
HAL Id: hal-01087368
https://inria.hal.science/hal-01087368

Submitted on 25 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The quantitative linear-time–branching-time spectrum
Uli Fahrenberg, Axel Legay

To cite this version:
Uli Fahrenberg, Axel Legay. The quantitative linear-time–branching-time spectrum. Theoretical
Computer Science, 2014, pp.54-69. �10.1016/j.tcs.2013.07.030�. �hal-01087368�

https://inria.hal.science/hal-01087368
https://hal.archives-ouvertes.fr

The Quantitative Linear-Time–Branching-Time Spectrum

Uli Fahrenberg, Axel Legay

Irisa / INRIA Rennes, France

Abstract

We present a distance-agnostic approach to quantitative verification. Taking
as input an unspecified distance on system traces, or executions, we develop
a game-based framework which allows us to define a spectrum of different in-
teresting system distances corresponding to the given trace distance. Thus
we extend the classic linear-time–branching-time spectrum to a quantitative
setting, parametrized by trace distance. We also prove a general transfer prin-
ciple which allows us to transfer counterexamples from the qualitative to the
quantitative setting, showing that all system distances are mutually topologically
inequivalent.

Keywords: Quantitative verification, system distance, distance hierarchy, linear
time, branching time

1. Introduction

For rigorous design and verification of embedded systems, both qualitative and
quantitative information and constraints have to be taken into account [23, 26, 30].
This applies to the models considered, to the properties one wishes to be satisfied,
and to the verification itself. Hence the question asked in quantitative verification
is not “Does the system satisfy the requirements?”, but rather “To which extent

does the system satisfy the requirements?” Standard qualitative verification
techniques are inherently fragile: either the requirements are satisfied, or they
are not, regardless of how close the actual system might come to the specification.
To overcome this lack of robustness, notions of distance between systems are
essential.

As pointed out in [23], qualitative and quantitative aspects of verification
are best treated orthogonally in any theory of quantitative verification. In
practical applications these aspects may indeed interfere with each other, but
for the purpose of theory, they are best treated separately. The formalism
we propose in this paper addresses this separation by modeling qualitative
aspects using standard labeled transition systems and expressing the quantitative
aspects using trace distances, or distances on system executions. Based on
these ingredients, we develop a comprehensive theory of system distances which

Preprint submitted to Theoretical Computer Science July 16, 2013

∞-nested trace equivalence

(k + 1)-nested ready inclusion

(k + 1)-nested trace equivalence

k-nested ready equivalence

(k + 1)-nested trace inclusion

k-nested ready inclusion

k-nested trace equivalence

2-nested ready inclusion

2-nested trace equivalence

possible-futures equivalence

1-nested ready equivalence

ready equivalence

2-nested trace inclusion

possible-futures inclusion

1-nested ready inclusion

ready inclusion

1-nested trace equivalence

trace equivalence

1-nested trace inclusion

trace inclusion

∞-nested simulation equivalence

bisimulation

(k + 1)-ready sim. equivalence

(k + 1)-nested sim.

equivalence

k-nested ready sim. equivalence

(k + 1)-nested simulation

k-nested ready simulation

k-nested sim. equivalence

2-nested ready simulation

2-nested sim. equivalence

1-nested ready sim. equivalence

ready simulation equivalence

2-nested simulation

1-nested ready simulation

ready simulation

1-nested sim. equivalence

simulation equivalence

1-nested simulation

simulation

Figure 1: The quantitative linear-time–branching-time spectrum. The nodes are the different

system distances introduced in this paper, and an edge d1 −→ d2 or d1 99K d2 indicates that

d1(s, t) ≥ d2(s, t) for all states s, t, and that d1 and d2 in general are topologically inequivalent.

2

generalizes the standard linear-time–branching-time spectrum [17, 18, 36] to
a quantitative setting, see Figure 1. Similarly to [4], our theory relies on
Ehrenfeucht-Fraïssé games and allows for a more refined analysis of systems.
More precisely, our parametrized framework forms a hierarchy of games, for each
trace distance used in its instantiation. In the quantitative setting, using games
with quantitative objectives as opposed to discrete games, effectively allows us
to obtain a continuous verdict on the relationship between systems, and hence
to detect the difference between minor and major discrepancies between systems.
We refer to [15] for a good introduction to the theory of quantitative games.

Indeed the view of this paper is that in a theory of quantitative verification, the
quantitative aspects should be treated just as much as an input to a verification
problem as the qualitative aspects are. Hence it is of limited use to develop
a theory pertaining only to some specific quantitative measures like the ones
in [2, 3, 11, 24, 33] and other papers which all treat only a few specific ways of
measuring distances; any theory of quantitative verification should work just as
well regardless of the way the engineers decide to measure differences between
system executions. We note that the framework we lay out here may be equally
instantiated with labels (or propositions) in states rather than on transitions,
hence it also generalizes the formalisms of [5, 35].

We take as input a labeled transition system and a trace distance; both
are unspecified except for some general characteristic properties. Based on this
information and using the theory of quantitative games, we lift most of the
linear-time–branching-time spectrum of van Glabbeek [36] to the quantitative
setting, while the rest may be obtained in a similar way using minor additional
conditions as described in [4]. We show that all the distinct equivalences in
van Glabbeek’s spectrum correspond to topologically inequivalent distances in
the quantitative setting.

As our framework is independent of the chosen trace distance, we are essen-
tially adding a second, quantitative, dimension to the linear-time–branching-time
spectrum. In this terminology, the first dimension is the qualitative one which con-
cerns the different linear and branching ways of specifying qualitative constraints,
and the second dimension bridges the gap between the trivial van-Glabbeek
spectrum in which everything is equivalent, and the discrete spectrum in which
everything is fragile.

We start the paper by recalling some preliminaries and fixing notation in
Section 2. Section 3 then shows that our general framework of trace distances is
applicable to a large number of system distances found in the literature [2, 3, 5–
8, 10–12, 20, 22, 24, 32, 33, 35, 37]; indeed we show in Section 8 that it generalizes
all of them.

Before this, we devote Section 4 to introducing a game with quantitative
objectives on which all the subsequent developments build, and Section 5 to
show some general properties of this game. In Section 6 we reap the fruits of our
labor and develop all of the quantitative linear-time–branching-time spectrum of
Figure 1. Section 7 then prepares for Section 8 by treating an important special
case where the trace distance in question has a certain recursive characterization.
Here we show that in this case, all distances in the spectrum can be expressed

3

as fixed points of certain functionals.
Seeing in Section 8 that all known applications of our framework are in-

stantiations of the special case of recursively defined trace distances, it is most
probable that the fixed-point characterizations of Section 7 will be the most
important part of this work, and that the game-based framework introduced and
used in the preceding sections should be seen only as a justification of Section 7.

This paper is an extended and revised version of papers which have appeared
as [13, 14]. Compared to these papers, some more background and motivation
has been added to Sections 4 and 6, Section 7 has been greatly extended, and
all proofs are included in the paper.

The authors wish to thank Claus Thrane, Kim G. Larsen and Igor Walukiewicz
for interesting and fruitful discussions on the subject, and Luca Aceto for some
insightful comments on a previous version of this paper.

2. Traces, Trace Distances, and Transition Systems

In this paper, the set ◆ of natural numbers includes 0; the set of positive
natural numbers is denoted by ◆+. For a finite non-empty sequence a =
(a0, . . . , an), we write last(a) = an and len(a) = n+ 1 for the length of a; for an
infinite sequence a we let len(a) = ∞. Concatenation of finite sequences a and
b is denoted a · b. We denote by ak = (ak, ak+1, . . .) the k-shift, and by ai the
(i+ 1)st element, of a (finite or infinite) sequence, and by ǫ the empty sequence.

We need to recall some terminology and constructions regarding distances.
A hemimetric on a set X is a function d : X ×X → ❘≥0 ∪ {∞} which satisfies
d(x, x) = 0 and d(x, y) + d(y, z) ≥ d(x, z) (the triangle inequality) for all
x, y, z ∈ X. The hemimetric is said to be symmetric if also d(x, y) = d(y, x)
for all x, y ∈ X; it is said to be separating if d(x, y) = 0 implies x = y.
The terms “pseudometric” for a symmetric hemimetric, “quasimetric” for a
separating hemimetric, and “metric” for a hemimetric which is both symmetric
and separating are also in use, but we will not use them here. The tuple (X, d)
is called a hemimetric space.

Note that our hemimetrics are extended in that they can take the value ∞.
This is convenient for several reasons, cf. [25], one of them being that it allows
for a disjoint union, or coproduct, of hemimetric spaces: the disjoint union of
(X1, d1) and (X2, d2) is the hemimetric space (X1, d1)∪+(X1, d2) = (X1∪+X2, d)
where points from different components are infinitely far away from each other,
i.e. with d defined by

d(x, y) =











d1(x, y) if x, y ∈ X1,

d2(x, y) if x, y ∈ X2,

∞ otherwise.

The product of two hemimetric spaces (X1, d1) and (X2, d2) is the hemimetric
space (X1, d1)× (X2, d2) = (X1 ×X2, d) with d given by d((x1, x2), (y1, y2)) =
max(d1(x1, y1), d2(x2, y2)).

4

The symmetrization of a hemimetric d on X is the symmetric hemimetric
d̄ : X ×X → ❘≥0 ∪ {∞} defined by d̄(x, y) = max(d(x, y), d(y, x)); this is the
smallest of all symmetric hemimetrics d′ on X for which d ≤ d′.

