
HAL Id: hal-01087998
https://hal.inria.fr/hal-01087998

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachability analysis for timed automata using max-plus
algebra

Qi Lu, Michael Madsen, Martin Milata, Søren Ravn, Uli Fahrenberg, Kim
Guldstrand Larsen

To cite this version:
Qi Lu, Michael Madsen, Martin Milata, Søren Ravn, Uli Fahrenberg, et al.. Reachability analysis for
timed automata using max-plus algebra. The Journal of Logic and Algebraic Programming, 2012, 81,
pp.298 - 313. <10.1016/j.jlap.2011.10.004>. <hal-01087998>

https://hal.inria.fr/hal-01087998
https://hal.archives-ouvertes.fr

Reachability Analysis for Timed Automata

using Max-Plus Algebra

Qi Lu, Michael Madsen, Martin Milata1, Søren Ravn, Uli Fahrenberg2,
Kim G. Larsen

Aalborg University, Department of Computer Science, Selma Lagerlöfs Vej 300, 9220

Aalborg East, Denmark

Abstract

We show that max-plus polyhedra are usable as a data structure in reach-
ability analysis of timed automata. Drawing inspiration from the extensive
work that has been done on difference bound matrices, as well as previ-
ous work on max-plus polyhedra in other areas, we develop the algorithms
needed to perform forward and backward reachability analysis using max-
plus polyhedra. To show that the approach works in practice and theory
alike, we have created a proof-of-concept implementation on top of the model
checker opaal.

Keywords: timed automaton; real-time model checking; data structure;
max-plus algebra; max-plus polyhedron

1. Introduction

A real-time system is a system where total completion of a task depends
not only on the logical ordering of events, but also on the timing at which
these events are performed. Examples of real-time systems include airbags,
pacemakers, live video streaming, video game systems, and production lines.

A key problem when developing a real-time system is to ensure correct-
ness of the system. For that purpose, it is useful to construct a model of the
system and verify certain properties directly on the model. This is known
as model checking.

For real-time systems, the model of timed automata introduced by Alur
and Dill [6] has emerged as a preferred formalism, allowing most relevant

Email addresses: qlu09@student.aau.dk (Qi Lu), msma09@student.aau.dk (Michael
Madsen), xmilata@fi.muni.cz (Martin Milata), sravn06@student.aau.dk (Søren
Ravn), ulrich.fahrenberg@irisa.fr (Uli Fahrenberg), kgl@cs.aau.dk (Kim G. Larsen)

1Present address: Masaryk University, Faculty of Informatics, Botanická 68a, 60200
Brno, Czech Republic

2Corresponding author. Present address: INRIA/IRISA, Campus de Beaulieu, 35042
Rennes CEDEX, France. Phone: +33.2.99.84.22.75. Fax: +33.2.99.84.71.71

Preprint submitted to Elsevier December 7, 2011

real-time aspects to be expressed while leaving model checking decidable.
Being essentially finite-state systems extended with a finite number of real-
valued clocks used for conditioning when transitions are available, the for-
malism of timed automata describes systems with infinitely many states.
However, the development of data structures for symbolic representation
and manipulation of state spaces of timed automata has been subject to
significant research effort, leading not only to decidability but also efficient
model checking tools, e.g. Uppaal [32] and Kronos [33].

In particular, the notion of zones (state sets that can be described by
constraints on individual clocks and clock-differences) is a main datastruc-
ture in these tools. A commonly used representation of zones are Difference
Bound Matrices, or DBMs for short [5, 17], due to their efficient time and
space properties. A comprehensive account on DBM-based algorithms for
zone-based reachability analysis can be found in [12]; the algorithms used
in tools like Uppaal are based on DBM representations of zones.

There are however a number of open problems regarding DBM-based
reachability analysis, and other data structures to complement or replace
DBMs have been proposed [11, 8, 19, 29, 14]. One particular such problem
is that zones are not closed under unions, that is, the union of two zones may
not again be a zone. This contributes to the so-called state-space explosion
during zone-based reachability analysis, unless over- or underapproximations
are used.

It is the purpose of this paper to propose replacing zones and DBMs by
max-plus polyhedra for real-time reachability analysis. We develop the algo-
rithms necessary for forward and backward reachability analysis using this
new data structure and show that their complexities are comparable to the
one of the standard DBM-based algorithms. Additionally, overapproxima-
tions using max-plus polyhedra are more precise than the ones one achieves
using DBMs, which is of great help in combating state-space explosion.

