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Abstract

This paper presents a set of experimental results concerning the sliding mode control of an

electro-pneumatic system. The controller is implemented via a micro-processor as a discrete-

time input. Three discrete-time control strategies are considered for the implementation of

the discontinuous part of the sliding mode controller: explicit discretizations with and without

saturation, and an implicit discretization (that is very easy to implement with a projection on the

interval [−1, 1]). While the explicit implementation is known to generate numerical chattering,

the implicit one is expected to significantly reduce chattering while keeping the accuracy. The

experimental results reported in this work remarkably confirm that the implicit discrete-time

sliding mode supersedes the explicit ones, with several important features: chattering in the

control input is almost eliminated (while the explicit and saturated controllers behave like high-

frequency bang-bang inputs), the input magnitude depends only on the perturbation size and

is independent of the controller gain and sampling time. On the contrary the explicit controller

shows obvious chattering for all sampling times, its magnitude increases as the controller gain
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increases, and it does not reduce when the sampling period augments. The tracking errors are

comparable for both methods, though the implicit method keeps the precision when the control

gain increases, which is not the case for the explicit one. Introducing a saturation in the explicit

controller does not allow to significantly improve the explicit controller behaviour.

Keywords: sliding mode, set-valued controller, discrete-time, experiment, robust control, chat-

tering.

1 Introduction

Sliding-mode control has very attractive features like robustness and simplicity of implementation,

with few gains to tune. Its main drawback is the existence of the so-called chattering phenomenon,

which may be due to actuators limitations, unmodelled dynamics, or time-discretization. Several

works recently focussed on the time-discretization effects, showing that an explicit implementation

of either Euler of ZOH discretizations yields limit cycles [8, 9, 23, 25], while the implicit form

suppresses, in theory, the numerical chattering [1, 2, 11] due to the time–discretization. Before

going further let us briefly recall what is meant by explicit and implicit discrete-time silding mode

controllers.

Explicit vs implicit discrete sliding mode control: Consider the scalar system ẋ(t) = u(t)+

d(t), with u(t) ∈ −sgn(x(t)), where sgn(·) is the set-valued signum function: sgn(0) = [−1, 1],

sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0. Let the disturbance d(t) satisfy |d(t)| ≤ δ < 1 for some δ.

Using Filippov’s mathematical framework of differential inclusions, one deduces that for any x(0),

the state x(t) reaches the “sliding surface” x = 0 in a finite time t∗, and then x(t) = 0 for all t ≥ t∗.

In the differential inclusions language, u(t) is a selection ξ(t) of the interval [−1, 1] for t ≥ t∗, and

it satisfies ξ(t) = u(t) = −d(t) after t∗. In a sense, the set-valued controller acts as a disturbance

observer once the sliding mode is attained. It is clear that if one multiplies the signum by a gain

a > 0, i.e. u(t) = a sgn(x(t)), then one still has u(t) = −d(t) in the sliding phase after t∗. However

this time the value of the selection ξ(t) inside the set-valued part of sgn(x(t)) is divided by a, i.e.

ξ(t) = d(t)
a
.

Let us now consider the Euler discretization of this system. It reads: xk+1 = xk + huk + hdk,

where fk = f(tk) for a function f(·), and tk = t0+kh are the sampling times, h > 0 is the sampling
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period. In such a simple case, the Euler and ZOH discretizations are the same, except for the

disturbance dk =
∫ tk+1

tk
d(t)dt for the ZOH method. Our focus is on how to choose uk. The explicit

method yields uk ∈ −sgn(xk), yielding the closed-loop xk+1 − xk − hdk ∈ −h sgn(xk). As alluded

to above, limit cycles exist which create oscillations around the sliding surface (here the origin),

known as the numerical chattering in the output. One of the consequences is that the explicit

controller keeps switching between the two values 1 and -1, and never attains any point in (−1, 1).

In particular the explicit controller cannot approximate the continuous-time selection ξ(·) = u(·)

when the system evolves close to the sliding surface. If a gain a > 0 premultiplies u(·) then the

explicit controller switches between two discrete values a and −a, the switching frequency being

inversely proportional to the sampling period: this is the numerical chattering in the input. It is

noteworthy that the mere notion of a sliding surface does not exist in this case, since the discrete

trajectories cannot attain the origin, and the controller cannot take values in the set-valued part

equal to (−1, 1). One then has to resort to so-called quasi-sliding surfaces [19].

The implicit method is implemented as follows. Since d(t) is unknown, one first constructs a

nominal unperturbed system with state x̃k, from which the input is computed: x̃k+1 = xk + huk,

uk ∈ −sgn(x̃k+1). This is a so-called generalized equation with unknown x̃k+1. Its solution yields

after few manipulations uk = h proj
(

[−1, 1];−xk

h

)

, that is the projection on the interval [−1, 1],

and is a causal input (not depending on future values of the state). Notice that in the unperturbed

case, x̃k and xk are the same. As proved in [1, 2], the implicit controller guarantees convergence of

x̃k to the origin in a finite number of steps, and disturbance attenuation by a factor h during the

sliding mode. Most importantly, the control input takes values in (−1, 1) once x̃k has reached the

origin, as may be seen from the generalized equation from which it is calculated, and one has during

that phase uk = −dk: uk is a selection ξk of the discrete-time differential inclusion x̃k+1 = xk+huk,

uk ∈ −sgn(x̃k+1), and the discrete-time input observes the disturbance when the sliding mode is

attained. Similarly to the continuous-time case, if the controller is multiplied by a gain a > 0, then

the selection ξk = −dk
a

.