The topology generated by a hemimetric d on X is the same as the one
generated by its symmetrization d̄; it has as open sets all unions of open balls
B(x; r) = {y ∈ X | d̄(x, y) < r}, for x ∈ X and r > 0. Two hemimetrics d1 and
d2 on X are said to be topologically equivalent if the topologies on X generated by
d1 and d2 coincide. Topological equivalence hence preserves topological notions
such as convergence of sequences: If a sequence (xj) of points in X converges in
one hemimetric, then it also converges in the other. As a consequence, topological
equivalence of d1 and d2 implies that for all x, y ∈ X, d1(x, y) = 0 if, and only
if, d2(x, y) = 0.

Topological equivalence is the weakest of the common notions of equivalence
for metrics; it does not preserve geometric properties such as distances or angles.
We are hence mainly interested in topological equivalence as a tool for showing
negative properties; we will later prove a number of results on topological
inequivalence of hemimetrics which imply that any other reasonable metric
equivalence, such as uniform or Lipschitz equivalence, also fails for these cases.

Throughout this paper we fix a set ❑ of labels, and we let ❑∞ = ❑∗ ∪❑ω

denote the set of finite and infinite traces (i.e. sequences) in ❑. A hemimetric
dT : ❑∞×❑∞ → ❘≥0 ∪{∞} is called a trace distance if len(σ) 6= len(τ) implies
dT (σ, τ) = ∞.

A labeled transition system (LTS) is a pair (S, T) consisting of states S and
transitions T ⊆ S ×❑× S. We often write s

x
−→ t to signify that (s, x, t) ∈ T .

Given e = (s, x, t) ∈ T , we write src(e) = s, tgt(e) = t for the source and target of
e. A path in (S, T) is a finite or infinite sequence π = ((s0, x0, t0), (s1, x1, t1), . . .)
of transitions (sj , xj , tj) ∈ T which satisfy tj = sj+1 for all j. We denote by
tr(π) = (x0, x1, . . .) the trace induced by such a path π. For s ∈ S we denote by
Pa(s) the set of (finite or infinite) paths from s and by Tr(s) = {tr(π) | π ∈ Pa(s)}
the set of traces from s.

3. Examples of Trace Distances

We show here a number of trace distances with which our quantitative
framework can be instantiated. Note that each such distance gives rise to its
own linear-time–branching-time spectrum in the quantitative dimension.

Most of the trace distances one finds in the literature are defined by giving
a hemimetric d on ❑ and a method to combine the so-defined distances on
individual symbols to a distance on traces. Three general methods are used for
this combination (recall that σj denotes the (j+1)-th symbol in σ = (σ0, σ1, . . .)):

• The point-wise trace distance: PWλ(d)(σ, τ) = supj λ
jd(σj , τj);

• the accumulating trace distance: ACCλ(d)(σ, τ) =
∑

j λ
jd(σj , τj);

• The limit-average trace distance: AVG(d)(σ, τ) = lim infj
1

j+1

∑j
i=0d(σi, τi).

5

Note that the trace distances are parametrized by the label distance d : ❑×❑→
❘≥0 ∪ {∞}. Also, λ is a discounting factor with 0 < λ ≤ 1, and we assume that
the involved traces have equal length; otherwise any trace distance has value
∞. The point-wise distance thus measures the (discounted) greatest individual
symbol distance in the traces, whereas accumulating and limit-average distance
accumulate these individual distances along the traces.

If the distance on ❑ is the discrete distance given by ddisc(x, x) = 0 and
ddisc(x, y) = ∞ for x 6= y, then all trace distances above agree, for any λ. This
defines the discrete trace distance dTdisc = PWλ(ddisc) = ACCλ(ddisc) = AVG(ddisc)
given by dTdisc(σ, τ) = 0 if σ = τ and ∞ otherwise. We will show below that for
the discrete trace distance, our quantitative linear-time–branching-time spectrum
specializes to the qualitative one of [36].

If one lets d(x, x) = 0 and d(x, y) = 1 for x 6= y instead, then ACC1(d) is
Hamming distance [20] for finite traces, and ACCλ(d) with λ < 1 and AVG(d) are
two sensible ways to define Hamming distance also for infinite traces. PW1(d)
is topologically equivalent to the discrete distance; indeed, PW1(d)(σ, τ) = 1 if,
and only if, dTdisc(σ, τ) = ∞.

A generalization of the above distances may be obtained by equipping ❑
with a preorder ⊑ ⊆ ❑×❑ indicating that a label x ∈ ❑ may be replaced by
any y ∈ ❑ with x ⊑ y, as e.g. in [32]. If we define d(x, y) = 0 if x ⊑ y and
d(x, y) = ∞ otherwise (note that this is a hemimetric which is not necessarily
symmetric), then again PWλ(d) = ACCλ(d) = AVG(d) for any λ.

Point-wise and accumulating distances have been studied in a number of
papers [2, 3, 5, 11, 24, 33, 35]. PW1(d) is the point-wise distance from [5, 7, 11, 24,
33], and PWλ(d) for λ < 1 is the discounted distance from [5, 6]. Accumulating
distance ACCλ(d) has been studied in [11, 24, 33], and AVG(d) e.g. in [2, 3].
Both ACCλ(d) and AVG(d) are well-known from the theory of discounted and
mean-payoff games [10, 37].

All distances above were obtained from distances on individual symbols in
❑. A trace distance for which this is not the case is the maximum-lead distance
from [22, 33] defined for ❑ ⊆ Σ×❘, where Σ is a finite alphabet. Writing x ∈ ❑
as x = (xℓ, xw), it is given by

dT±(σ, τ) =

{

supj
∣

∣

∑j
i=0 σ

w
i −

∑j
i=0 τ

w
i

∣

∣ if σℓ
j = τ ℓj for all j,

∞ otherwise.

As this measures differences of accumulated labels along runs, it is especially
useful for real-time systems, cf. [12, 22].

As a last example of a trace distance we mention the Cantor distance given
by dTC(σ, τ) = (1 + inf{j | σj 6= τj})

−1. Cantor distance hence measures the
(inverse of the) length of the common prefix of the sequences and has been used
for verification e.g. in [8]. Both Hamming and Cantor distance have applications
in information theory and pattern matching.

We will return to our example trace distances in Section 8 to show how our
framework may be applied to yield concrete formulations of distances in the
linear-time–branching-time spectrum relative to these.

6

4. Quantitative Ehrenfeucht-Fraïssé Games

To lift the linear-time–branching-time spectrum to the quantitative setting,
we define below a quantitative Ehrenfeucht-Fraïssé game [9, 16] on a given
LTS (S, T) which is similar to the game hierarchy in [4] and the well-known
bisimulation game of [31].

The intuition of the game is as follows: The two players, with Player 1
starting the game, alternate to choose transitions, or moves, in T , starting with
transitions from given start states s and t and continuing their choices from
the targets of the transitions chosen in the previous step. At each of his turns,
Player 1 also makes a choice whether to choose a transition from the target of
his own previous choice, or from the target of his opponent’s previous choice (to
“switch paths”). We use a switch counter to keep track of how often Player 1 has
chosen to switch paths. Player 2 has then to respond with a transition from the
remaining target. This game is played for an infinite number of rounds, or until
one player runs out of choices, thus building two finite or infinite paths. The
value of the game is then the trace distance of the traces of these two paths.

We proceed to formalize the above intuition. A Player-1 configuration

of the game is a tuple (π, ρ,m) ∈ Tn × Tn × ◆, for n ∈ ◆, such that for
all i ∈ {0, . . . , n − 2}, either src(πi+1) = tgt(πi) and src(ρi+1) = tgt(ρi), or
src(πi+1) = tgt(ρi) and src(ρi+1) = tgt(πi). Similarly, a Player-2 configuration
is a tuple (π, ρ,m) ∈ Tn+1 × Tn × ◆ such that for all i ∈ {0, . . . , n − 2},
either src(πi+1) = tgt(πi) and src(ρi+1) = tgt(ρi), or src(πi+1) = tgt(ρi) and
src(ρi+1) = tgt(πi); and src(πn) = tgt(πn−1) or src(πn) = tgt(ρn−1). The set of
all Player-i configurations is denoted Confi.

Intuitively, the configuration (π, ρ,m) keeps track of the history of the game;
π stores the choices of Player 1, ρ the choices of Player 2, and m is the switch
counter. Hence π and ρ are sequences of transitions in T which can be arranged
by suitable swapping to form two paths (π̄,ρ̄). How exactly these sequences are
constructed is determined by a pair of strategies which specify for each player
which edge to play from any configuration.

A Player-1 strategy is hence a partial mapping θ1 : Conf1 → T ×◆ such that
for all (π, ρ,m) ∈ Conf1 for which θ1(π, ρ,m) = (e′,m′) is defined,

• src(e′) = tgt(last(π)) and m′ = m or m′ = m+ 1, or

• src(e′) = tgt(last(ρ)) and m′ = m+ 1.

A Player-2 strategy is a partial mapping θ2 : Conf2 → T ×◆ such that for all
(π · e, ρ,m) ∈ Conf2 for which θ2(π · e, ρ,m) = (e′,m′) is defined, m′ = m, and
src(e′) = tgt(last(ρ)) if src(e) = tgt(last(π)), src(e′) = tgt(last(π)) if src(e) =
tgt(last(ρ)). The sets of Player-1 and Player-2 strategies are denoted Θ1 and Θ2.

Note that if Player 1 chooses a transition from the end of the previous
choice of Player 2 (case src(e′) = tgt(last(ρ)) above), then the switch counter is
increased; but Player 1 may also choose to increase the switch counter without
switching paths. Player 2 does not touch the switch counter.