Related work. The study of max-plus analogues of convex sets in max-plus
algebra begins with [34]. Originally motivated by some problems in ab-
stract interpretation, [2] introduce max-plus polyhedra as a new numerical
abstraction which can express some non-convex properties without any dis-
junctive representations. The theory of max-plus polyhedra is further devel-
oped in [3, 4, 2], where also fundamental algorithms to compute with these
structures are given.

The idea of using max-plus polyhedra as a data structure for real-time
reachability analysis was communicated to us by Eric Goubault. In a pre-
vious work [18] we provide some basic algorithms for forward reachability.
Other related work in abstract interpretation include zones [27], classical
polyhedra [16], octagons [28] and disjunctive representations [31, 23].

2

Structure. We start this paper with three sections reviewing timed au-
tomata, zones, max-plus polyhedra, and DBMs, finishing with an example
which compares the expressivity of DBMs and max-plus polyhedra. Sec-
tion 5 then introduces the algorithms for reachability analysis based on
max-plus polyhedra, analyses their complexities, and compares them with
the standard DBM-based algorithms. In the conclusive Section 6 we sum
up on our work and lay out some open problems which are still waiting to
be solved.

This paper is based on a Bachelor’s thesis [18] and on a project report [26]
by the first four authors and Jesper Dyhrberg. On both projects, the last
two authors of this paper have acted as supervisors.

2. Timed automata

Timed automata are finite automata that are enriched with a number
of real-valued clocks. They have proven to be useful in modeling and ver-
ification of real-time systems. Timed automata were introduced by [7]; a
more thorough overview of relevant notions can be found for example in [1]
or [20].

2.1. Syntax

First, let X be a finite set of real-valued non-negative variables referred
to as clocks. Define B(X) to be set of all clock constraints g generated by
the following grammar:

g ::= x1 ∼ n | x1 − x2 ∼ n | g1 ∧ g2,

where x1, x2 ∈ X, n ∈ ◆ is a natural number and ∼ ∈ {<, ≤, =, ≥, >}.
A timed automaton is a quintuple (L, X, l0, E, I), where

• L is a finite set of locations,

• X is a finite set of clocks,

• l0 ∈ L is the initial location,

• E ⊆ L × B(X) × 2X × L is the set of edges and

• I : L → B(X) a function which assigns to every location an invariant.

To denote edges, we will write l1
g,r

−→ l2 instead of (l1, g, r, l2). Here, l1 is
the source location of the edge, l2 is the destination, g is the guard of the
edge and r is the set of clocks to be reset after transition.

3

Strict constraints. In this paper (excluding the preliminary section) we will
only work with closed timed automata, i.e. timed automata on clock con-
straints which only use ∼ ∈ {≤, =, ≥}. It is well-known that enforcing
closedness restricts expressivity, but currently our algorithms (to be pre-
sented in Section 5) only work with these non-strict constraints. Unlike
DBMs, the representation of max-plus polyhedra we use here does not al-
low a simple extension to strict inequalities; see Section 6.2 on page 25 for
further discussion.

2.2. Semantics

We will first try to give a very informal description of the semantics of
timed automata. The state of a timed automaton is composed of its control
location and values of each clock. In the initial state, the location is set to
l0 and the value of all clocks is zero. Whenever the automaton is in some
control location l, it has two choices.

1. Similarly to finite state automata, it can do a transition over one of
the edges (l, g, r, l′) that lead from it. However, this is only possible
when the current clock values satisfy the guard g of the edge. After
the transition, all the clocks in the set r of the edge are reset to zero.
Additionally, the invariant of the destination state must be satisfied
by the clock valuation after resetting.

2. It can “stay” in location l for some period of time. This means that
all the clocks increase by the same amount of time. The values of
the clocks must satisfy the location invariant I(l) during this whole
period.

To formally define the semantics of a timed automaton, we must first
define clock valuations. A clock valuation v is a function v : X → ❘≥0, that
assigns a non-negative value to each clock. Let δ ∈ ❘≥0 and r ⊆ X. We
define v + δ to be the valuation such that (v + δ)(c) = v(c) + δ and v[r] to
be the valuation such that v[r](c) = 0 whenever c ∈ r and v[r](c) = v(c)
otherwise.