Therefore the implicit controller has the same features as its continuous-time counterpart. We

may summarize them as follows:

(i) When there is no perturbation, the sliding surface is reached after a finite number of steps.

(ii) When a perturbation acts on the system, the state of the nominal system reaches the sliding
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surface after a finite number of steps, while the perturbation effect is attenuated by a factor

h on the system’s state.

(iii) Despite the system’s state xk never attains its sliding surface due to the disturbance, the

notion of discrete-time sliding mode does exist, and corresponds to the nominal system’s state

x̃k vanishing, or equivalently to the set-valued controller evolving strictly inside the interval

[−1, 1]. In this mode the controller compensates for the disturbance, and is a copy of it. Its

magnitude is therefore independent, in the sliding mode, of the controller gain, and there is

no need to adapt the gain (denoted as a above, and as G in the sequel) on-line.

(iv) Theoretically there is no numerical chattering during the sliding mode, neither in the sliding

variable, nor in the input.

(v) The discrete-time controller keeps the simplicity of its continuous-time counterpart, with no

added gain to tune.

(vi) Computing the input at each step boils down to solving a simple generalized equation, equiva-

lently a projection on [−1, 1], or solving a quadratic program. This is quite easy to implement

in a code.

The implicit algorithm extends to higher dimension systems, and with sliding surfaces of codimen-

sion ≥ 2 [2]. The main objective of this article is to confirm these features experimentally.

The paper is organized as follows: in Section 2 the dynamics and the various controllers of

the electropneumatic actuators are presented. Section 3 is dedicated to the experimental results:

the explicit and the implicit discrete-time algorithms are applied to the system and compared in

terms of their overall performance, comprising the tracking accuracy, the input chattering, the input

magnitude, the disturbance rejection, when the controller gain and the sampling period are varied.

In addition the saturated explicit controller is also tested. Conclusions end the paper in Section 4.

2 Dynamics of the plant and controllers

2.1 Implicit controller implementation

To start let us explain in details how the so-called implicit controller (which might be also named

the projected sliding-mode controller) is calculated in case of tracking of a reference output yd(t).
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We consider the same scalar system as in the introduction, i.e. ẋ(t) = u, y = x, and disregard the

disturbance for the sake of simplicity. In this case, the Euler and ZOH discretizations are the same.

Let the sliding variable be σ = x − xd. The controller is set to u(x, t) ∈ −sgn(σ) + ẋd(t), so that

the closed-loop system is σ̇(t) ∈ −sgn(σ(t)). The plant discretization is

xk+1 − xk

h
= uk (1)

and the implicit input is set equal to

uk ∈ −sgn(xk+1 − xd,k+1) +
xd,k+1 − xd,k

h
(2)

where the last term accounts for the Euler approximation of ẋd(t). The sliding variable is given by

σk = xk − xd,k. We therefore obtain

xk+1 − xk ∈ −h sgn(σk+1) + xd,k+1 − xd,k ⇔ σk+1 − σk ∈ −h sgn(σk+1). (3)

Let wk+1 = σk+1 − σk; now by using convex analysis we may write wk+1 ∈ −h sgn(σk+1) ⇔ σk+1 ∈

−N[−h,h](wk+1), where N[−h,h](wk+1) is the normal cone to [−h, h] calculated at wk+1 ∈ [−h, h],

given in this case by

N[−h,h](wk+1) =



















0 if |wk+1| < h

[0,+∞) if wk+1 = h

(−∞, 0] if wk+1 = −h

Inserting this in (3) yields

wk+1 + σk ∈ −N[−h,h](wk+1) ⇔ −N[−h,h](wk+1)− σk ∋ wk+1. (4)

By using basic convex analysis one finds equivalently

wk+1 = proj([−h, h];−σk)

= h proj([−1, 1];−σk

h
)

(5)

where proj denotes the orthogonal projection (details can be found in [3, Appendix A], and in

section A). From (1), we have

uk =
1

h
wk+1 +

xd,k+1 − xd,k

h
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Thus we obtain

uk = 1
h
proj([−h, h];−σk) +

xd,k+1−xd,k

h

= proj([−1, 1];−σk

h
) +

xd,k+1−xd,k

h

=











































−σk

h
+

xd,k+1−xd,k

h
if |σk| ≤ h

−1 +
xd,k+1−xd,k

h
if σk > h

1 +
xd,k+1−xd,k

h
if σk < −h

(6)

The implicit controller is thus bounded whatever the value of the samping period h > 0. It is

obviously quite easy to implement in any code. It is noteworthy that an explicit implementation of

the input yields

uk = −sgn(σk) +
xd,k+1 − xd,k

h
. (7)

It is not necessary to write an inclusion uk ∈ −sgn(σk)+
xd,k+1−xd,k

h
in (7), because the multivalued

part of the sign function cannot be realized with an explicit controller. Indeed the fact is not only

that the zero value does not exist numerically, but even if it did, one would not be able to choose in

a unique way the controller value inside [−1, 1] (in numerical analysis of differential inclusions, this

is known as the selection procedure [3, §9.2, 9.4]). On the contrary the implicit implementation does

realize the set-valuedness of the input, see [1, 2] for more detailed analysis. Moreover the computed

controller value is the unique selection of the discrete-time inclusion, as a result of solving the above

generalized equation.

Remark 2.1 (Chattering) The oscillations around the sliding surface which are solely due to the

time discretization, are known as the output numerical chattering. They have been proved to exist

with explicit discretizations as in (7) [8, 9, 25].