7

We can now define what it means to update a configuration according to
a strategy: For θ1 ∈ Θ1 and (π, ρ,m) ∈ Conf1, updθ1(π, ρ,m) is defined if
θ1(π, ρ,m) = (e′,m′) is defined, and then updθ1(π, ρ,m) = (π·e′, ρ,m′). Similarly,
for θ2 ∈ Θ2 and (π ·e, ρ,m) ∈ Conf2, updθ2(π ·e, ρ,m) is defined if θ2(π ·e, ρ,m) =
(e′,m′) is defined, and then updθ2(π · e, ρ,m) = (π · e, ρ · e′,m′).

For any pair of states (s, t) ∈ S × S, a pair of strategies (θ1, θ2) ∈ Θ1 ×Θ2

inductively determines a sequence (πj , ρj ,mj) of configurations, by

(π0, ρ0,m0) = (s, t, 0);

(π2j+1, ρ2j+1,m2j+1) =

{

undefined if updθ1(π
2j , ρ2j ,m2j) is undefined,

updθ1(π
2j , ρ2j ,m2j) otherwise;

(π2j , ρ2j ,m2j) =











undefined if updθ2(π
2j−1, ρ2j−1,m2j−1)

is undefined,
updθ2(π

2j−1, ρ2j−1,m2j−1) otherwise.

Note that indeed, we are updating configurations by alternating between the
two strategies θ1, θ2.

The configurations in this sequence satisfy πj ⊑ πj+1, ρj ⊑ ρj+1 for all j,
where ⊑ denotes prefix ordering, hence the limits π = lim

−→
πj , ρ = lim

−→
ρj exist

(as infinite paths). By our conditions on configurations, the pair (π, ρ) in turn
determines a pair (π̄, ρ̄) of paths in S, as follows:

(π̄1, ρ̄1) =

{

(π1, ρ1) if src(π1) = s

(ρ1, π1) if src(π1) = t

(π̄j , ρ̄j) =

{

(πj , ρj) if src(πj) = tgt(π̄j−1)

(ρj , πj) if src(πj) = tgt(ρ̄j−1)

The outcome of the game when played from (s, t) according to a strategy
pair (θ1, θ2) is defined to be out(θ1, θ2)(s, t) = (π̄, ρ̄), and its utility is defined by
util(θ1, θ2)(s, t) = dT (tr(out(θ1, θ2)(s, t))) = dT (tr(π̄), tr(ρ̄)).

Recall that dT is given as a parameter to the game; if we want to make
explicit the parametrization on the trace distance dT which utility depends on,
we write utildT (θ1, θ2)(s, t).

Note that util(θ1, θ2)(s, t) is defined both in case the paths π̄ and ρ̄ are finite
and in case they are infinite (the case where one is finite and the other is infinite
cannot occur). Also, if the paths are finite because θ1(π

j , ρj ,mj) was undefined
for some configuration (πj , ρj ,mj) in the sequence, then π̄ and ρ̄ have the same
length; if on the other hand the reason is that θ2(πj , ρj ,mj) was undefined, then
the paths have different length, and util(θ1, θ2)(s, t) = ∞. Hence if the game
reaches a configuration in which Player 2 has no moves available, the utility is
∞.

The objective of Player 1 in the game is to maximize utility, whereas Player 2
wants to minimize it. Hence we define the value of the game from (s, t) to be

v(s, t) = sup
θ1∈Θ1

inf
θ2∈Θ2

util(θ1, θ2)(s, t) .

8

For a given subset Θ′
1 ⊆ Θ1 we will write

v(Θ′
1)(s, t) = sup

θ1∈Θ′

1

inf
θ2∈Θ2

util(θ1, θ2)(s, t) ,

and if we need to emphasize dependency of the value on the given trace distance,
we write v(dT ,Θ′

1). The following lemma states the immediate fact that if
Player 1 has fewer strategies available, the game value decreases.

Lemma 1. For all Θ′
1 ⊆ Θ′′

1 ⊆ Θ1 and all s, t ∈ S, v(Θ′
1)(s, t) ≤ v(Θ′′

1)(s, t).

We introduce two technical conditions on strategies and on trace distances.
We say that a strategy θ1 ∈ Θ1 is uniform if it holds for all configurations
(π, ρ,m), (π, ρ′,m), (π′, ρ,m) ∈ Conf1 that whenever θ1(π, ρ,m) = (e′,m′) is
defined,

• if src(e′) = tgt(π), then also θ1(π, ρ
′,m) is defined, and

• if src(e′) = tgt(ρ), then also θ1(π
′, ρ,m) is defined.

Uniformity of strategies is used to combine paths built from different starting
states in the proof of Proposition 3 below. A subset Θ′

1 ⊆ Θ1 is uniform if all
strategies in Θ′

1 are uniform; the concrete strategy subsets we will consider in
later sections will all be uniform.

We say that a pair (Θ′
1, d

T) of a strategy subset Θ′
1 ⊆ Θ1 and a trace distance

is well-behaved if

sup
θ1∈Θ′

1

inf
θ2∈Θ2

util(θ1, θ2)(s, t) = inf
θ2∈Θ2

sup
θ1∈Θ′

1

util(θ1, θ2)(s, t)

for all s, t ∈ S. This assumption is related to determinacy of the quantitative
path-building game, asserting that each pair of states has a value. We will need
well-behavedness in our proof of Proposition 3 below; whether a pair (Θ′

1, d
T)

is well-behaved depends on both Θ′
1 and dT , and to consider any necessary

or sufficient conditions for well-behavedness for concrete strategy subsets or
concrete trace distances is beyond the scope of this paper.

However, we will later see that for the important special case where the trace
distance dT is given by a recursive characterization, cf. Section 7, another, simpler
proof may be given for Proposition 3 which does not need well-behavedness.

Remark 1. The type of games we have defined here are Blackwell games as
introduced in [1]; note however that we do not need randomized strategies, as
our games are turn-based. In [28], it is shown that all Borel Blackwell games are
determined, and that also for other aspects, the situation is similar to the one
for infinite games with qualitative objectives [27]. In particular, determinacy
for any interesting bigger class than Borel Blackwell games is not provable in
Zermelo-Fränkel set theory including the axiom of choice.

9

5. General Properties

We show here that under certain conditions, the game value is indeed a
distance, and that results concerning inequalities in the qualitative dimension
can be transfered to topological inequivalences in the quantitative setting. Say
that a Player-1 strategy θ1 ∈ Θ1 is non-switching if it holds for all (π, ρ,m) for
which θ1(π, ρ,m) = (e′,m′) is defined that m = m′, and let Θ0

1 be the set of
non-switching Player-1 strategies. We first show a lemma which shows that any
pair of traces can be generated by a non-switching strategy:

Lemma 2. For all s, t ∈ S and all σ ∈ Tr(s), τ ∈ Tr(t) there exist θ1 ∈ Θ0
1 and

θ2 ∈ Θ2 for which util(θ1, θ2)(s, t) = dT (σ, τ).

Proof. Let (π, ρ, 0) ∈ Conf1 for finite paths π, ρ with len(π) = len(ρ) = k ≥ 0
and tr(π) = σ0 . . . σk−1, tr(ρ) = τ0 . . . τk−1. If len(σ) ≥ k, then there is e =
(last(π), σk, s

′) ∈ T , and we define θ1(π, ρ, 0) = (e, 0). If also len(τ) ≥ k, then
there is e′ = (last(ρ), τk, t′) ∈ T , and we let θ2(π · e, ρ, 0) = (e′, 0).

Let (π̄, ρ̄) = out(θ1, θ2)(s, t). If both σ and τ are infinite paths, then tr(π̄) = σ

and tr(ρ̄) = τ ; otherwise, tr(π̄) and tr(ρ̄) will be finite prefixes of σ and τ for
which dT (tr(π̄), tr(ρ̄)) = dT (σ, τ). �

The following proposition shows under which conditions we can expect the
distance defined by our quantitative game to be a hemimetric. Well-behavednes
is used in the proof of the triangle inequality.

Proposition 3. If Θ′
1 ⊆ Θ1 is uniform and Θ0

1 ⊆ Θ′
1, and if (Θ′

1, d
T) is well-

behaved, then v(Θ′
1) is a hemimetric on S.

Proof. We write v = v(Θ′
1) during this proof. It is clear that v(s, s) = 0 for

all s ∈ S: if the players are making their choices from the same state, Player 2
can always answer by choosing exactly the same transition as Player 1. For
proving the triangle inequality v(s, u) ≤ v(s, t) + v(t, u), let ε > 0 and use
well-behavedness of dT to choose Player-2 strategies θ

s,t
2 , θ

t,u
2 ∈ Θ2 for which

sup
θ1∈Θ′

1

util(θ1, θ
s,t
2)(s, t) < v(s, t) + ε

2 ,

sup
θ1∈Θ′

1

util(θ1, θ
t,u
2)(t, u) < v(t, u) + ε

2 .
(1)

We define a strategy θ
s,u
2 ∈ Θ2 which uses three paths and two configurations in

S as extra memory. This is only for convenience, as these can be reconstructed

10

by Player 2 at any time; hence we do not extend the capabilities of Player 2:

θ
s,u
2 (π · e, χ,m; π̄, ρ̄′, χ̄, π′, ρ′1, ρ

′
2, χ

′) =






































































































































(

θ
t,u
2

(

ρ′2 · θ
s,t
2,1(π

′ · e, ρ′1,m), χ′,m
)

;

π̄ · e,

ρ̄′ · θs,t2,1(π
′ · e, ρ′1,m),

χ̄ · θt,u2,1

(

ρ′2 · θ
s,t
2,1(π

′ · e, ρ′1,m)
)

,

π′ · e,

ρ′1 · θ
s,t
2,1(π

′ · e, ρ′1,m),

ρ′2 · θ
s,t
2,1(π

′ · e, ρ′1,m),

χ′ · θt,u2,1

(

ρ′2 · θ
s,t
2,1(π

′ · e, ρ′1,m)
)

)

if src(e) = tgt(last(π̄)),
(

θ
s,t
2

(

π′ · θt,u2,1(ρ
′
2 · e, χ

′,m), ρ′1,m
)

;

π̄ · θs,t2,1

(

π′ · θt,u2,1(ρ
′
2 · e, χ

′,m)
)

,

ρ̄′ · θt,u2,1(ρ
′
2 · e, χ

′,m),
χ̄ · e,

π′ · θt,u2,1(ρ
′
2 · e, χ

′,m),

ρ′1 · θ
s,t
2,1

(

π′ · θt,u2,1(ρ
′
2 · e, χ

′,m)
)

ρ′2 · e,

χ′ · θt,u2,1(ρ
′
2 · e, χ

′,m)
)

if src(e) = tgt(last(χ̄)).

