation MI

tea!

coin?

tea!

coin?

cof! coin?

Idle

y<=0

Serving

Blocked

y=0y>=4

y=0

y<=6

y>=2

(c) Partially inconsistent
specification

Fig. 3: Specification and implementation of a coffee machine with TIOA.

with output actions. This timed game semantics is used to solve various decision
problems, for instance consistency and refinement checking.

Consider the timed specification M of a coffee machine in Fig. 3a, and the
implementation MI in Fig. 3b. We can check that this implementation satisfies
the specification using a refinement game. The game proceeds as a turn-based
game with two players: a spoiler starts by playing delays or output actions from
the implementation, or input actions from the specification; then a replicator
tries to copy the action on the other model. The spoiler wins whenever the
replicator cannot mimic one of its move. Otherwise the replicator wins. For
instance a strategy for the spoiler could start by delaying MI by 10 time units.
Then the strategy of the replicator is two delay M by 10 time units. On the
second move the spoiler plays action coin? on M and reaches location Serving.
The replicator does the same on MI. On the third move the spoiler delays MI
by 5 time units. This is allowed by the specification, so the replicator still has
a winning strategy. Then the spoiler is forced to play action coff! on MI, due to
the invariant in location Serving, and replicator does the same on M. The game
has then returned to the initial state.

In this game a winning strategy for the replicator is necessarily infinite, as he
will have to play as long as the spoiler is playing actions. However there exists
symbolic techniques and algorithms for timed games [5] that restrict the game
to memoryless state-based strategies on a finite number of symbolic states.

Similarly, consistency is solved using a safety game. The verifier controls the
output actions of the specification, while the spoiler controls the input. The
spoiler objectives is to reach an inconsistent state, that does not satisfy the
independent progress condition (i.e. the verifier has no delay or output actions).
Contrary to the refinement game, the game is concurrent: both players choose
a couple delay and action at the same time, then the move that is performed is
the one with the smaller delay. Consider for instance another specification of a
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coffee machine shown in Fig. 3c. The location Blocked is inconsistent, but the
verifier can still play a strategy to avoid it (for instance by never playing action
tea!). Therefore this specification is also consistent, and indeed one can check
that the MI also satisfies this specification.

3.2 Robust timed specifications

We now introduce some perturbations in the timing constants of the models
and check whether “good” properties are still satisfied. This is known as the
robustness problem. Let ϕ ∈ B(C) be a guard over clocks C and let ∆ ∈ ◗≥0.
The enlarged guard ⌈ϕ⌉∆ is constructed according to the following rules:

– Any term x ≺ k of ϕ with ≺∈{<,≤} is replaced by x ≺ k+∆
– Any term x ≻ k of ϕ with ≻∈{>,≥} is replaced by x ≻ k−∆

Similarly, the restricted guard ⌊ϕ⌋∆ is constructed with the following rules:

– Any term x ≺ k of ϕ with ≺∈{<,≤} is replaced by x ≺ k−∆
– Any term x ≻ k of ϕ with ≻∈{>,≥} is replaced by x ≻ k+∆.

We lift the perturbation to implementations models. Given a jitter ∆, the
perturbation means a ∆-enlargement of invariants and output edge guards, and
on contrary a ∆-restriction of input edge guards:

Definition 9. Let I = (L, l0, C,E,Σ, I) be an implementation and ∆ ∈ ◗≥0,
the ∆-perturbation of I is the TIOA I∆ = (L ∪ lu, l0, C,E∆, Σ, I∆), where

1. Every edge (l, o!, ϕ, λ, l′) ∈ E is replaced by (l, o!, ⌈ϕ⌉∆, λ, l′) ∈ E∆.
2. Every edge (l, i?, ϕ, λ, l′) ∈ E is replaced by (l, i?, ⌊ϕ⌋∆, λ, l′) ∈ E∆.
3. ∀l ∈ L. I∆(l) = ⌈I(l)⌉∆.
4. ∀l ∈ L. ∀i? ∈ Σi there exists an edge (l, i?, ϕu, ∅, lu) ∈ E∆ with

ϕu = ¬
(

∨

(l,i?,ϕ,λ,l′)∈E

⌊ϕ⌋∆
)

.

lu is a universal location such that, ∀a ∈ Σ.∃(lu, a,⊤, ∅, lu) ∈ E, where ⊤ is the
clock constraints such that J⊤K = ❘C

≥0.

An implementation I robustly satisfies a specification S for a given delay
∆ ∈ ◗≥0, denoted I |=∆ S, if I∆ ≤ S. A specification S is ∆-robust consistent
iff there exists an implementation I such that I |=∆ S. We write JSK∆ = {I |
I is an implementation and I |=∆ S} the set of all ∆-robust implementations
a specification.