Formally, the semantics of a timed automaton (L, X, l0, E, I) is given in
terms of a transition system (S, s0, →):

• S = {(l, v) | l ∈ L, v : X → ❘≥0, v � I(l)} is the set of states,

• s0 = (l0, v0), where v0 is the clock valuation that assigns 0 to all clocks,
is the initial state,

• → ⊆ S × S are transitions such that:

– (l, v) → (l′, v′) if l
g,r

−→ l′, v � g, v′ = v[r],

– (l, v) → (l, v + δ) for all δ ∈ ❘≥0 such that v + t � I(l) for any
0 ≤ t ≤ δ.

4

Such a transition system is in most cases infinite and even uncountable,
which means it cannot be directly used in an algorithm. Fortunately, we
can also construct transition systems which are finite – this is achieved by
replacing individual states with symbolic states, where each such state con-
sists of a control location and a set of clock valuations. We naturally require
those sets to have a finite description and the clock valuations contained in
them to be in some way equivalent, which usually means that they have to
be untimed bisimilar, see [1].

An example of such symbolic semantics is the region graph, where the
sets of clock valuations are divided into equivalence classes based on integer
parts, orderings of fractional parts of clock values and whether or not the
value is greater than some fixed constant. The number of such classes grows
very quickly with the number of clocks, hence the region graph is not really
suitable for algorithmic use. Nevertheless, region graphs have been shown to
be useful when proving decidability of some properties of timed automata.

There is, however, another variant of symbolic semantics, which is suit-
able for practical use.

2.3. Zones and zone graphs

Zones are sets of clock valuations that satisfy a conjunction of clock
constraints. Formally, Z ⊆ ❘

X
≥0 is a zone if there is a g ∈ B(X) such that

Z = {v | v � g}. Zones can also be thought of as convex subsets of |X|-
dimensional Euclidean space.

In order to define transitions on symbolic states of the form (l, Z), where
l is a location and Z is a zone, we again need to define some operations first.
Let Z be a zone, g ∈ B(X) and r ⊆ X.

• Z ∧ g = {v ∈ Z | v � g},

• Z↑ = {v + δ | v ∈ Z, δ ∈ ❘≥0},

• Z[r] = {v[r] | v ∈ Z}.

Lemma 2.1. Let Z be a zone, g ∈ B(X) and r ⊆ X. Then Z ∧ g, Z↑ and
Z[r] are also zones [24].

We can now define the symbolic successor relation as follows:

• (l, Z) (l, Z↑ ∧ I(l)) – delay successor,

• (l, Z) (l′, (Z ∧ g)[r] ∧ I(l′)) if l
g,r

−→ l′ – discrete successor.

Let Z0 be a zone containing just the one valuation which assigns zero to all
clocks, and (l0, Z0) our initial symbolic state. All this together gives us a
transition system on symbolic states, called the zone graph. We are usually
only interested in the part that is reachable from (l0, Z0), but it still may
be the case that even this part is infinite.

5

The zone graph can be made finite by the process of extrapolation (some-
times also referred to as normalization), which exploits the fact that once
a clock value exceeds the maximal constant the clock is compared to in the
constraints of the automaton, its precise value becomes irrelevant. There
exist several such operations [10, 13], which will make the state space finite
while preserving its properties (i.e. reachability of a state in our case).

From a practical point of view, the representation of zones is very impor-
tant. We obviously cannot represent a zone as a list of the clock valuations
it contains. A logical approach is to represent zones by the constraints that
define them, which is the basic underlying principle of the DBM data struc-
ture, which is nowadays most commonly used in tools for timed automata
analysis. Section 4 on page 11 is devoted to describing this data structure.

2.4. Deciding reachability in zone graphs

A zone graph can be directly used to decide whether a particular state is
reachable in a timed automaton, i.e. whether there is a run of the automa-
ton that reaches the state. Although the algorithms is basically a depth-first
search on the zone graph, we show the forward reachability algorithm, Al-
gorithm 1 on the following page, as to give the motivation for the operations
needed.

The input of the algorithm is a timed automaton together with a descrip-
tion of a state to check for reachability, i.e. a location s and a constraint
ϕ ∈ B(X).

The algorithm keeps two sets of symbolic states. The Passed set contains
already processed states, and the Waiting set contains the initial state at the
beginning, for states yet to be processed. The body of the main loop picks
a state from the Waiting set, checks whether it satisfies ϕ, and terminates
with positive answer if it does. Otherwise it checks if the state is already
covered by the passed states, i.e. whether it is included in an already visited
zone with the same control location. If this is not the case, the state is added
to the Passed set and its successors to the Waiting set. This is repeated as
long as the Waiting set is nonempty.