In the beginning of the game, all memory paths are initialized to be empty.
In the expression above, the strategy θ

s,u
2 is constructed from the strategies

θ
s,t
2 and θ

t,u
2 by using the answer to the move of Player 1 in one of the games as

an emulated Player-1 move in the other. The paths π̄, χ̄ are constructed from
the configuration (π, χ) of the (s, u)-game and are only kept in memory so that
we can see whether Player 1 is playing an edge prolonging π̄ or χ̄. The pair
(π′, ρ′1) is the configuration in the (s, t)-game we are emulating, and (ρ′2, χ

′) is
the (t, u)-configuration. The path ρ̄′ = ρ̄′1 = ρ̄′2 is common for the paths (π̄′, ρ̄′1),
(ρ̄′2, χ̄

′) constructed from (π′, ρ′1) and (ρ′2, χ
′).

If Player 1 has played an edge e prolonging π̄ (first case above), we compute
an answer move (e′,m) = θ

s,t
2 (π′ · e, ρ′1,m) to this in the (s, t)-game. This

answer is then used to emulate a Player-1 move in the (t, u)-game, and the
answer θ

t,u
2 (ρ′2 · e

′, χ′,m) to this is what Player 2 plays in the (s, u)-game. The
memory is updated accordingly. If on the other hand, Player 1 has played
an edge e prolonging χ̄, we play in the (t, u)-game first and use the answer
(e′,m) = θ

t,u
2 (ρ′2·e, χ

′,m) in the (s, t)-game to compute θs,t2 (π′·e′, ρ′1,m). Figure 2
gives an illustration of how the configurations are updated during the game;
note that uniformity of Θ′

1 is necessary for being able to emulate Player-1 moves
from one game in another.

Take now any θ
s,u
1 ∈ Θ′

1, let (π̄, χ̄) = out(θs,u1 , θ
s,u
2)(s, u), and let ρ̄′ be the

corresponding memory path. By Lemma 2 there exist θ
s,t
1 , θ

t,u
1 ∈ Θ′

1 for which
dT (tr(π̄), tr(ρ̄′)) = util(θs,t1 , θ

s,t
2)(s, t) and dT (tr(ρ̄′), tr(χ̄)) = util(θt,u1 , θ

t,u
2)(t, u).

11

s t u

π

π

π

π

χ

χ

χ

χ

π′

π′

π′

π′

ρ′1

ρ′1

ρ′1

ρ′1

ρ′2

ρ′2

ρ′2

ρ′2

χ′

χ′

χ′

χ′

Figure 2: Configuration update in the game used for showing the triangle inequality

Using Equation (1) we have

util(θs,u1 , θ
s,u
2)(s, u) = dT (tr(π̄), tr(χ̄))

≤ dT (tr(π̄), tr(ρ̄)) + dT (tr(ρ̄), tr(χ̄))

< v(s, t) + v(t, u) + ε

and hence also infθ2∈Θ2 util(θs,u1 , θ2)(s, u) < v(s, t) + v(t, u) + ε. As the choice of
θ
s,u
1 was arbitrary, this implies

sup
θ1∈Θ′

1

inf
θ2∈Θ2

util(θ1, θ2)(s, u) ≤ v(s, t) + v(t, u) + ε ,

and as also ε was chosen arbitrarily, we have v(s, u) ≤ v(s, t) + v(t, u). �

Next we show a transfer principle which allows us to generalize counterex-
amples regarding the equivalences in the qualitative linear-time–branching-time
spectrum [36] to the qualitative setting. We will make use of this principle later
to show that all distances we introduce are topologically inequivalent.

Lemma 4. Let Θ′
1,Θ

′′
1 ⊆ Θ1, and assume (Θ′

1, d
T) and (Θ′′

1 , d
T) to be well-

behaved and dT to be separating. If there exist states s, t ∈ S for which

v(dTdisc,Θ
′
1)(s, t) = 0 and v(dTdisc,Θ

′′
1)(s, t) = ∞, then v(dT ,Θ′

1) and v(dT ,Θ′′
1)

are topologically inequivalent.

Proof. By v(dTdisc,Θ
′
1)(s, t) = 0, we know that for any θ1 ∈ Θ′

1 there exists
θ2 ∈ Θ2 for which (π̄, ρ̄) = out(θ1, θ2)(s, t) satisfy tr(π̄) = tr(ρ̄), hence also
v(dT ,Θ′

1)(s, t) = 0. Conversely, and as dT is separating, v(dT ,Θ′′
1)(s, t) = 0

would imply that also v(dTdisc,Θ
′′
1)(s, t) = 0, hence we must have v(dT ,Θ′′

1)(s, t) 6=
0, entailing topological inequivalence. �

6. The Distance Spectrum

In this section we introduce the distances depicted in Figure 1 and show
their relationship. Note again that the results obtained here are independent of

12

the particular trace distance considered; in the terminology of the introduction
we are developing a linear-time–branching-time spectrum at every point of the
quantitative dimension. In order to capture the remaining relations in the
original spectrum, we may easily adopt the approach from [4] which imposes
one of three extra conditions which Player 1 may choose to invoke and thereby
terminate the game.

Throughout this section, we fix a LTS (S, T ⊆ S×❑×S) and a trace distance
dT : ❑∞ ×❑∞ → ❘≥0 ∪ {∞}.

6.1. Branching Distances

If the switching counter in the game introduced in Section 4 is unbounded,
Player 1 can choose at any move whether to prolong the previous choice or to
switch paths, hence this resembles the bisimulation game [31].

Definition 5. The bisimulation distance between s and t is dbisim(s, t) = v(s, t).

Theorem 6. For dT = dTdisc the discrete trace distance, dbisim
disc (s, t) = 0 if, and

only if, s and t are bisimilar.

Proof. By discreteness of dTdisc, we have dbisim
disc (s, t) = 0 if, and only if, it holds

that for all θ1 ∈ Θ1 there exists θ2 ∈ Θ2 for which util(θ1, θ2)(s, t) = 0. Hence
for each reachable Player-1 configuration (π, ρ,m) with θ1(π, ρ,m) = (e′,m′),
we have θ2(π · e′, ρ,m′) = (e′′,m′) with tr(e′) = tr(e′′), i.e. Player 2 matches the
labels chosen by Player 1 precisely, implying that s and t are bisimilar. The
proof of the other direction is trivial. �

We can restrict the strategies available to Player 1 by allowing only a pre-
defined finite number of switches:

Θk-sim
1 = {θ1 ∈ Θ1 | if θ1(π, ρ,m) = (e′,m′) is defined, then m′ ≤ k − 1}

In the so-defined k-nested simulation game, Player 1 is only allowed to switch
paths k − 1 times during the game. Note that Θ1-sim

1 = Θ0
1 is the set of non-

switching strategies.

Definition 7. The k-nested simulation distance from s to t, for k ∈ ◆+, is
dk-sim(s, t) = v(Θk-sim

1)(s, t). The k-nested simulation equivalence distance be-
tween s and t is dk-sim-eq(s, t) = max(v(Θk-sim

1)(s, t), v(Θk-sim
1)(t, s)).

Theorem 8. For dT = dTdisc the discrete trace distance,

• dk-sim
disc (s, t) = 0 if, and only if, there is a k-nested simulation from s to t,

• d
k-sim-eq
disc (s, t) = 0 if, and only if, there is a k-nested simulation equivalence

between s and t.

Especially, d1-simdisc corresponds to the usual simulation preorder, and d2-simdisc

to nested simulation. Similarly, d
1-sim-eq
disc is similarity, and d

2-sim-eq
disc is nested

similarity. We refer to [19, 21] for definitions and discussion of nested and
k-nested simulations.

13

Proof. This is similar to the proof of Theorem 6: If dk-sim
disc (s, t) = 0, then any

θ1 ∈ Θk-sim
1 has a counter-strategy θ2 ∈ Θ2 which matches the labels chosen by

Player 1 precisely, implying k-nested simulation from s to t. The other direction
is again trivial. �

Theorem 9. For all k, ℓ ∈ ◆+ with k < ℓ and all s, t ∈ S,

dk-sim-eq(s, t) ≤ dℓ-sim(s, t) ≤ dℓ-sim-eq(s, t) ≤ dbisim(s, t).

If the trace distance dT is separating and, together with the involved strategy

subsets, well-behaved, then all distances above are topologically inequivalent.