Remark 2.2 (Controller commutations) It is widely accepted in the Control literature that slid-

ing mode controllers have to be implemented through infinite-frequency commutations of some actu-

ator, and that the infinitely fast switching strategy is necessary to approximate the continuous-time

solution obtained from Filippov’s mathematical framework. This is false when one considers the

implicit implementation which is briefly summarized above. The implicit implementation takes the
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form of a projection onto a finite interval (a hypercube if there is more than one switching surface)

as shown in (6), hence it is Lipschitz continuous function of the state. As will be shown in Section

3, the input numerical chattering is drastically reduced when the implicit controller is used. It is

quite possible that the input shape may be in practice as important as the output shape, because input

chattering is known to demand a lot of the actuators.

2.2 Plant dynamics and controllers

The electropneumatic system used for the controllers evaluation consists in two actuators which

are controlled by two servodistributors (see Figure 1). Each actuator is composed by two chambers

denoted by P (positive) and N (negative). The controllers proposed in the sequel are designed in

order to control the position of one of these two actuators, named “Main actuator”, whereas the

second actuator, named “Perturbation actuator” and mechanically connected to the Main one, is

used in order to produce an external perturbation force. With a nominal 7-bar source pressure, the

maximum produced force is 2720 N ; furthermore, both actuators have the same physical features:

piston diameter is 80 mm and rod diameter 25 mm. The external perturbation force controller is

not under interest in this paper and has been designed and tuned by Sitia Co. (France) which has

built the experimental set-up. The air mass flow rates qm entering in the chambers are modulated

by two three-way servodistributors. The pneumatic jack horizontally moves a load carriage of mass

M .

Figure 1: [18] Photography and scheme of the electropneumatic system.

Under some assumptions detailed in [18], the dynamic model of the pneumatic actuator can be
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written as a nonlinear system which is affine in the control input [uP uN ]
T , uP (resp. uN) being the

control input of the servodistributor connected to the P (resp. N) chamber. The model is divided in

two parts: two first equations concern the pressure dynamics in each chamber whereas the motion

of the actuator is described by the two last equations. Then the model of the electropneumatic

experimental set-up reads as

ṗP =
krT

VP (y)
[ϕP + ψP · uP −

S

rT
pPv]

ṗN =
krT

VN(y)
[ϕN + ψN · uN +

S

rT
pNv]

v̇ =
1

M
[S (pP − pN)− bvv − F ]

ẏ = v,

(8)

with pP (reps. pN) the pressure in the P (resp. N) chamber, y and v being the position and velocity

of the actuator. The force F is a disturbance that takes into account dry friction and unknown

external forces. Note that the previous system appears to have two control inputs given that there

is one servo distributor connected to each chamber. In the sequel, only the main actuator position

is controlled: given that there is a single control objective, one states1

u = uP = −uN .

The constant k is the polytropic constant, r is the ideal gas constant, T is the temperature which

is supposed the same inside or outside the chambers and bv is the viscous friction constant. VP and

VN are the volumes in both chambers. These volumes depend on the actuator position y. S is the

piston section and is constant. Finally, ϕX and ψX (X being P or N) are both 5th order polynomial

functions versus pX [17] and allow to model the mass flow rate qX in the chamber X such that

qX = ϕX(pX) + ψX(pX)uX . (9)

This kind of system is uncertain: in fact, the uncertainties on the polytropic constant, on the mass

flow, on the temperature, on the mass, on the viscous friction coefficient and on the disturbance

force can be modeled by additive bounded functions added to the nominal part of each parameter

[10]. As an example, the mass M can be viewed as the sum of a nominal part and an uncertain one

M =Mn +∆M

1Multivariable control can be designed [10], in case of position and pressure (in a chamber) control; an advantage

of control pressure is that the rigidity of the actuator is improved.



9

with ∆M a bounded uncertainty and Mn the nominal value. By considering that the system (8)

with a single input reads as ẋ = f(x) + g(x)u with f and g uncertain matrices defined as

f =

























krT

VP (y)
[ϕP −

S

rT
pPv]

krT

VN(y)
[ϕN +

S

rT
pNv]

1

M
[S (pP − pN)− bvv − F ]

v

























, g =

























krT

VP (y)
ψP

−
krT

VN(y)
ψN

0

0

























, (10)

it may be rewritten as

ẋ = (fn +∆f) + (gn +∆g) u (11)

with fn, gn the nominal dynamics parts of f and g, and ∆f , ∆g the uncertainties and perturbations.

Due to the presence of uncertainties and perturbation, a robust controller is required in order to

get high performances (in terms of accuracy, for example). The choice of sliding mode controller

[20, 21] has been made because of its intrinsic features of robustness. Let us define the so-called

sliding variable as

σ(x, t) = ë+ λ1ė+ λ0e (12)

with e = y − yd(t), yd(t) being the desired trajectory, supposed to be sufficiently differentiable.

The coefficients λ1, λ0 are defined such that, given z a complex variable, the polynomial Q(z) =

z2 + λ1z + λ0 is Hurwitz. The first and second derivatives of e are computed by direct numerical

differentiation with appropriate first-order filters (see remark 3.2 on the influence of those filters on

the closed-loop behaviour). The idea of the continuous-time sliding mode controller is the following:

the control ensures, in spite of uncertainties and perturbation and thanks to a discontinuous term,

the finite time convergence to the so-called siding surface σ = 0 (if the controller is well-tuned).

