M. Arfi, Polynomial operations on rational languages, STACS 87, 4th Annual Symposium on Theoretical Aspects of Computer Science, pp.198-206, 1987.
DOI : 10.1007/BFb0039607

R. Bubley and M. Dyer, Path coupling: A technique for proving rapid mixing in Markov chains, Proceedings 38th Annual Symposium on Foundations of Computer Science, pp.223-231, 1997.
DOI : 10.1109/SFCS.1997.646111

F. Bassino, J. David, and C. Nicaud, Enumeration and random generation of possibly incomplete deterministic automata, Pure Mathematics and Applications, vol.19, pp.1-16, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00452748

S. Boyd, P. Diaconis, and L. Xiao, Fastest Mixing Markov Chain on a Graph, SIAM Review, vol.46, issue.4, pp.667-689, 2004.
DOI : 10.1137/S0036144503423264

A. Bouajjani, A. Muscholl, and T. Touili, Permutation rewriting and algorithmic verification, Information and Computation, vol.205, issue.2, pp.199-224, 2007.
DOI : 10.1016/j.ic.2005.11.007

URL : https://hal.archives-ouvertes.fr/hal-00161120

F. Bassino and C. Nicaud, Enumeration and random generation of accessible automata, Theoretical Computer Science, vol.381, issue.1-3, pp.86-104, 2007.
DOI : 10.1016/j.tcs.2007.04.001

URL : https://hal.archives-ouvertes.fr/hal-00459712

V. Carnino and S. De-felice, Random Generation of Deterministic Acyclic Automata Using Markov Chains, CIAA 2011, pp.65-75, 2011.
DOI : 10.1016/0304-3975(92)90142-3

URL : https://hal.archives-ouvertes.fr/hal-00841862

V. Carnino, S. D. , and F. , Sampling different kinds of acyclic automata using Markov chains, Theoretical Computer Science, vol.450, pp.31-42, 2012.
DOI : 10.1016/j.tcs.2012.04.025

URL : https://hal.archives-ouvertes.fr/hal-00841870

G. Cécé, P. Héam, and Y. Mainier, Efficiency of automata in semi-commutation verification techniques, ITA, vol.42, issue.2, pp.197-215, 2008.

A. Carayol and C. Nicaud, Distribution of the number of accessible states in a random deterministic automaton, STACS 2012, pp.194-205, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678213

J. Champarnaud, . Th, and . Paranthoën, Random generation of DFAs, Theoretical Computer Science, vol.330, issue.2, pp.221-235, 2005.
DOI : 10.1016/j.tcs.2004.03.072

S. De, F. , and C. Nicaud, Random generation of deterministic acyclic automata using the recursive method, Computer Science Theory and Applications, pp.88-99
URL : https://hal.archives-ouvertes.fr/hal-00841835

P. L. Erd?s, I. Miklós, and Z. Toroczkai, A decomposition based proof for fast mixing of a Markov chain over balanced realizations of a joint degree matrix. ArXiv e-prints, 2013.

. Ph, R. Flajolet, and . Sedgewick, Analytic Combinatorics, 2008.

P. E. Greenwood and M. S. Nikulin, A Guide to Chi-Squared Testing, 1996.

G. Guaiana, A. Restivo, and S. Salemi, On the trace product and some families of languages closed under partial commutations, Journal of Automata, Languages and Combinatorics, vol.9, issue.1, pp.61-79, 2004.

M. Jerrum, Mathematical Foundations of the Markov Chain Monte Carlo Method, Probabilistic Methods for Algorithmic Discrete MathematicsJS96] Mark Jerrum and Alistair Sinclair, pp.116-165, 1996.
DOI : 10.1007/978-3-662-12788-9_4

D. Korshunov, Enumeration of finite automata, Problemy Kibernetiki, vol.34, pp.5-82, 1978.

A. D. Korshunov, On the number of non-isomorphic strongly connected finite automata, Elektronische Informationsverarbeitung und Kybernetik, vol.22, issue.9, pp.459-462, 1986.

V. A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Applied Mathematics, vol.154, issue.3, pp.537-551, 2006.
DOI : 10.1016/j.dam.2005.06.009

Y. David-asher-levin, E. L. Peres, and . Wilmer, Markov chains and mixing times, 2009.

C. Nicaud, Etude du comportement en moyenne des automate finis et des langages rationnels, 2000.

C. Nicaud, Random Deterministic Automata, Mathematical Foundations of Computer Science 2014 Symposium, MFCS 2014, pp.5-23, 2014.
DOI : 10.1007/978-3-662-44522-8_2

URL : https://hal.archives-ouvertes.fr/hal-01226599

R. Robinson, Counting Strongly Connected finite Automata Graph theory with Applications to Algorithms and Computer Science, pp.671-685, 1985.

T. Schwentick, D. Thérien, and H. Vollmer, Partially-Ordered Two-Way Automata: A New Characterization of DA, Developments in Language Theory, pp.239-250, 2001.
DOI : 10.1007/3-540-46011-X_20

V. Vyssotsky, A counting problem for finite automata, 1959.