Proof. The first part of the theorem follows from Θk-sim-eq
1 ⊆ Θℓ-sim

1 ⊆

Θℓ-sim-eq
1 ⊆ Θ1 and Lemma 1. Topological inequivalence follows from Lemma 4

and the fact that for the discrete relations corresponding to the distances above
(obtained by letting dT = dTdisc), the inequalities are strict [36]. �

As a variation of k-nested simulation, we can consider strategies which allow
Player 1 to switch paths k times during the game, but at the last switch, he
may only pose one transition as a challenge, to which Player 2 must answer, and
then the game finishes:

Θk-rsim
1 = {θ1 ∈ Θ1 | if θ1(π, ρ,m) is defined, then m ≤ k − 1}

Hence after his kth switch, Player 1 has no more moves available, and the game
finishes after the answer move of Player 2. Again, we allow Player 1 to increase
the switch counter without actually switching paths.

Definition 10. The k-nested ready simulation distance from s to t, for k ∈ ◆+,
is dk-rsim(s, t) = v(Θk-rsim

1)(s, t). The k-nested ready simulation equivalence dis-

tance between s and t is dk-rsim-eq(s, t) = max(v(Θk-rsim
1)(s, t), v(Θk-rsim

1)(t, s)).

For the discrete case, it seems only the case k = 1 has been considered; the
proof is similar to the one of Theorem 6.

Theorem 11. For dT = dTdisc the discrete trace distance,

• d1-rsimdisc (s, t) = 0 if, and only if, there is a ready simulation from s to t,

• d
1-rsim-eq
disc (s, t) = 0 if, and only if, s and t are ready simulation equivalent.

The next theorem finishes our work on the right half of Figure 1.

Theorem 12. For all k, ℓ ∈ ◆+ with k < ℓ and all s, t ∈ S,

dk-sim(s, t) ≤ dk-rsim(s, t) ≤ dℓ-sim(s, t) ,

dk-sim-eq(s, t) ≤ dk-rsim-eq(s, t) ≤ dℓ-sim-eq(s, t) .

Additionally, dk-rsim and dk-sim-eq are incomparable, and also dk-rsim-eq and

d(k+1)-sim are incomparable. If the trace distance dT is separating and, to-

gether with the involved strategy subsets, well-behaved, then all distances above

are topologically inequivalent.

14

Proof. Like in the proof of Theorem 9, the inequalities follow from strategy
set inclusions and topological inequivalence from Lemma 4. The incomparability
results follow from the corresponding results for dTdisc and Lemma 4. �

6.2. Linear Distances

Above we have introduced the distances in the right half of the quantitative
linear-time–branching-time spectrum in Figure 1 and shown the relations claimed
in the diagram. To develop the left half, we need the notion of blind strategies.
For any subset Θ′

1 ⊆ Θ1 we define the set of blind Θ′
1-strategies by

Θ̃′
1 = {θ1 ∈ Θ′

1 | ∀π, ρ, ρ′,m : θ1(π, ρ,m) = θ1(π, ρ
′,m),

or θ1(π, ρ,m) = (e,m+ 1) and tgt(last(ρ)) 6= tgt(last(ρ′))}.

Hence in such a blind strategy, either the edge chosen by Player 1 does not
depend on the choices of Player 2, or the switch counter is increased, in which
case the Player-1 choice only depends on the target of the last choice of Player 2
(note that this dependency is necessary if Player 1 wants to switch paths).

Now we can define, for s, t ∈ S and k ∈ ◆+,

• the ∞-nested trace equivalence distance: d∞-trace-eq(s, t) = v(Θ̃1)(s, t),

• the k-nested trace distance: dk-trace(s, t) = v(Θ̃k-sim
1)(s, t),

• the k-nested trace equivalence distance:
dk-trace-eq(s, t) = max(v(Θ̃k-sim

1)(s, t), v(Θ̃k-sim
1)(t, s)),

• the k-nested ready distance: dk-ready(s, t) = v(Θ̃k-rsim
1)(s, t), and

• the k-nested ready equivalence distance:
dk-ready-eq(s, t) = max(v(Θ̃k-rsim

1)(s, t), v(Θ̃k-rsim
1)(t, s)).

Our approach is justified by the following lemma which shows that the (1-
nested) trace distance from s to t is precisely the Hausdorff distance between
the sets of traces available from s and t, respectively.

Lemma 13. For s, t ∈ S, d1-trace(s, t) = supσ∈Tr(s) infτ∈Tr(t) d
T (σ, τ).

Proof. We have d1-trace(s, t) = v(Θ̃0
1)(s, t), with Θ̃0

1 = {θ1 ∈ Θ0
1 | ∀π, ρ, ρ′,m :

θ1(π, ρ,m) = θ1(π, ρ
′,m)}. Hence, and as strategies in Θ0

1 are non-switching,
every strategy θ1 ∈ Θ̃0

1 gives rise to precisely one trace σ = σ(θ1) ∈ Tr(s)
independently of Player-2 strategy θ2 ∈ Θ2. Conversely, by Lemma 2 (noticing
that indeed, we have constructed a blind Player-1 strategy in the proof of that
lemma), every trace σ ∈ Tr(s) is generated by a strategy θ1 ∈ Θ̃0

1 with σ = σ(θ1).
We can finish the proof by showing that for all θ1 ∈ Θ̃0

1,

inf
θ2∈Θ2

dT (σ(θ1), tr(ρ̄(θ1, θ2))) = inf
τ∈Tr(t)

dT (σ(θ1), τ) .

But again using Lemma 2, we see that any τ ∈ Tr(t) is generated by a strategy
θ2 ∈ Θ2, hence this is clear. �

15

Using the discrete trace distance, we recover the following standard rela-
tions [36]. The theorem follows by Lemma 13 and arguments similar to the ones
used in the proofs of the corresponding theorems in the preceding section. We
refer to [21, 29] for definitions and discussion of possible-futures inclusion and
equivalence.

Theorem 14. For dT = dTdisc the discrete trace distance and s, t ∈ S we have

• d1-tracedisc (s, t) = 0 if, and only if, there is a trace inclusion from s to t,

• d
1-trace-eq
disc (s, t) = 0 if, and only if, s and t are trace equivalent,

• d2-tracedisc (s, t) = 0 if, and only if, there is a possible-futures inclusion from s

to t,

• d
2-trace-eq
disc (s, t) = 0 if, and only if, s and t are possible-futures equivalent,

• d
1-ready
disc (s, t) = 0 if, and only if, there is a readiness inclusion from s to t,

• d
1-ready-eq
disc (s, t) = 0 if, and only if, s and t are ready equivalent.

The following theorem entails all relations in the left side of Figure 1; the
right-to-left arrows follow from the strategy set inclusions Θ̃′

1 ⊆ Θ′
1 for any

Θ′
1 ⊆ Θ1 and Lemma 1. As with Theorems 9 and 12, the theorem follows

by strategy set inclusion, Lemma 4, and corresponding results for the discrete
relations.

Theorem 15. For all k, ℓ ∈ ◆+ with k < ℓ and s, t ∈ S,

dk-trace-eq(s, t) ≤ dℓ-trace(s, t) ≤ dℓ-trace-eq(s, t) ≤ d∞-trace-eq(s, t),

dk-trace(s, t) ≤ dk-ready(s, t) ≤ dℓ-trace(s, t),

dk-trace-eq(s, t) ≤ dk-ready-eq(s, t) ≤ dℓ-trace-eq(s, t).

Additionally, dk-ready and dk-trace-eq are incomparable, and also dk-ready-eq and

d(k+1)-trace are incomparable. If the trace distance dT is separating and, together

with the involved strategy subsets, well-behaved, then all distances above are

topologically inequivalent.

7. Recursive Characterizations

We now turn our attention to an important special case in which the given
trace distance has a specific recursive characterization; we show that in this
case, all distances in the spectrum can be characterized as least fixed points. We
will see in Section 8 that this can be applied to all examples of trace distances
mentioned in Section 3.

Note that all theorems require the LTS in question to be finitely branching;
this is a standard assumption which goes back to [31]. In most cases it may be
relaxed to compact branching in the sense of [34], but to keep things simple, we
do not do this here.

16

7.1. Fixed-Point Characterizations

Let L be a complete lattice with order ⊑ and bottom and top elements ⊥,
⊤. Let f : ❑∞ ×❑∞ → L, g : L → ❘≥0 ∪ {∞}, F : ❑×❑× L → L such that
dT = g ◦ f , g is monotone, F (x, y, ·) : L → L is monotone for all x, y ∈ ❑, and

f(σ, τ) =











F (σ0, τ0, f(σ
1, τ1)) if σ, τ 6= ǫ,

⊤ if σ = ǫ, τ 6= ǫ or σ 6= ǫ, τ = ǫ,

⊥ if σ = τ = ǫ

(2)

for all σ, τ ∈ ❑∞.
We hence assume that dT has a recursive characterization (using F) on top of

an arbitrary lattice L which we introduce between ❑∞ and ❘≥0 ∪ {∞} to serve
as a memory. Below we will work with different endofunctions I on the set of
mappings (◆+ ∪ {∞})× {1, 2} → LS×S which are parametrized by the number
m of switches in ◆+ ∪{∞} which Player 1 has left, and a value p ∈ {1, 2} which
keeps track of whether Player 1 currently is building the left or the right path.