6

Algorithm 1: Forward reachability
1: Waiting := {(l0, Z0)}
2: Passed := ∅
3: while Waiting 6= ∅ do

4: Choose and remove (l, Z) from Waiting
5: if l = s and Z ∩ ϕ 6= ∅ then

6: return True

7: end if

8: if Z * Z ′ for all (l, Z ′) ∈ Passed then

9: Passed := Passed ∪ {(l, Z)}
10: Waiting := Waiting ∪ {(l′, Z ′) | (l, Z) (l′, Z ′) ∧ Z ′ 6= ∅}
11: end if

12: end while

13: return False

We can see from the algorithm that in order to develop a data structure
that supports forward reachability analysis, we need it to support following
operations:

• decide whether some parts of the zone satisfy a constraint ϕ,

• decide whether it is a subset of another zone,

• compute successors of a state, which can be achieved by the three
operations listed in Section 2.3 on page 5 and an additional check
whether the zone is empty.

Analogously to the forward reachability algorithm above, also backward
reachability analysis, which computes predecessors instead of successors, is
used. In order to support this analysis, we additionally need operations for
backward delay ↓Z and freeing clocks [r]Z which are the inverses of delay
Z↑ and reset Z[r].

3. Max-plus algebra

Let ❘max denote the set ❘ ∪ {−∞}, and let a ⊕ b = max(a, b) and
a ⊗ b = a + b. The max-plus algebra is the semiring (❘max, ⊕, ⊗), that is,
the set of real numbers equipped with zero element −∞ with the maximum
operation as addition and ordinary addition as multiplication. To further
conform to the usual semiring notation, we denote −∞ as ✵ and 0, the
neutral element with respect to max-plus multiplication, as ✶. As with
ordinary multiplication, we will also use the convention that ab = a ⊗ b.

The definitions of addition and multiplication in max-plus algebra can be
extended to vectors and matrices in the usual way – addition: (v1, . . . , vn)⊕
(w1, . . . , wn) = (v1 ⊕ w1, . . . , vn ⊕ wn), multiplication by scalar: α ⊗

7

(v1, . . . , vn) = (α⊗v1, . . . , α⊗vn), matrix multiplication: (AB)ij =
⊕n

k=1 Aik⊗
Bkj .

Note that the max-plus semiring is idempotent, because a ⊕ a = a for
any element a, and that it is not a ring, because for every a except a = ✵,
there is no b such that a ⊕ b = ✵.

The dual notion to max-plus algebra, used in some literature, is the min-
plus algebra, also called tropical semiring,3 in which the maximum operation
is replaced by the minimum operation and positive infinity is used as zero
element. This has also lead some authors to call max-plus algebra the arctic
semiring.

Notation. In the rest of the paper we will mainly use the letters a, b, c . . . to
denote elements of ❘max. Greek letters α, β, . . . will be used for elements of
❘max in context of scalar multiplication. Whenever speaking of dimension
makes sense, we will denote it n. Vectors, i.e. elements of ❘n

max, will be
denoted v, w, . . .; we will use vi to mean i-th component of vector v, as is
usual. Whenever we work with an indexed family of vectors, the indices of
individual elements will be written in superscript, i.e. v1, . . . , vm to avoid
confusion with selecting the element of a vector.

3.1. Polyhedra over max-plus algebra

Convex max-plus polyhedra are the max-plus analogues of classical con-
vex polyhedra.

Definition 3.1. A convex max-plus polyhedron is a subset of ❘n
max that

satisfies a finite set of (max-plus) linear inequalities.

The word convex refers to the property that any max-plus line segment
between two points of the set is contained in the set. As shown in Figure 1
on the following page, which displays convex max-plus polyhedra in 2D and
3D, we can see that this is different from the classical understanding of
convexity.

Whenever we mention polyhedra in the paper, we refer to closed convex
max-plus polyhedra, unless stated otherwise. Max-plus convex sets were
introduced by [34], a general introduction can be found for example in [22].

3.2. Representation of max-plus polyhedra

Because polyhedra are usually infinite sets of points, we need to represent
them in some finite way, which we furthermore would like to be able to
manipulate efficiently. In the following, we consider three representations of
max-plus polyhedra: systems of constraints, sets of generators and max-plus
cones of higher dimension; the third being a slight variation of the second.