Once the system trajectories have reached this domain, they are evolving on it and the closed-loop

system dynamics is governed by the definition of σ, i.e. when σ = 0, one has ë = −λ1ė−λ0e which

ensures exponential convergence to (e, ė) = (0, 0). Note that once σ = 0, this convergence is not

influenced by the uncertainties or perturbations. One gets

σ̇ = e(3) + λ1ë+ λ0ė

=
1

M

[

S(ṗP − ṗN)− bv v̇ − Ḟ
]

− y
(3)
d (t) +

λ1

M
[S(pP − pN)− bvv − F ]− λ1ÿd(t)

+λ0 (ẏ − ẏd(t)) .

(13)
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where we assumed that the disturbance F is differentiable, for simplicity (rigorously, dry friction

may introduce some non differentiability at zero relative tangential velocity, depending on the used

model). As shown in [14, 10] and given the system (11), the first time derivative of σ in (13) can

be written as

σ̇ = Ψ(x, t) + Φ(x)u

= Ψn(x, t) + ∆Ψ(t) + [Φn(x) + ∆Φ(t)] u
(14)

such that Ψn,Φn are the nominal functions and ∆Ψ,∆Φ are the uncertain terms. From [14, 10],

functions Ψ and Φ are bounded in the physical working domain (which gives that the uncertain

terms are also bounded). Furthermore, one supposes that ∆Φ is sufficiently small with respect to

Φn to ensure that 1 + ∆Φ
Φn

> 0. From a practical point of view, this assumption is not too strong:

it simply means that the uncertainties are small compared to the nominal values. Let us consider

the control law2:

u =
1

Φn

[−Ψn + v] . (15)

By applying (15) in (14), one gets

σ̇ =
∆Φ

Φn

Ψn +∆Ψ+

[

1 +
∆Φ

Φn

]

v. (16)

The controller v is a sliding-mode one defined as

v ∈ −Gsgn(σ) (17)

with G tuned sufficiently large3 to ensure the sliding condition [20, 21] σσ̇ ≤ −η|σ| (η > 0). The

controller v has been implemented under its discrete forms as follows (with k ≥ 0, σk = σ(kh), h

being the sampling period)

• Explicit sliding mode control (with sgn(·) function)

vk = −Gsgn(σk), (18)

2As shown in [6], such a control law allows to reduce the magnitude of the sliding mode controller by using the

nominal informations in the controller.

3Following the sliding condition, the gain has to be tuned as G >

Max

∣

∣

∣

∣

∆Φ

Φn

Ψn +∆Ψ

∣

∣

∣

∣

+ η

min

[

1 +
∆Φ

Φn

] . By a similar way than

[16], it can be shown that, over the trajectories and in the working domain, the term
∆Φ

Φn

Ψn +∆Ψ is bounded whereas

1 +
∆Φ

Φn

> 0.
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• Explicit saturated sliding mode control (with sat(·) function)

vk = −Gsat(σk, ǫ), (19)

with

sat(σk, ǫ) =











sgn(σk) if |σk| ≥ ǫ

σk if |σk| < ǫ.

(20)

• Implicit sliding mode control (with sgn(·) multifunction)

vk ∈ −Gsgn(σk+1) (21)

(implemented with a projection as indicated in Section 2.1).

3 Experimental results

This section is devoted to analyze the experimental data. The controllers have been implemented

with three feedback gains G = 104, G = 105, G = 106 and five sampling times 1 ms, 2 ms, 5 ms,

10 ms and 15 ms. The length of the interval of study is 20 seconds. The saturation input has been

tested for six different values of the saturation width, with the sampling time h = 1 ms. In the

data reported below, the unitless width of the saturation is ǫ = 0.1 (the other widthes which have

been tested yielded similar results and the results obtained with them are therefore omitted). The

comparisons are made mainly with respect to: the inputs u and v magnitude and chattering, and

the tracking error.

3.1 Comparison of the tracking errors e

Data in Tables 1–3 characterise the position tracking error e obtained by the three different im-

plementation methods, from the aspects of average, range, standard deviation and variation with

five different sampling periods. The symbol Avg denotes the average of the tracking error over

the duration of the test, abs is the absolute value of tracking error. The variation of a real-valued

function f(·) defined on an interval [a, b] ⊂ R is the quantity

V ar[a,b](f) =
N−1
∑

i=0

|f(ti+1)− f(ti)| (22)
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where the set of time instants {t0, t1, · · · , tN} is a partition of [a, b]. In the following, the variations

of the position error e for the three different implementation methods with the different gains G,

have been calculated by choosing the partition times ti in (22), as the sampling times.

Remark 3.1 The variation in (22) as a quantity to characterize the analyzed signals, is not com-

mon in control engineering. It is thought here in the context of sliding mode control, that such a

quantity is useful to measure the chattering level of a signal, since it does represent how much the

signal varies. However due to the partition that has been chosen (the sampling times) the results

are not comparable from one sampling period to the next, but only between the three controllers for

a fixed h. In other words, in Table 3 data have to be compared inside a single column, but not from

one column to another one.

All the data concerning e are reported in Tables 1, 2, 3 and Figures 2 and 3. Table 1 data and

Figures 2(a), (b), (c) show that when G = 104, the implicit method does not bring any improvement

over the explicit ones, but has lower precision capabilities for small time steps. It is only for the

larger time step h = 15 ms that the results for the implicit controller (Table 1 last column) become

the same as those of the other two controllers. However it is confirmed in Table 3 (a), that the

variation of the implicit input starts to be significantly smaller than that of the other two, for h ≥ 5

ms, the improvement being huge for h = 15 ms. These first data tend to indicate that, in the case

of the implicit input, its variation is drastically smaller for larger sampling periods (for h = 15

ms: 1.4462 × 103 for the explicit method, 196 for the implicit one with G = 104), confirming that

chattering on e is reduced when the implicit controller (21) is used. The fact that the output signal

is smooth for the implicit method, while it chatters for the other two controllers for large sampling

time, is obvious in Figures 2(d), (e) and (f).