Theorem 16. The endofunction I on (◆+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =











































































max











sup
s

x
−→s′

inf
t

y
−→t′

F (x, y, hm,1(s
′, t′))

sup
t

y
−→t′

inf
s

x
−→s′

F (x, y, hm−1,2(s
′, t′))

if m ≥ 2, p = 1

sup
s

x
−→s′

inf
t

y
−→t′

F (x, y, hm,1(s
′, t′)) if m = 1, p = 1

max











sup
t

y
−→t′

inf
s

x
−→s′

F (x, y, hm,2(s
′, t′))

sup
s

x
−→s′

inf
t

y
−→t′

F (x, y, hm−1,1(s
′, t′))

if m ≥ 2, p = 2

sup
t

y
−→t′

inf
st

x
−→s′

F (x, y, hm,2(s
′, t′)) if m = 1, p = 2

has a least fixed point h∗ : (◆+ ∪ {∞})× {1, 2} → LS×S, and if the LTS (S, T)
is finitely branching, then dk-sim = g ◦ h∗

k,1, d
k-sim-eq = g ◦max(h∗

k,1, h
∗
k,2) for all

k ∈ ◆+ ∪ {∞}.

Hence I iterates the function h over the branching structure of (S, T), com-
puting all nested branching distances at the same time. Note the specialization
of this to simulation and bisimulation distance, where we have the following
fixed-point equations, using h∗

1,1 = h1-sim and h∗
∞,1 = hbisim:

h1-sim(s, t) = sup
s

x
−→s′

inf
t

y
−→t′

F (x, y, h1-sim(s′, t′))

hbisim(s, t) = max











sup
s

x
−→s′

inf
t

y
−→t′

F (x, y, hbisim(s′, t′))

sup
t

y
−→t′

inf
s

x
−→s′

F (x, y, hbisim(s′, t′))

17

Proof. The lattice of mappings (◆+∪{∞})×{1, 2} → LS×S with the point-wise
partial order is complete, and I is monotone because F is, so by Tarski’s fixed-
point theorem, I has indeed a least fixed point h∗. To show that dk-sim = g ◦h∗

k,1

for all k, we pull back dk-sim along g: Define w : (◆+ ∪ {∞})× {1, 2} → LS×S

by

wk,1(s, t) = sup
θ1∈Θk-sim

1

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(s, t)))

wk,2(s, t) = sup
θ1∈Θk-sim

1

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(t, s)))

then dk-sim = g ◦ f(k, 1) for all k by monotonicity of g. We will be done once we
can show that w = h∗.

We first show that w is a fixed point for I. Let s, t ∈ S, then (assuming
k ≥ 2)

I(wk,1)(s, t) = max











sup
s

x
−→s′

inf
t

y
−→t′

F (x, y, wk,1(s
′, t′))

sup
t

y
−→t′

inf
s

x
−→s′

F (x, y, wk−1,2(s
′, t′))

= max















sup
s

x
−→s′

inf
t

y
−→t′

F (x, y, sup
θ1∈Θk-sim

1

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(s
′, t′))))

sup
t

y
−→t′

inf
s

x
−→s′

F (x, y, sup
θ1∈Θ

(k−1)-sim
1

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(t
′, s′))))

= max















sup
s

x
−→s′

inf
t

y
−→t′

sup
θ1∈Θk-sim

1

inf
θ2∈Θ2

F (x, y, f(tr(out(θ1, θ2)(s
′, t′))))

sup
t

y
−→t′

inf
s

x
−→s′

sup
θ1∈Θ

(k−1)-sim
1

inf
θ2∈Θ2

F (x, y, f(tr(out(θ1, θ2)(t
′, s′))))

= max



























sup
s

x
−→s′

inf
t

y
−→t′

sup
θ1∈Θk-sim

1

inf
θ2∈Θ2

f(x · tr(out1(θ1, θ2)(s
′, t′)), y · tr(out2(θ1, θ2)(s

′, t′)))
sup
t

y
−→t′

inf
s

x
−→s′

sup
θ1∈Θ

(k−1)-sim
1

inf
θ2∈Θ2

f(x · tr(out1(θ1, θ2)(t
′, s′)), y · tr(out2(θ1, θ2)(t

′, s′))) ,

the next-to-last step by monotonicity of F . Now the choices of t
y

−→ t′ and
θ1 ∈ Θk-sim

1 do not depend on each other, so the corresponding inf and sup can

18

be exchanged, whence

I(wk,1)(s, t) = max



























sup
s

x
−→s′

sup
θ1∈Θk-sim

1

inf
t

y
−→t′

inf
θ2∈Θ2

f(x · tr(out1(θ1, θ2)(s
′, t′)), y · tr(out2(θ1, θ2)(s

′, t′)))
sup
t

y
−→t′

sup
θ1∈Θ

(k−1)-sim
1

inf
s

x
−→s′

inf
θ2∈Θ2

f(x · tr(out1(θ1, θ2)(t
′, s′)), y · tr(out2(θ1, θ2)(t

′, s′)))

= max















sup
θ1∈Θk-sim

1,ns

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(s, t)))

sup
θ1∈Θk-sim

1,s

inf
θ2∈Θ2

f(tr(out(θ1, θ2)(s, t)))

= wk,1(s, t).

In the last max expression, Θk-sim
1,ns ⊆ Θk-sim

1 is the subset of Player-1 strate-
gies θ1 which do not switch from the configuration (s, t, 0), i.e. for which
src(θ1,1(s, t, 0)) = s, and Θk-sim

1,s = Θk-sim
1 \ Θk-sim

1,ns consists of the strategies
which do switch from (s, t, 0). The other cases in the definition of I — I(w1,1),
I(w1,2), and I(wk,2) for k ≥ 2 — can be shown similarly, and we can conclude
that I(wk,p) = wk,p for all k ∈ ◆+ ∪ {∞}, p ∈ {1, 2}.

To show that w is the least fixed point for I, let h̄ : (◆+ ∪ {∞})× {1, 2} →
LS×S be such that I(h̄) = h̄. We prove that w ≤ h̄, and again we show only the
case wk,1 ≤ h̄k,1 for k ≥ 2. Note first that as the LTS (S, T) is finitely branching,
we can use the equation for I(h̄k,1)(s, t) to conclude that for all s, t ∈ S,

for any s
x

−→ s′ there is t
y

−→ t′ such that F (x, y, h̄k,1(s
′, t′)) ≤ I(h̄k,1)(s, t),

(3)

for any t
y

−→ t′ there is s
x

−→ s′ such that F (x, y, h̄k−1,2(s
′, t′)) ≤ I(h̄k,1)(s, t).

(4)

Now let θ1 ∈ Θk-sim
1 ; the proof will be finished once we can find θ2 ∈ Θ2 for

which f(tr(out(θ1, θ2)(s, t))) ≤ h̄k,1(s, t). Let (π · e, ρ,m) ∈ Conf2 and write s =
tgt(last(π)), t = tgt(last(ρ)). Assume first that e = (s, x, s′), let t = tgt(last(ρ))
and e = (t, y, t′) an edge which satisfies the inequality of Equation (3), and
define θ2(π · e, ρ,m) = (e′,m). For the so-defined Player-2 strategy θ2 we have
f(tr(out(θ1, θ2)(s, t))) ≤ sup

s
x

−→s′
inf

t
y

−→t′
F (x, y, h̄k,1(s

′, t′)) ≤ I(h̄k,1)(s, t) =

h̄k,1(s, t) for all s, t ∈ S. The case e = (t, y, t′) is shown similarly, using
Equation (4) instead. �

The fixed-point characterization for the ready simulation distances is similar
(and so is its proof, which we hence omit):

19

Theorem 17. The endofunction I on (◆+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =







































































































max











sup
s

x
−→s′

inf
t

y
−→t′

F (x, y, hm,1(s
′, t′))

sup
t

y
−→t′

inf
s

x
−→s′

F (x, y, hm−1,2(s
′, t′))

if m ≥ 2, p = 1

max











sup
s

x
−→s′

inf
t

y
−→t′

F (x, y, hm,1(s
′, t′))

sup
t

y
−→t′

inf
s

x
−→s′

f(x, y)
if m = 1, p = 1

max











sup
t

y
−→t′

inf
s

x
−→s′

F (x, y, hm,2(s
′, t′))

sup
s

x
−→s′

inf
t

y
−→t′

F (x, y, hm−1,1(s
′, t′))

if m ≥ 2, p = 2

max











sup
t

y
−→t′

inf
st

x
−→s′

F (x, y, hm,2(s
′, t′))

sup
s

x
−→s′

inf
t

y
−→t′

f(x, y)
if m = 1, p = 2

has a least fixed point h∗ : (◆+ ∪ {∞})× {1, 2} → LS×S, and if the LTS (S, T)
is finitely branching, then dk-rsim = g ◦ h∗

k,1, d
k-rsim-eq = g ◦max(h∗

k,1, h
∗
k,2) for

all k ∈ ◆+ ∪ {∞}.

For the linear distances, we extend F to a function ❑n ×❑n × L → L, for
n ∈ ◆, by

F (ǫ, ǫ, α) = α, F (x · σ, y · τ, α) = F (x, y, F (σ, τ, α)).

We also extend the x
−→ relation to finite traces so we can write s

σ
−→ s′ below,

by letting s
ǫ

−→ s for all s ∈ S and s
x·σ
−→ s′ if, and only if, s x

−→ s′′
σ

−→ s′ for
some s′′ ∈ S. We write s

σ
−→ if there is a (finite or infinite) trace σ from s. The

proofs of the below theorems are similar to the one of Theorem 16.