3They are called tropical in honour of Imre Simon, who pioneered the field, apparently
because he was from Brazil.

8

(a) 2D polyhedron. (b) 3D polyhedron.

Figure 1: Examples of polyhedra in 2D and 3D.

All three representations as well as conversion algorithms between these
are described by [2, 3, 4].

Systems of constraints. One possible representation of max-plus polyhedra
is by a finite set of linear inequalities, i.e. inequalities of the form ax ⊕ b ≥
cx ⊕ d, where a, c ∈ ❘

1×n
max and b, d ∈ ❘max . Such a system of s constraints

can be described by two matrices A, C ∈ ❘
s×n
max and two vectors b, d ∈ ❘

s
max,

with the polyhedron P = {x | Ax ⊕ b ≥ Cx ⊕ d}. This representation is
also called external representation.

The external representation is quite similar to a DBM; indeed a DBM
can easily be converted into a polyhedron in external representation using
the fact that, e.g., a clock constraint xi − xj ≥ n can be written as the
max-plus inequality ax ⊕ b ≥ cx ⊕ d with ak = ✵ for k 6= i and ai = ✶,
ck = ✵ for k 6= j and cj = n, and b = d = ✵; see [18] for further details.

An interesting difference from ordinary linear algebra is that a system
of inequalities can be represented as a system of equalities (and vice versa).
This follows from the fact that a ≥ b ⇔ a = a ⊕ b. We can therefore also
choose to represent max-plus polyhedra as systems of equalities.

Sets of generators. Let A, B ⊆ ❘
n
max. The Minkowski sum is defined as

A⊕B = {a⊕b | a ∈ A, b ∈ B}. Vector a is a convex combination of vectors
b1, . . . , bm if a =

⊕m
i=1 αib

i for some scalars αi such that
⊕m

i=1 αi = ✶. Let
co(A) denote the set of all convex combinations of points from A, i.e. its
convex hull.

Vector a is a linear combination of vectors b1, . . . , bm if a =
⊕m

i=1 αib
i

for some scalars αi. A max-plus cone is a set that is closed under linear
combination. The max-plus cone generated by A, denoted cone(A), is the

9

set of all linear combinations of members of A. Max-plus cones are the
analogues of vector (sub)spaces of vectors over a field, and they are studied
in different contexts under the name semimodules [22].

The following theorem is an analogue of a similar theorem for classical
polyhedra.

Theorem 3.2. Any max-plus polyhedron can be represented as Minkowski
sum of a bounded convex set and a cone, both of which are finitely gen-
erated. Additionally, the Minkowski sum of some bounded convex set and
some cone, both of which are finitely generated, represents some max-plus
polyhedron. [22]

In other words, max-plus polyhedra can be represented as co(V) ⊕
cone(W), where V and W are finite sets of points. This can be written
explicitly as

α1v1 ⊕ · · · ⊕ αpvp ⊕ β1w1 ⊕ · · · ⊕ βqwq,

where
⊕p

i=1 αi = ✶ and β1, . . . , βq ∈ ❘max. The representation is also re-
ferred to as internal.

Furthermore, every polyhedron has a unique minimal V, the elements of
which are called extreme points [22, 2, 15]. Extreme points have the property
that they cannot be written as a convex combination of any other points in
V . There is no unique minimal W , because any generator of the minimal
set can be replaced by a scalar multiple. The set of all scalar multiples of a
vector is called a ray, and every cone has a unique minimal set of extreme
rays that generate it. Therefore the minimal W is only unique up to the
choice of representative for each ray.

The internal representation is radically different from the external repre-
sentation, and the conversion between these representations involves solving
max-plus matrix equations, an operation which is computationally rather
expensive [2]. Consequently, throughout this paper, we will only work with
the internal representation.

Homogeneous coordinates for max-plus polyhedra. Max-plus polyhedra in n

dimensions can be also represented as max-plus cones in n+1 dimensions,
which can be thought of as using homogeneous coordinates. Let P = co(V)⊕
cone(W) be the max-plus polyhedron generated by the sets V, W ⊆ ❘

n
max.

Now, let Z ⊆ ❘
n+1
max be defined as Z = {(v,✶) | v ∈ V } ∪ {(w,✵) | w ∈ W}.