Refinement game is used to check robust satisfaction. Consider again the
specification M and the implementation MI from 3. The ∆-perturbation of MI
is presented on Fig.4. For ∆ = 1, we can check that MI1 ≤ M. For ∆ = 2 the
spoiler has the following winning strategy: he plays coin? on M, then delays by
7 time units on MI2. This cannot be mimicked by the replicator since he cannot
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coin?

tea!

y=0
cof!

coin?

Idle

y<=5+∆

Serving

y=0

y>=5-∆

y<=10+∆

y>=10-∆

Fig. 4: ∆-perturbation of an implementation

(a) Specification (b) Robust consistency game

Fig. 5: Robust consistency game transformation for a timed specification.

delays more than 6 time units on the specification M. Indeed we can show then
∆ = 1 is the maximum value such that MI robustly satisfies M.

To solve robust consistency, the technique from [25] transforms the consis-
tency game into a robust game. Then, the same game algorithms can be applied
on this robust game. This transformation is illustrated in Fig.5. On the left,
consider the specification of Fig.5a, of which we want to check the robust con-
sistency for ∆ = 1. We transform the TIOA by splitting output edges, as shown
on the right in Fig. 5b. In this game in location Serving, if the verifier plays its
move at time y = 5, he must wait 1 time unit in location Serving_a and then
reach location Serving_b at y = 6. Here the spoiler has a strategy to reach the
location Bad and wins. Therefore the winning strategy for the verifier is to move
to Serving_a at y = 4, then wait 1 time unit, and reach Serving_b at y = 5,
where the spoiler is forced to return to location Idle. For ∆ = 2 this strategy
fails, since location Serving_b is only reached after y ≥ 6. This shows that the
specification is 1-robust consistent.
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3.3 Conjunction

Definition 10. The conjunction of two timed specifications S1 = (L1, l
0
1, C1, E1,

Σ, I1), S2 = (L2, l
0
2, C2, E2, Σ, I2) is the TIOA S1∧S2 = (L, l0, C,E,Σ, I) where

L = L1 × L2, l
0 = (l01, l

0
2), C = C1 ⊎ C2, I((l1, l2)) = I1(l1) ∧ I2(l2), and the set

of edges is defined according to the following rule:

((l1, l2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (l
′
1, l

′
2)) ∈ E iff

(l1, a, ϕ1, λ1, l
′
1) ∈ E1 and (l2, a, ϕ2, λ2, l

′
2) ∈ E2

Theorem 6. For any timed specification S1, S2, and T over the same alphabet:

1. S1 ∧ S2 ≤ S2 and S1 ∧ S2 ≤ S1

2. (T ≤ S1) and (T ≤ S2) implies T ≤ (S1 ∧ S2)

3. JS1 ∧ S2K = JS1K ∩ JS2K

4. J(S1 ∧ S2) ∧ T K = JS1 ∧ (S2 ∧ T )K

It turns out that this operator is robust, in the sense of precisely characteriz-
ing also the intersection of the sets of robust implementations. So not only con-
junction is the greatest lower bound with respect to implementation semantics,
but also with respect to the robust implementation semantics. More precisely:

Theorem 7. For any timed specifications S1 and S2 over the same alphabet and
∆ ∈ ◗≥0, JS1 ∧ S2K

∆ = JS1K
∆ ∩ JS2K

∆.

3.4 Structural composition

Two specifications S1, S2 can be composed iff Σo
1 ∩Σo

2 = ∅. Structural composi-
tion is obtained in by a product, where the inputs of one specification synchronize
with the outputs of the other:

Definition 11. The structural composition of two composable timed specifi-
cations S1 = (L1, l

0
1, C1, E1, Σ1, I1), S2 = (L2, l

0
2, C2, E2, Σ2, I2) is the TIOA

S1 ‖ S2 = (L, l0, C,E,Σ, I), where L = L1 × L2, l0 = (l01, l
0
2), C = C1 ⊎ C2,

Σ = Σo ∪Σi with Σo = Σo
1 ⊎Σo

2 and Σi = (Σi
1 \Σ

o
2) ∪ (Σi

2 \Σ
o
1), I((l1, l2)) =

I1(l1) ∧ I2(l2), and for all l1, l
′
1 ∈ L1, l2, l

′
2 ∈ L2, the set of edges is defined

according to the following rules:

1. ∀a ∈ Σ1 \Σ2, ((l1, l2), a, ϕ1, λ1, (l
′
1, l2)) ∈ E iff (l1, a, ϕ1, λ1, l

′
1) ∈ E1.

2. ∀a ∈ Σ2 \Σ1, ((l1, l2), a, ϕ2, λ2, (l1, l
′
2)) ∈ E iff (l2, a, ϕ2, λ2, l

′
2) ∈ E2.

3. ∀a ∈ Σ1 ∩Σ2, ((l1, l2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (l
′
1, l

′
2)) ∈ E

iff (l1, a, ϕ1, λ1, l
′
1) ∈ E1 and (l2, a, ϕ2, λ2, l

′
2) ∈ E2.