Theorem 18. The endofunction I on (◆+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =







































































































max



























sup
s

σ
−→

inf
t

τ
−→

f(σ, τ)

sup
s

σ
−→s′

inf
t

τ
−→t′

F (σ, τ, hm−1,1(s
′, t′))

sup
s

σ
−→s′

inf
t

τ
−→t′

F (σ, τ, hm−1,2(s
′, t′))

if m ≥ 2, p = 1

sup
s

σ
−→

inf
t

τ
−→

f(σ, τ) if m = 1, p = 1

max



























sup
t

τ
−→

inf
s

σ
−→

f(σ, τ)

sup
t

τ
−→t′

inf
s

σ
−→s′

F (σ, τ, hm−1,2(s
′, t′))

sup
t

τ
−→t′

inf
s

σ
−→s′

F (σ, τ, hm−1,1(s
′, t′))

if m ≥ 2, p = 2

sup
t

τ
−→

inf
s

σ
−→

f(σ, τ) if m = 1, p = 2

20

has a least fixed point h∗ : (◆+ ∪ {∞})× {1, 2} → LS×S, and if the LTS (S, T)
is finitely branching, then dk-trace = g ◦ h∗

k,1, d
k-trace-eq = g ◦max(h∗

k,1, h
∗
k,2) for

all k ∈ ◆+ ∪ {∞}.

Theorem 19. The endofunction I on (◆+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =



































































































































































max



























sup
s

σ
−→

inf
t

τ
−→

f(σ, τ)

sup
s

σ
−→s′

inf
t

τ
−→t′

F (σ, τ, hm−1,1(s
′, t′))

sup
s

σ
−→s′

inf
t

τ
−→t′

F (σ, τ, hm−1,2(s
′, t′))

if m ≥ 2, p = 1

max



























sup
s

σ
−→

inf
t

τ
−→

f(σ, τ)

sup
s

σ
−→s′

inf
t

τ
−→t′

sup
s′

x
−→s′′

inf
t′

y
−→t′′

f(σ · x, τ · y)

sup
s

σ
−→s′

inf
t

τ
−→t′

sup
t′

y
−→t′′

inf
s′

x
−→s′′

f(σ · x, τ · y)

if m = 1, p = 1

max



























sup
t

τ
−→

inf
s

σ
−→

f(σ, τ)

sup
t

τ
−→t′

inf
s

σ
−→s′

F (σ, τ, hm−1,2(s
′, t′))

sup
t

τ
−→t′

inf
s

σ
−→s′

F (σ, τ, hm−1,1(s
′, t′))

if m ≥ 2, p = 2

max



























sup
t

τ
−→

inf
s

σ
−→

f(σ, τ)

sup
t

τ
−→t′

inf
s

σ
−→s′

sup
t′

y
−→t′′

inf
s′

x
−→s′′

f(σ · x, τ · y)

sup
t

τ
−→t′

inf
s

σ
−→s′

sup
s′

x
−→s′′

inf
t′

y
−→t′′

f(σ · x, τ · y)

if m = 1, p = 2

has a least fixed point h∗ : (◆+ ∪ {∞})× {1, 2} → LS×S, and if the LTS (S, T)
is finitely branching, then dk-ready = g ◦ h∗

k,1, d
k-ready-eq = g ◦max(h∗

k,1, h
∗
k,2) for

all k ∈ ◆+ ∪ {∞}.

The fixed-point characterizations above have two important consequences.
For the first, Proposition 3 easily follows by induction for distances with a
fixed-point characterization, which means that the condition of well-behavedness
is not needed to show the triangle inequality.

For the second, the fixed-point characterization immediately lead to iterative
semi-algorithms for computing the respective distances: to compute e.g. simu-
lation distance, we can initialize h1-sim(s, t) = 0 for all states s, t ∈ S and then
iteratively apply the above equality. This assumes the LTS (S, T) to be finitely
branching and uses Kleene’s fixed-point theorem and continuity of F . However,
this computation is only guaranteed to converge to simulation distance in finitely
many steps in case the lattice LS×S is finite; otherwise, the procedure might not
terminate.

21

7.2. Relation Families

Below we show that both simulation and bisimulation distance admit a
relational characterization akin to the one of the standard Boolean notions.
Using switching counters like we did in the previous section, this can easily be
generalized to give relational characterizations to all distances in this paper.

Theorem 20. If the LTS (S, T) is finitely branching, then d1-sim(s, t) ≤ ε if,

and only if, there exists a relation family R = {Rα ⊆ S × S | α ∈ L} for which

(s, t) ∈ Rβ ∈ R for some β with g(β) ≤ ε, and such that for any α ∈ L and for

all (s′, t′) ∈ Rα ∈ R,

• for all s′
x

−→ s′′, there exists t′
y

−→ t′′ such that (s′′, t′′) ∈ Rα′ ∈ R for

some α′ ∈ L with F (x, y, α′) ⊑ α.

Similarly, dbisim(s, t) ≤ ε if, and only if, there exists a relation family R =
{Rα ⊆ S × S | α ∈ L} for which (s, t) ∈ Rβ ∈ R for some β with g(β) ≤ ε, and

such that for any α ∈ L and for all (s′, t′) ∈ Rα ∈ R,

• for all s′
x

−→ s′′, there exists t′
y

−→ t′′ such that (s′′, t′′) ∈ Rα′ ∈ R for

some α′ ∈ L with F (x, y, α′) ⊑ α;

• for all t′
y

−→ t′′, there exists s′
x

−→ s′′ such that (s′′, t′′) ∈ Rα′ ∈ R for

some α′ ∈ L with F (x, y, α′) ⊑ α.

Proof. We only show the proof for simulation distance; for bisimulation distance
it is analogous. Assume first that d1-sim(s, t) ≤ ε, then we have h : S × S →
L for which g(h(s, t)) ≤ ε and h(s′, t′) = sup

s
x

−→s′
inf

t
y

−→t′
F (x, y, h(s′′, t′′))

for all s′, t′ ∈ S. Let β = h(s, t), and define a relation family R = {Rα |
α ∈ L} by Rα = {(s′, t′) | h(s′, t′) ⊑ α}. Let α ∈ L and (s′, t′) ∈ Rα,
then sup

s
x

−→s′
inf

t
y

−→t′
F (x, y, h(s′′, t′′)) = h(s′, t′) ⊑ α, and as (S, T) is finitely

branching, this implies that for all s′ x
−→ s′′ there is t′

y
−→ t′′ and α′ = h(s′′, t′′)

such that (s′′, t′′) ∈ Rα′ and F (x, y, α′) ⊑ α.
For the other direction, assume a relation family as in the theorem and

define h : S × S → L by h(s′, t′) = inf{α | (s′, t′ ∈ Rα}. Then (s, t) ∈
Rβ implies that h(s, t) ⊑ β and hence g(h(s, t)) ≤ ε. Let s′, t′ ∈ S, then
(s′, t′) ∈ Rh(s′,t′), hence for all s′

x
−→ s′′ there is t′

y
−→ t′′ and α′ ∈ L for

which F (x, y, α′) ⊑ h(s′, t′) and (s′′, t′′) ∈ Rα′ , implying h(s′′, t′′) ⊑ α′ and
hence F (x, y, h(s′′, t′′)) ⊑ h(s′, t′). Collecting the pieces, we get I(h)(s′, t′) =
sup

s′
x

−→s′′
inf

t′
y

−→t′′
F (x, y, h(s′′, t′′)) ⊑ h(s′, t′), hence h is a pre-fixed point for

I. But then h∗ ⊑ h, hence d1-sim(s, t) = g(h∗(s, t)) ≤ g(h(s, t)) ≤ ε. �

8. Recursive Characterizations for Example Distances

We show that the considerations in Section 7 apply to all the example
distances we have introduced in Section 3. We apply Theorem 16 to derive
fixed-point formulas for corresponding simulation distances, but of course all

22

other distances in the quantitative linear-time–branching-time spectrum have
similar characterizations.

Let d be a hemimetric on ❑, then for all σ, τ ∈ ❑∞ and 0 < λ ≤ 1,

PWλ(d)(σ, τ) =



















max(d(σ0, τ0), λPWλ(d)(σ
1, τ1))

if σ, τ 6= ǫ,

∞ if σ = ǫ, τ 6= ǫ or σ 6= ǫ, τ = ǫ,

0 if σ = τ = ǫ,

ACCλ(d)(σ, τ) =



















d(σ0, τ0) + λACCλ(d)(σ
1, τ1))

if σ, τ 6= ǫ,

∞ if σ = ǫ, τ 6= ǫ or σ 6= ǫ, τ = ǫ,

0 if σ = τ = ǫ,

hence we can apply the iteration theorems with lattice L = ❘≥0 ∪ {∞}, g = id
the identity function, and the recursion function F given like the formulas above.
Using Theorem 16 we can e.g. derive the following fixed-point expressions for
simulation distance:

PWλ(d)
1-sim(s, t) = sup

s
x

−→s′

inf
t

y
−→t′

max(d(x, y), λPWλ(d)
1-sim(s′, t′))

ACCλ(d)
1-sim(s, t) = sup

s
x

−→s′

inf
t

y
−→t′

(d(x, y) + λACCλ(d)
1-sim(s′, t′))

Incidentally, these are exactly the expressions introduced in [5, 11, 33].
Also note that if S is finite with |S| = n, then undiscounted point-wise dis-

tance PW1(d) can only take on the finitely many values {d(x, y) | (s, x, s′), (t, y, t′) ∈
T}, hence the fixed-point algorithm given by Kleene’s theorem converges in at
most n2 steps. This algorithm is used in [5, 7, 24]. For undiscounted accu-
mulating distance ACC1(d), it can be shown [24] that with D = max{d(x, y) |
(s, x, s′), (t, y, t′) ∈ T}, distance is either infinite or bounded above by 2n2D,
hence the ACC1(d) algorithm either converges in at most 2n2D steps or diverges.