It can be seen that P = {x | (x,✶) ∈ cone(Z)}, cf. [2]. The requirement that
the last component of the vector must be equal to ✶ enforces that the scalars
used to multiply elements that were in V sum to ✶, while no restriction is
placed on elements of W . The advantage of representing polyhedra as cones
is that we don’t have to distinguish between two kinds of generators, which
allows the algorithms to be considerably simpler.

10

Choice of representation. Owing to the high cost of converting between ex-
ternal and internal representation, it is necessary for our work to choose one
representation and then stick to it. We have here chosen to use the internal
representation using sets of generators, and we convert freely back and forth
between the convex-cone representation and the one using homogeneous co-
ordinates.

One advantage of using the internal representation is that overapprox-
imating unions of max-plus polyhedra can be computed easily, cf. Sec-
tion 5.3.6 on page 22. The external representation on the other hand resem-
bles much more DBMs (see the next section), hence one might be able to
re-use many DBM algorithms; also, strict constraints can be handled more
easily in the external representation (see Section 6.2 on page 25). By the
resemblance of the external representation to DBMs however, we conjecture
that one cannot obtain major speedups using external-representation based
reachability analysis vs. DBM-based analysis.

4. Difference Bound Matrices

Difference Bound Matrices [17] is currently one of the most efficient data
structures for representing zones [12]. A DBM is, as the name suggests,
a matrix with entries representing the difference between clocks. To be
able to do this in a uniform way for both regular difference constraints as
well as comparing just one clock to a constant, a zero clock, 0, with the
constant value 0, is introduced. This approach benefits from the fact that,
as mentioned in Section 2.3 on page 5, zones are defined by conjunctions of
constraints. With a little rewriting these zone constraints can be converted
into difference constraints on the form x − y � n, where x, y ∈ C ∪ {0},
� ∈ {≤, <} and n ∈ ❩ where C is the set of clocks. This is exactly what a
DBM represents, hence one DBM encodes exactly one zone.

Since we are only interested in the tightest constraints and every con-
straint is concerned with two clocks, every zone is defined by at most
|C0| · (|C0| − 1) constraints, where C0 = C ∪ {0}. By defining the up-
per bound on the difference between two clocks as x − y � n and the lower
bound as y − x � −n, zones in systems with |C| clocks can be stored as
|C0| × |C0| matrices.

To compute the DBM for a zone, every clock in C0 is numbered, assigning
one column and one row to the clock. Every entry in the matrix, D, now
represents the bound xi −xj � n where xi, xj are clocks, i is the row index of
the matrix, j the column index. This means that rows and columns encode
lower and upper bounds respectively.

To be able to handle strictness, an entry in the DBM is not just a value,
but rather the tuple (n, �) where n ∈ ❩ and �∈ {≤, <}, representing the
bound xi −xj � n. As we will only be concerned with non-strict inequalities
here however, we can simplify representations and only use values.

11

When no bound is present for the given clock difference, ∞ is used,
since everything is less than or equal to infinity. Additionally, since all
clocks are positive, the implicit constraints 0 − xi ≤ 0 are added, and since
the difference between a clock and itself should always be 0, xi − xi ≤ 0 is
added as well.

Finally, to be able to manipulate DBMs, comparison and addition of
bounds must be defined. Both are straight-forward extensions of integer
comparison and addition; see [12] for the details.

Since there can be infinitely many different conjunctions of constraints
representing the same solution set and thereby the same actual zone, a
canonical representation is necessary. The canonical representation for DBMs
is the one representing the tightest constraints, without altering the solu-
tion set. This canonical representation can be computed by converting the
DBM into a directed graph, where clocks are represented by nodes and dif-
ference constraints are labelled edges between the appropriate nodes. Now
all there is to do is compute the shortest path between nodes, e.g. by us-
ing the Floyd-Warshall algorithm [21], and then converting back to matrix
form [12].

4.1. DBM operations

As mentioned above, DBMs provide efficient algorithms for reachability-
analysis operations. This includes linear-time algorithms for the basic op-
erations of delaying and resetting as well as freeing a clock. For checking
inclusion of DBMs and intersecting with one clock constraint, quadratic al-
gorithms are provided. This is also the case for backward delay and extrap-
olation. For comparison of the DBM algorithms to our proposed algorithms
on max-plus polyhedra we refer the reader to Section 5 on page 15.