Table 2 concerns G = 105, that is the gain is now multiplied by 10. All three methods show

similar results in terms of average, range and standard deviation of e, the implicit one providing

slightly better results. One infers that augmenting the gain G from 104 to 105 allows to significantly

improve the tracking performance of the implicit control (15) (21) compared to that of the explicit

inputs, especially in terms of the variation which is a good quantification of the chattering. In fact,

comparing Table 1 (c) and Table 2 (c), one sees that the performance of the implicit input is almost

unchanged when the gain is multiplied by 10, which is not the case of the other two methods: for

these both latter, e is clearly increased. We shall observe this insensitivity property of the implicit
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method, again in Section 3.2. In addition the output produced by the implicit method is smoothed,

even for small h = 1 ms, see Figure 3(a) (b) and (c), or (d) (e) and (f).

The variation values are given in Table 3 (b) with G = 105, and is quite visible in Figures 3(d) (e)

and (f): the variation of e with the implicit input is much smaller than with the other two controllers,

except for h = 1 ms where the obtained values are of same order. This indicates that the chattering

on e is drastically reduced with the implicit input (15) (21).

 A first conclusion, that will be strengthened in the next paragraph, is that the implicit control

method allows to take larger gains without decreasing the performance (it means that it is possible

to reject/counteract larger perturbations/uncertainties without more chattering). The performance

of implicit control is better when G is larger, while it is less good with the explicit and saturation

controllers.

h 1ms 2ms 5ms 10ms 15ms

Avg(abs(e)) 0.2374 0.32601 0.4791 0.97802 3.8759

Range of e (-1.8045, 0.9909) (-2.0701, 2.0189) (-3.0067, 2.1572) (-3.2599, 4.4023) (-10.3767, 12.1426)

Standard Deviation of e 0.2976 0.4274 0.6327 1.0366 4.2553

(a) Explicit control

h 1ms 2ms 5ms 10ms 15ms

Avg(abs(e)) 0.25655 0.28053 0.51399 0.99017 3.6119

Range of e (-1.4044, 1.1333) (-1.7255, 1.1288) (-1.7006, 2.4793) (-4.5846, 2.6004) (-14.4069, 12.1394)

Standard Deviation of e 0.3266 0.3319 0.6132 1.1394 4.4131

(b) Saturation control

h 1ms 2ms 5ms 10ms 15ms

Avg(abs(e)) 0.30105 0.71254 1.7138 3.3861 5.1387

Range of e (-1.2214, 0.9593) (-1.6760, 1.2200) (-3.4182, 3.2213) (-7.9230, 6.4083) (-9.4997, 6.5194)

Standard Deviation of e 0.3480 0.7731 1.8780 3.7182 5.4749

(c) Implicit Control

Table 1: Comparisons of position error e when G = 104.
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h 1ms 2ms 5ms 10ms 15ms

Avg(abs(e)) 1.1252 0.98336 1.1363 2.4372 5.5254

Range of e (-5.5069, 5.6270) (-4.3911, 3.9936) (-4.7722, 3.9665) (-11.3641, 6.6129) (-17.7670, 19.0185)

Standard Deviation of e 1.4605 1.2430 1.3412 2.8063 6.4330

(a) Explicit control

h 1ms 2ms 5ms 10ms 15ms

Avg(abs(e)) 1.1449 1.2502 1.7987 4.4362 5.4374

Range of e (-4.0506, 1.5602) (-4.2085, 4.9032) (-2.3505, 7.6094) (-4.7248, 14.8659) (-11.9105, 19.3981)

Standard Deviation of e 1.0349 1.5220 1.4996 2.8328 6.6223

(b) Saturation control

h 1ms 2ms 5ms 10ms 15ms

Avg(abs(e)) 0.33818 0.72598 1.7017 3.2844 5.0835

Range of e (-1.8443, 0.8041) (-1.8663, 2.3094) (-5.8677, 4.6001) (-8.1843, 6.3261) (-9.2313, 8.1833)

Standard Deviation of e 0.3927 0.7941 1.9237 3.5816 5.4152

(c) Implicit control

Table 2: Comparisons of position error e when G = 105.

3.2 Comparison of control inputs u (15) and v (18) (19) (21):

The features of the control inputs is a key-point in this work, given that one of the objectives is to

show the influence of implicit control to the chattering effect. Let us now pass to the control inputs

comparisons, with data reported in Tables 4–7 and Figures 4 and 5. Data given in Table 4 and 5

characterize the “switching functions” for these three methods. It includes the range and variation.

Remark 3.1 applies also for the variation of the control, so that in Tables 4 (b), 5 (b), 6 (b) and 7

(b), data have to be compared inside a single column, but not from one column to another one.
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h 1ms 2ms 5ms 10ms 15ms

Explicit control 2.7964e+03 1.7838e+03 904.1336 844.2871 1.4462e+03

Saturation control 2.8203e+03 1.6527e+03 914.4627 838.3387 1.6821e+03

Implicit control 3.2121e+03 1.6452e+03 657.6504 428.0244 196.0669

(a) G = 104

h 1ms 2ms 5ms 10ms 15ms

Explicit control 3.7426e+03 2.5724e+03 1.7742e+03 1.6081e+03 2.5070e+03

Saturation control 3.7633e+03 2.5691e+03 2.0749e+03 2.1638e+03 2.5756e+03

Implicit control 3.1577e+03 1.6360e+03 650.2710 480.1660 228.8022

(b) G = 105

Table 3: Variation of position error e.