For the limit-average distance AVG(d), we let L = (❘≥0 ∪ {∞})◆, g(h) =
lim infj h(j), and f(σ, τ)(j) = 1

j+1

∑j
i=0 d(σi, τi) the j-th average. The intuition

is that L is used for “remembering” how long in the traces we have progressed
with the computation. With F given by F (x, y, h)(n) = 1

n+1d(x, y)+
n

n+1h(n−1)
it can be shown that (2) holds, giving the following fixed-point expression for
limit-average simulation distance (which to the best of our knowledge is new):

h1-sim
n (s, t) = sup

s
x

−→s′

inf
t

y
−→t′

(

1
n+1d(x, y) +

n
n+1h

1-sim
n−1 (s′, t′)

)

For the maximum-lead distance, we let L = (❘≥0 ∪ {∞})❘, the lattice of
mappings from leads to maximum leads. Using the notation from Section 3,
we let g(h) = h(0) and f(σ, τ)(δ) = max(|δ|, supj |δ +

∑j
i=0 σ

w
i −

∑j
i=0 τ

w
j |) the

maximum-lead distance between σ and τ assuming that σ already has a lead of

23

δ over τ . With F (x, y, h)(δ) = max(|δ + x − y|, h(δ + x − y)) it can be shown
that (2) holds, and then the fixed-point expression for maximum-lead simulation
distance becomes the one given in [22]:

h1-sim(δ)(s, t) = sup
s

x
−→s′

inf
t

y
−→t′

max(|δ + x− y|, h1-sim(s′, t′)(δ + x− y))

Again it can be shown [22] that for S finite with |S| = n and D = max{d(x, y) |
(s, x, s′), (t, y, t′) ∈ T}, the iterative algorithm for computing maximum-lead
distance either converges in at most 2n2D steps or diverges.

Regarding Cantor distance, a useful recursive formulation is

f(σ, τ)(n) =

{

f(σ1, τ1)(n+ 1) if σ0 = τ0,

n otherwise,

which iteratively counts the number of matching symbols in σ and τ . Here we
use L = (❘≥0 ∪ {∞})◆, and g(h) = 1

h(0) ; note that the order on L has to be
reversed for g to be monotone. The fixed-point expression for Cantor simulation
distance becomes

h1-sim
n (s, t) = max(n, sup

s
x

−→s′

inf
t

x
−→t′

h1-sim
n+1 (s′, t′))

but as the order on L is reversed, the sup now means that Player 1 is trying
to minimize this expression, and Player 2 tries to maximize it. Hence Player 2
tries to find maximal matching subtrees; the corresponding Cantor simulation
equivalence distance between s and t hence is the inverse of the maximum depth
of matching subtrees under s and t. The Cantor bisimulation distance in turn is
the same as the inverse of bisimulation depth.

References

[1] David Blackwell. Infinite Gδ games with imperfect information. Zastosowa-

nia Matematyki, 10:99–101, 1969.

[2] Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna. Simulation
distances. Theoretical Computer Science, 413(1):21–35, 2012.

[3] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quanti-
tative languages. ACM Transactions on Computational Logic, 11(4), 2010.

[4] Xin Chen and Yuxin Deng. Game characterizations of process equiva-
lences. In G. Ramalingam, editor, APLAS, volume 5356 of Lecture Notes

in Computer Science, pages 107–121. Springer-Verlag, 2008.

[5] Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching
system metrics. IEEE Transactions on Software Engineering, 35(2):258–273,
2009.

24

[6] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Discounting
the future in systems theory. In Jos C. M. Baeten, Jan Karel Lenstra,
Joachim Parrow, and Gerhard J. Woeginger, editors, ICALP, volume 2719
of Lecture Notes in Computer Science, pages 1022–1037. Springer-Verlag,
2003.

[7] Josée Desharnais, François Laviolette, and Mathieu Tracol. Approximate
analysis of probabilistic processes. In QEST, pages 264–273. IEEE Computer
Society, 2008.

[8] Laurent Doyen, Thomas A. Henzinger, Axel Legay, and Dejan Ničković.
Robustness of sequential circuits. In Luís Gomes, Victor Khomenko, and
João M. Fernandes, editors, ACSD, pages 77–84. IEEE Computer Society,
2010.

[9] Andrzej Ehrenfeucht. An application of games to the completeness problem
for formalized theories. Fundamenta Mathematicae, 49:129–141, 1961.

[10] Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean
payoff games. International Journal of Game Theory, 8:109–113, 1979.

[11] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. A quantitative charac-
terization of weighted Kripke structures in temporal logic. Computing and

Informatics, 29(6+):1311–1324, 2010.

[12] Uli Fahrenberg and Axel Legay. A robust specification theory for modal
event-clock automata. In Sebastian S. Bauer and Jean-Baptiste Raclet,
editors, FIT, volume 87 of Electronic Proceedings in Theoretical Computer

Science, pages 5–16, 2012.

[13] Uli Fahrenberg, Axel Legay, and Claus R. Thrane. The quantitative linear-
time–branching-time spectrum. In Supratik Chakraborty and Amit Kumar,
editors, FSTTCS, volume 13 of LIPIcs, pages 103–114. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2011.

[14] Uli Fahrenberg, Claus Thrane, and Kim G. Larsen. Distances for weighted
transition systems: Games and properties. In Mieke Massink and Gethin
Norman, editors, QAPL, volume 57 of Electronic Proceedings in Theoretical

Computer Science, pages 134–147, 2011.

[15] Thomas S. Ferguson. Game theory. http://www.math.ucla.edu/~tom/

Game_Theory/Contents.html.

[16] Roland Fraïssé. Sur quelques classifications des systèmes de relations.
Publications Scientifiques de l’Université d’Alger, Série A, 1:35–182, 1954.

[17] David de Frutos Escrig and Carlos Gregorio Rodríguez. (Bi)simulations up-to
characterise process semantics. Information and Computation, 207(2):146–
170, 2009.

25

[18] David de Frutos Escrig, Carlos Gregorio Rodríguez, and Miguel Palomino.
On the unification of process semantics: Equational semantics. In MFPS,
volume 249 of Electronic Notes in Theoretical Computer Science, pages
243–267. Elsevier, 2009.

[19] Jan Friso Groote and Frits W. Vaandrager. Structured operational semantics
and bisimulation as a congruence. Inf. Comput., 100(2):202–260, 1992.

[20] Richard W. Hamming. Error detecting and error correcting codes. Bell

System Technical Journal, 29:147–160, 1950.

[21] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism
and concurrency. J. ACM, 32(1):137–161, 1985.

[22] Thomas A. Henzinger, Rupak Majumdar, and Vinayak Prabhu. Quantifying
similarities between timed systems. In Paul Pettersson and Wang Yi, editors,
FORMATS, volume 3829 of Lecture Notes in Computer Science, pages 226–
241. Springer-Verlag, 2005.

[23] Thomas A. Henzinger and Joseph Sifakis. The embedded systems design
challenge. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors,
FM, volume 4085 of Lecture Notes in Computer Science, pages 1–15. Springer-
Verlag, 2006.

[24] Kim G. Larsen, Uli Fahrenberg, and Claus Thrane. Metrics for weighted
transition systems: Axiomatization and complexity. Theoretical Computer

Science, 412(28):3358–3369, 2011.

[25] F. William Lawvere. Metric spaces, generalized logic, and closed categories.
Rendiconti del seminario matématico e fisico di Milano, XLIII:135–166,
1973.

[26] Edward A. Lee. Absolutely positively on time: What would it take? IEEE

Computer, 38(7):85–87, 2005.

[27] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–
371, 1975.

[28] Donald A. Martin. The determinacy of Blackwell games. Journal of Symbolic

Logic, 63(4):1565–1581, 1998.

[29] William C. Rounds and Stephen D. Brookes. Possible futures, acceptances,
refusals, and communicating processes. In FOCS, pages 140–149. IEEE
Computer Society, 1981.

[30] John A. Stankovic, Insup Lee, Aloysius K. Mok, and Raj Rajkumar. Oppor-
tunities and obligations for physical computing systems. IEEE Computer,
38(11):23–31, 2005.

26

[31] Colin Stirling. Modal and temporal logics for processes. In Faron Moller
and Graham M. Birtwistle, editors, Banff Higher Order Workshop, volume
1043 of Lecture Notes in Computer Science, pages 149–237. Springer-Verlag,
1995.

[32] Bent Thomsen. An extended bisimulation induced by a preorder on actions.
Master’s thesis, Aalborg University Centre, 1987.

[33] Claus Thrane, Uli Fahrenberg, and Kim G. Larsen. Quantitative analysis of
weighted transition systems. Journal of Logic and Algebraic Programming,
79(7):689–703, 2010.

[34] Franck van Breugel. A theory of metric labelled transition systems. Annals

of the New York Academy of Sciences, 806(1):69–87, 1996.

[35] Franck van Breugel. A behavioural pseudometric for metric labelled tran-
sition systems. In Martín Abadi and Luca de Alfaro, editors, CONCUR,
volume 3653 of Lecture Notes in Computer Science, pages 141–155. Springer-
Verlag, 2005.

[36] Rob J. van Glabbeek. The linear time – branching time spectrum I. In
Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors, Handbook of

Process Algebra, Chapter 1, pages 3–99. Elsevier, 2001.

[37] Uri Zwick and Mike Paterson. The complexity of mean payoff games. In
Ding-Zhu Du and Ming Li, editors, COCOON, volume 959 of Lecture Notes

in Computer Science, pages 1–10. Springer-Verlag, 1995.

27