4.2. Example

Since DBMs are the current industry standard for performing real-time
model checking, it is useful to provide a more direct comparison between
max-plus polyhedra and DBMs.

Figure 2 shows an example of a small TA of two clocks which benefits
from using max-plus polyhedra rather than DBMs. Imagine that this is just
the tiny initial part with start location l0 of a much bigger TA connected by
the transition going out of location l3.

Running the forward reachability algorithm on this example will give us
the following results in locations l1 and l2, shown as a zone Z, a max-plus
polyhedron P and a DBM D. A visual indication of the two zones is shown
in Figure 3. In both locations, the status is that we are ready to take the
transition out.

12

l0

l1

l2

l3

R[x = 0]

R[y = 0]

y ≥ 2

x ≥ 2

Figure 2: Timed automaton used for this example.

(a) l1 (b) l2

Figure 3: Location l1 and l2 after delay.

l1.

Z = Jx ≥ 0 ∧ y ≥ 0 ∧ x − y ≤ 0K

P = co({(0
0)}) ⊕ cone({(0

0) ,
(

−∞
0

)
})

D =

0 0 0
∞ 0 0
∞ ∞ 0

l2.

Z = Jx ≥ 0 ∧ y ≥ 0 ∧ y − x ≤ 0K

P = co({(0
0)}) ⊕ cone({(0

0) ,
(

0
−∞

)
})

D =

0 0 0
∞ 0 ∞
∞ 0 0

Continuing the reachability algorithm we calculate the state space go-
ing from l1 and l2 to l3. At first these are stored as two separate states,
containing the zones seen in Figure 4 on the next page.

13

(a) l3 via l1 (b) l3 via l2

Figure 4: The two different possible states in location l3.

l3 via l1.

Z = Jx ≥ 0 ∧ y ≥ 2 ∧ x − y ≤ 0K

P = co({(0
2)} ⊕ cone({(0

0) ,
(

−∞
0

)
})

D =

0 0 −2
∞ 0 0
∞ ∞ 0

l3 via l2.

Z = Jx ≥ 2 ∧ y ≥ 0 ∧ y − x ≤ 0K

P = co({(2
0)}) ⊕ cone({(0

0) ,
(

0
−∞

)
})

D =

0 −2 0
∞ 0 ∞
∞ 0 0

Notice that P and D are unchanged by a delay operation, hence we
are ready to take a transition out of l3. This allows us to see the difference
between the DBM and max-plus approaches. We have two different states for
the location, l3. Moving on from here, because neither max-plus polyhedra
nor DBMs can do exact union, we must decide whether to do all subsequent
operations on both instances of the state space, risking state space explosion,
or we make an overapproximating union. Opting for the overapproximation,
we get the following state for l3.

l3 union.

P = co({(2
0) , (0

2)}) ⊕ cone({
(

−∞
0

)
,
(

0
−∞

)
})

D =

0 0 0
∞ 0 ∞
∞ ∞ 0

14

(a) l3 DBM union (b) l3 MPP and exact union

Figure 5: Union of zones from the two l3 states.

Figure 5 shows the overapproximating union both for DBM and max-
plus polyhedra. As we can see the DBM overapproximation includes the
entire state space, which is not exact, and therefore introduces the risk of
false positives throughout the remainder of the analysis. However, for the
max-plus polyhedron, the union in this case is actually exact, thus there is
no risk of false positives in this case.

Note that it is not necessarily always the case that exact union and
max-plus union are the same.

5. Algorithms on Max-plus Polyhedra

With inspiration from [12], this section elaborates on the different algo-
rithms needed for forward and backward reachability analysis. The algo-
rithms accommodate the checking of properties of max-plus polyhedra and
the different transforming operations.

Whereas [12] consider DBMs, we will work with and suggest equivalent
algorithms for max-plus polyhedra represented as the Minkowski sum of
generators. Using the internal representation, a polyhedron P is given by
a convex set V and a linear set W of generators. Additionally note that
n always denotes the number of clocks for a system, and p the number of
generators for a max-plus polyhedron.

5.1. Conversion algorithms

We will sometimes need to convert forth and back between polyhedra
expressed as Minkowski sums of a convex set and a cone, and the homoge-
neous coordinates described in Section 3.2 on page 10. These conversions
are not difficult and can be seen in Algorithms 2 and 3; their complexities
are O(p).