 What we call the switching functions are sgn(σk) in (18), sat(σk, ǫ) in (19), and sgn(σk+1)

in (21). For the implicit controller, this is what we called the selection ξk in Introduction. This is

not to be confused with the discontinuous control v in (17).

Comparisons of the inputs in three methods are given in Table 6 and 7 from three aspects,

that is: range, variation, and standard deviation. In addition, the three controllers are depicted in

Figures 4 and 5, for various time steps and gains.

Globally, the experimental results show that the implicit method drastically reduces the input

chattering and magnitude compared with the other two methods. The explicit and saturation

switching inputs keep oscillating between the maximum and minimum values like a bang-bang

controller (see data in Tables 4(a) and 5(a), and Figures 4(a) (b)). This results in a large amplitude

of inputs u as well (see Tables 6(a) and 7(a), as well as Figures 5(a) (c) (g) (i) (b) (d) (h) (j)).

Notice that the explicit and saturation inputs behave slightly better when the time step increases.

This is visible by comparing Figures 5(a) and (g), (c) and (i), (b) and (h), and finally (d) and (j)

which all concern h = 1 ms and h = 15 ms, respectively, for both gains G. However the magnitude

of the implicit input is far much better in all cases (see Figures 5(e) and (k) as well as Figures 5(f)

and (l)).

In the tables, all the values used to characterize the chattering in implicit method are invariably

much less than the other two methods. The magnitude of the ranges of the switching function and

control u in the implicit method is much less than the other two methods, see Tables 6(a) and 7(a).
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h 1ms 2ms 5ms 10ms 15ms

Explicit control (18) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000)

Saturation control (19) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000)

Implicit control (21) (-1.0000, 0.8784) (-0.4635, 0.5385) (-0.3247, 0.3338) (-0.2969, 0.3117) (-0.1935, 0.2194)

(a) Range of the switching function.

h 1ms 2ms 5ms 10ms 15ms

Explicit control (18) 11952 6926 2822 2258 1936

Saturation control (19) 1.0790e+04 6.6197e+03 2.7224e+03 2.2199e+03 2008

Implicit control (21) 6.7225e+03 1.8416e+03 357.9547 211.4038 79.1096

(b) Variation of the switching function.

Table 4: Switching function, gain G = 104 .

These facts are well supported by Figures 4 and 5. Consider Figure 5: when h = 15ms, while the

ranges of the control law u in explicit method and explicit saturation method are both between −10

and 10 (see Figures 5(h) and (j)), the range of u for the implicit case is strictly between −2 and 2

(see Figure 5(l)). The comparison between Figures 4(c)-4(l), which concern the implicit controller

switching function for various gains and sampling times, show that for h ≥ 2 ms, the implicit input

v in (21) is largely independent of the gain and sampling time. From Tables 4 (a) and 5 (a), the

data in the rows corresponding to the implicit controller allow to obtain a confirmation of this fact.

Furthermore the switching function range for the implicit controller, is divided by ten when the gain

G passes from 104 to 105, which implies that the sliding mode input vk in (21) has a magnitude that

does not vary with the gain (recall that what we call the switching function, has to be multiplied

by the gain G to obtain the input v). This is in very good agreement with theoretical predictions

(item (iii) in the introduction). One can also have a look at Tables 6 (a) (b) (c), and 7 (a) (b)

(c), to obtain the same conclusions, that the range (magnitude), the variation and the standard

deviation (chattering) of u for (21) are drastically smaller than for (18) and (19). The magnitudes of

the switching function for the implicit controller, for 6 different gains G and two different sampling

periods h, are reported in Table 8. It confirms that the magnitude of the input v in (17), which is

the switching function times the gain G, does not depend neither on G nor on h in this range of

sampling times (see a comment in remark 3.2).

 This insensitivity property is believed to be a fundamental property of the implicit method
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h 1ms 2ms 5ms 10ms 15ms

Explicit control (18) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000)

Saturation control (19) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000)

Implicit control (21) (-0.0844, 0.0973) (-0.0606, 0.0545) (-0.0360, 0.0417) (-0.0289, 0.0349) (-0.0173, 0.0247)

(a) Range of the switching function.

h 1ms 2ms 5ms 10ms 15ms

Explicit control (18) 3804 2980 2050 1932 1836

Saturation control (19) 3.6299e+03 2.3486e+03 1.9858e+03 1902 1860

Implicit control (21) 660.5150 183.1965 34.7510 25.2005 8.1039

(b) Variation of the switching function.

Table 5: Switching function, gain G = 105.

introduced in [1, 2], compared to explicit implementations which drastically differ when h and/or G

are varied.

The results depicted in Figures 4 and 5 clearly demonstrate that whereas the explicit and

saturation controllers tend to approximate a signal that switches infinitely fast between two extreme

values like bang-bang inputs, this is not at all the case for the implicit controller that behaves in

a totally different way. This is a nice confirmation of both theoretical and numerical predictions

[1, 2], that the implicit controller does represent the discrete-time approximation of the selection of

the differential inclusion according to Filippov’s mathematical framework.

Input chattering is also visible in Table 4 (b), 5 (b), 6 (b) and (c), 7 (b) and (c). Variation of

the implicit switching function is much smaller than the other two, and standard deviation of u

as well. These results demonstrate that the switching function chattering and magnitude, strongly

influences the input u in (15).