Theorem 8. For all specifications S1, S2 and T such that S1 ≤ S2 and S1 is
composable with T , we have that S2 is composable with T and S1 ‖ T ≤ S2 ‖ T .
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Theorem 8 allows the independent implementability scenario: for any con-
sistent specification S1 and S2, such that S1 is composable with S2, S1 ‖ S2 is
consistent. Moreover, if I1 is an implementation that satisfies S1 and I2 is an
implementation that satisfies S2, then I1 ‖ I2 SatS1 ‖ S2.

Finally, Theorem 9 show that this independent implementability can be ex-
tended to robust implementability:

Theorem 9. For any ∆-robust consistent specification S2 and S2 such that S1

is composable with S2, let I1 be a ∆-robust implementation of S1 and I2 be a
∆-robust implementation of S2, then I2 ‖ I2 Sat∆ S1 ‖ S2.

3.5 Parametric Robustness Evaluation

Robustness problems, like robust consistency and robust satisfaction, can be
solved with traditional timed games algorithms for a given value of the per-
turbation ∆. When considering ∆ as a parameter we want to determine the
maximum value of the perturbation such that these problems are satisfied.

Let (A∆,W ) be a parametric timed game, where A is a TIOA parametrized
by ∆ and W is a safety objective. We define ∆max = Sup{∆ | (A∆,W ) has a
winning strategy}. Computing ∆max would in general require to solve a para-
metric timed game, which is undecidable [1]. Therefore, considering that the
problems are monotonic, we have propose in [25] a technique to estimate the
maximum value of ∆ with a given precision parameter. This procedure is de-
scribed in Algorithm 1.

Algorithm 1: Evaluation of the maximum robustness

Input: (A∆,W ): parametric robust timed game,
∆init : initial maximum value,
ε: precision

Output: ∆good such that ∆max −∆good ≤ ε

begin1

∆good ← 02

∆bad ← ∆init3

while ∆bad −∆good > ε do4

(∆good , ∆bad)← RefineValues((A∆,W ), ∆good , ∆bad)5

end6

return ∆good7

end8

The algorithm assumes that the game (A0, Bad) is won, and on contrary
that (A∆init , Bad) is lost. At the heart of the algorithm the procedure RefineVal-
ues solves the game (A∆, Bad) for a value ∆ ∈ [∆good, ∆bad] and updates the
variables ∆good and ∆bad according to the result.
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Different algorithms can be used to implement RefineValues. In [25] we have
compared a basic binary search approach, with a counter strategy refinement
approach. In this latter we analyze the winning strategies for the spoiler in
order to determine the maximum value of ∆ that invalidates these strategies. In
practice, this technique implemented in the tool PyEcdar [27], allows Algorithm 1
to converge faster.

∆good ∆bad

0 6
0 3
0 1.5

0.75 1.5
0.75 1.125

We show in the table on the right how to run Al-
gorithm 1 with binary search to check the robust con-
sistency of the specification from Fig. 5a. First, we
consider the robust game automaton on Fig. 5b. ∆init

is set to 6, which is the maximum constant in the
model, and ε = 0.5. In the first iteration the algo-
rithm considers ∆ = 3 and solves the game, which is
lost. Therefore it updates the value of ∆bad to 3. On the third iteration, for
∆ = 0.75 the game is won. In that case ∆good is updated to 0.75. The algorithm
stops when 1.125− 0.75 ≤ ε.

Finally, in Table 3 we present the results of an experiment performed on
an example of timed specifications that model the administration of a university
(with the coffee machine specification M , presented in Fig. 3a, an administration
specification A, a researcher specification R, and the structural compositions
of these specifications). The results compare the performances of Algorithm 1
when checking robust consistency using either a binary search approach (BS) or
a counter strategy refinement approach (CS).

Table 3: Comparing methods to check robust consistency of timed specifications.

∆init = 8 ∆init = 6 ∆init = 8 ∆init = 6

Game size ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01

Model loc. edges CR BS CR BS CR BS CR BS

M 9 21 119ms 314ms 119ms 262ms 119ms 438ms 119ms 437ms

R 11 27 188ms 303ms 188ms 299ms 188ms 419ms 188ms 523ms

A 9 22 133ms 316ms 133ms 287ms 133ms 441ms 133ms 483ms

M ‖ A 41 158 10.1s 10.1s 10.1s 9.6s 10.4s 17.5s 10.4s 17.6s

R ‖ A 48 201 14.1s 12.1s 12.5s 11s 14.1s 19.6s 12.5s 19.4s

M ‖ R 44 152 10s 15.5s 9.81s 15.8s 10.3s 22.9s 9.78s 29.2s

M ‖ R ‖ A 180 803 54.4s 56.3s 54.6s 112s 55s 58.8s 55.7s 216s
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