Remark 3.2 All the results tend to show that when the sampling period is too small (typically in

our experiments h = 1 or h = 2 ms), then the implicit controller performance (output precision

and chattering, input magnitude and chattering) is decreasing. This is visible on Figure 4 with the

evolution of the implicit signum function from subfigure (c) to subfigure (g) for gain G = 104, and

from subfigure (h) to subfigure (l) when the gain is G = 105. In theory the implicit switching function

should not vary by changing the sampling period. This phenomenon is due to bandwidth limitations
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h 1ms 2ms 5ms 10ms 15ms

Explicit control (-7.9167 8.1937) (-7.8876 8.4594) (-8.1550 8.6118) (-8.7349 8.3970) (-10 10)

Saturation control (-7.9616 8.7194) (-8.0737 8.1963) (-7.9095 8.0899) (-8.5541 8.7543) (-10 10)

Implicit control (-7.2907 5.8468) (-3.2500 3.5871) (-1.9990 2.6204) (-1.9399 2.1267) (-1.8990 1.9484)

(a) range of u.

h 1ms 2ms 5ms 10ms 15ms

Explicit control 7.3084e+04 4.1102e+04 1.7731e+04 1.3816e+04 1.2759e+04

Saturation control 6.5384e+04 4.0209e+04 1.6864e+04 1.3838e+04 1.3671e+04

Implicit control 3.7064e+04 9.5190e+03 1.5731e+03 963.2736 609.5058

(b) variation of u.

h 1ms 2ms 5ms 10ms 15ms

Explicit control 5.7755 5.7570 5.8144 5.8437 6.3526

Saturation control 5.7259 5.7270 5.6808 5.8811 6.5001

Implicit control 1.6813 1.1183 0.8915 0.8519 0.8650

(c) standard deviation of u.

Table 6: Comparisons of u when G = 104.

in the first-order filters used to estimate velocities and accelerations from position measurement,

in order to calculate the sliding variable in (12). It results in a deterioration of the closed-loop

performance and controller chattering. Further work should be focused on proper tuning of these

filters to accomodate for smaller sampling periods h.

3.3 Summary

These extensive experimental tests prove that items (iii) (iv) (v) and (vi) in the Introduction, are not

only theoretical and numerical predictions obtained in [1, 2], but significantly influence the discrete-

time implemented sliding-mode controller. The implicit method (21) allows to drastically reduce

the input chattering and magnitude, while enhancing the tracking capabilities (output chattering is

almost entirely eliminated). It also allows the designer to choose larger sampling periods, which may

be of strong interest in practice. Perhaps counter-intuitively for control engineers, the performance

and robustness increase when the gain G increases, which is thought to considerably simplify the

controller gain tuning process.
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h 1ms 2ms 5ms 10ms 15ms

Explicit control (-10 10) (-10 10) (-10 10) (-10 10) (-10 10)

Saturation control (-10 10) (-10 10) (-10 10) (-10 10) (-10 10)

Implicit control (-5.5697 7.5927) ( -3.2541 3.8092) (-2.0772 2.6066) (-2.0325 2.3656) (-1.9642 1.9461)

(a) range of u.

h 1ms 2ms 5ms 10ms 15ms

Explicit control 38040 29800 20500 19320 18360

Saturation control 3.6318e+04 2.3516e+04 1.9846e+04 19020 18600

Implicit control 3.6246e+04 9.3245e+03 1.5389e+03 1.1560e+03 629.0904

(b) variation of u.

h 1ms 2ms 5ms 10ms 15ms

Explicit control 9.9844 10.0004 9.9729 9.9903 9.9547

Saturation control 9.9333 9.9746 9.9080 9.9262 9.9561

Implicit control 1.6401 1.0974 0.9113 0.9037 0.8630

(c) standard deviation of u.

Table 7: Comparisons of u when G = 105.

4 Conclusion

Experiments have been conducted on an electropneumatic system, with three different implemen-

tations of the sliding mode controller: explicit, saturated explicit, and implicit discretizations. The

results demonstrate that the theoretical and numerical predictions of [1, 2] are true: the implicit

implementation, which consists merely of a projection on the interval [−1, 1] and is thus very easy

to implement in a code, drastically supersedes the other two. The output and input chattering are

reduced in a significant way, without changing the controller basic structure (i.e., no additional

filter, observer, or dynamic controller is added compared to the original, basic sliding mode con-

troller) and keeping its simplicity (in particular the gain tuning is easy, which is a strong feature

of the ECB-SMC method). The main feature of the implicit discretization, is that it keeps, in

discrete-time, the multivalued feature of the theoretical continuous-time sliding-mode controller, as
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G 104 5.104 105 5.105 106 5.106

h = 5 ms (−0.3, 0.35) (−0.05, 0.05) (−0.03, 0.035) (−0.006, 0.0063) (−0.003, 0.003) (−0.0006, 0.00065)

h = 10 ms (−0.25, 0.3) (−0.05, 0.06) (−0.025, 0.03) (−0.005, 0.006) (−0.0025, 0.0025) (−0.0005, 0.0005)

Table 8: Magnitude of implicit switching function sgn(xk+1) for varying gains G and sampling

period h.

it is mathematically imposed in Filippov’s framework. The proposed implicit discretization method

is generic in the sense that it could apply to any kind of sliding mode, set valued control. Future

research should therefore concern similar experiments on the same and other set-up, with twisting

and high-order sliding-mode controllers.

A Some basic convex analysis tools

In this section we provide few results which are useful to calculate the controller in section 2.1.

From [26, p.115] it follows that the conjugate function of the indicator function of the set [−1, 1],

denoted as ψ[−1,1](·), is the support function ψ⋆(x|[−1, 1]) of the set [−1, 1], given by the absolute

value function x → |x|. From [26, Theorem 23.5], one has that the subdifferentials (in the sense

of convex analysis) of these two conjugate functions satisfy: x ∈ ∂ψ[−1,1](z) ⇔ z ∈ ∂ψ⋆(x|[−1, 1]).

From the definition of the subgradient, one has ∂ψ⋆(x|[−1, 1]) = sgn(x) where sgn is the multivalued

signum function as defined in the introduction. By definition of the subdifferential of a convex set,

∂ψ[−1,1](z) is the normal cone to the set [−1, 1] at z. These results allow one to derive (4) from (3).

Consider now the inclusion x−y ∈ −NC(x) for some convex, non empty closed set C of IRn, and

two vectors x and y of IRn. Using [27, Theorem 1.5.5] one finds that x is the Euclidean projection

of y onto C. This allows us to deduce (5) from (4).
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(a) h = 1ms. Explicit method.
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(b) h = 1ms. Saturation method.
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(c) h = 1ms. Implicit method.
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(d) h = 15ms. Explicit method.
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(e) h = 15ms. Saturation method.
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(f) h = 15ms. Implicit method.

Figure 2: Real position y (mm) in blue and yd (mm) in red, under h = 1ms and h = 15ms for

G = 104. Real position y in blue and yd in red.
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(a) h = 1ms. Explicit method.
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(b) h = 1ms. Saturation method.
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(c) h = 1ms. Implicit method.
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(d) h = 15ms. Explicit method.
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(e) h = 15ms. Saturation method.
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(f) h = 15ms. Implicit method.

Figure 3: Real position y (mm) in blue and yd (mm) in red, under h = 1ms and h = 15ms for

G = 105.
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(a) Explicit. sign(σk). G = 104, h = 1ms.
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(b) Saturation. sat(σk). G = 104, h = 1ms
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(c) Implicit. sign(sk+1). G = 104, h = 1ms.
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(d) Implicit. sign(σk+1). G = 105, h = 1ms.
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(e) Implicit. sign(σk+1). G = 104, h = 2ms.
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(f) Implicit. sign(σk+1). G = 105, h = 2ms.
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(g) Implicit. sign(σk+1). G = 104, h = 5ms.
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(h) Implicit. sign(σk+1). G = 105, h = 5ms.
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(i) Implicit. sign(sk+1). G = 104, h = 10ms.
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(j) Implicit. sign(σk+1). G = 105, h = 10ms.
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(k) Implicit. sign(σk+1). G = 104, h = 15ms.
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(l) Implicit. sign(σk+1). G = 105, h = 15ms.

Figure 4: Switching function: Comparison between explicit method (sign(sk)), saturation method

(sat(sk)) and implicit method (sign(sk+1)).
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(a) Explicit Method. G = 104, h = 1ms.
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(b) Explicit Method. G = 105, h = 1ms.
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(c) Saturation method. G = 104, h = 1ms
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(d) Saturation method. G = 105, h = 1ms
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(e) Implicit Method. G = 104, h = 1ms.
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(f) Implicit Method. G = 105, h = 1ms.
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(g) Explicit Method. G = 104, h = 15ms.
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(h) Explicit Method. G = 105, h = 15ms.
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(i) Saturation method. G = 104, h = 15ms
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(j) Saturation method. G = 105, h = 15ms
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(k) Implicit Method. G = 104, h = 15ms.

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(l) Implicit Method. G = 105, h = 15ms.

Figure 5: Comparison of control u between explicit method, saturation method and implicit method.
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[16] F. Plestan, Y. Shtessel, V. Brégeault, and A. Poznyak, Sliding mode control with gain

adaptation–Application to an electropneumatic actuator, Control Engineering Practice, vol.21,

no.5, pp.679-688, 2013.

[17] S. Sesmat, and S. Scavarda, Static characteristics of a three way servovalve, Proc. Conf.

Fluid Power Tech., Aachen, Germany, 1996.

[18] Y. Shtessel, M. Taleb, and F. Plestan, A novel adaptive-gain supertwisting sliding mode

controller: methodology and application, Automatica, vol.48, no.5, pp. 759-769, 2012.

[19] Sira–Ramirez, H., Non–linear discrete variable structure systems in quasi–sliding mode, Int,

J. Control, vol.54, no.5, pp. 1171–1187, 1991.

[20] V. Utkin, Variable structure systems with sliding mode, IEEE Transactions on Automatic

Control, vol.22, no 2, pp.212-222, April 1977.

[21] V. Utkin, Sliding Modes in Control Optimization, Springer-Verlag, Berlin, 1992.

[22] V. Utkin, J. Guldner, J. Shi, Sliding Mode Control in Electro-Mechanical Systems, 2nd

Edition, CRC Press, Automation and Control Engineering Series, 2009.



27

[23] B. Wang, X. Yu, G. Chen, ZOH discretization effect on single-input sliding mode control

systems with matched uncertainties, Automatica, vol.45, pp.118-125, 2009.

[24] K.D. Young, V.I. Utkin, U. Ozguner, A control engineer’s guide to sliding mode control,

IEEE Transactions on Control Systems Technology, vol.7, no 3, pp.328-342, May 1999.

[25] X. Yu, B. Wang, Z. Galias, G. Chen, Discretization effect on equivalent control-based

multi-input sliding-mode control systems, IEEE Transactions on Automatic Control, vol.53, no

6, pp.1563-1569, July 2008.

[26] R.T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics, 1970.

[27] F. Facchinei, J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity

Problems. Volume I, Springer Series in Operations Research, 2003.