15

Algorithm 2: poly-to-cone(P)
G := ∅
for all v ∈ V do

G := G ∪ {(v, 0)}
end for

for all w ∈ W do

G := G ∪ {(w, −∞)}
end for

return G

Algorithm 3: cone-to-poly(G)
V, W := ∅
for all g ∈ G do

if gn = −∞ then

W := W ∪ {g}
else

for i := 1 to n do

gi := gi + −gn

end for

V := V ∪ {g}
end if

end for

return V, W

5.2. Property checking

The algorithms in this section do not alter a polyhedron, but are used in
reachability analysis to determine whether a given state is reached, as well
as determining if some state has previously been visited.

5.2.1. Emptiness test – consistent(P)
To check for consistency of a polyhedron is to check whether it contains a

legal clock valuation. By the definition of max-plus polyhedra, a consistent
polyhedron is one that contains at least one generator in the convex set.
This is because the set of scalars for the convex set must sum to max-plus
one, however if there are no generators, there will be no scalars and the sum
of nothing is max-plus zero [2].

Additionally, clocks will always have a value in positive Euclidean space.
Hence, for the polyhedron to be consistent, there must exist at least one
combination of scalars such that all dimensions are positive or 0.

However, if we start with a polyhedron in positive space and only use
the operations described here (for reset, we additionally require it to be
used with positive constants), this will preserve the polyhedron in positive

16

space. This makes the test for emptiness O(1) as we only need to check if
we have a non-empty set of convex generators according to the definition.

5.2.2. Membership test – contains-point(G, x)
Testing whether a point x is contained in a polyhedron P is not directly

used in reachability analysis, but is used as a subroutine in contains and
cleanup algorithms.

Checking whether one point x can be generated by a polyhedron P is
done by converting P to a cone G of ❘n+1

max as shown in Algorithm 2. Simi-
larly, x is converted to x′ of ❘n+1

max with the last coordinate set appropriate
according to whether it is an actual point or a ray representative.

Then the only thing left to do is to see if Gy = x′ admits a solution, where
G is the matrix containing all generators of G as columns. The following
algorithm is provided in [2]; see also [15]: The equation Gy = x′ may not
have a solution, but the inequality Gy ≤ x′ always does. We can compute
the maximal solution ŷ of this inequality according to the formula ŷi =
min1≤j≤n+1(x′

j − Gji). The equation Gy = x′ then has a solution if and
only if Gŷ = x′. If so, then x′ is in P , otherwise it is not. The algorithm
runs in O(pn) time.

Algorithm 4: contains-point(G, x)

for all gi ∈ G do

yi := min1≤j≤n+1(xj − gi
j)

end for

for all 1 ≤ j ≤ n + 1 do

zj := maxgi∈G(yi + gi
j)

end for

if x = z then

return true

end if

return false

5.2.3. Subset test – contains(P, P ′)
Inclusion checking is a crucial operation when doing state space explo-

ration. It is needed to determine whether a given state has already been
visited, and hence does not need to be traversed again. To do this for max-
plus polyhedra is simple: given two polyhedra P and P ′, to determine if
P contains P ′, we just need to check whether all generators of P ′ can be
generated by P .

The complexity of the contains algorithm is O(pp′n), where n is the
number of clocks, p is the number of generators for P and p′ the number of
generators for P ′, as every call to contains-point takes O(pn), and there
are p′ of them. For comparison, the DBM algorithm for inclusion checking
is quadratic in the number of clocks, O(n2).

17

Algorithm 5: contains(P, P ′)
G := poly-to-cone(P)
G′ := poly-to-cone(P ′)
for all g′ ∈ G′ do

if ¬contains-point(g′, G) then

return false

end if

end for

return true

5.2.4. Constraint satisfaction – satisfied(P, ϕ)
It is important to be able to check, non-destructively, whether a polyhe-

dron partially satisfies a given constraint. This is used to determine whether
a state satisfies some timing constraints given in the initial query.

For constraints of the form ϕ = xi−xj ∼ c where ∼ ∈ {≤, =, ≥} and xi ∈
C, xj ∈ C∪{0}, a simple satisfied algorithm is to intersect the polyhedron
with the constraint and then check for emptiness. The correctness of this
is trivial and will not need more discussion. Complexity-wise, however, the
algorithm is O(p2n) due to the use of constraint intersection, described in
Section 5.3.1. We believe this is not the fastest approach, but improving
this is left for future work.

The DBM algorithm for constraint satisfaction uses the same approach,
namely adding the constraint to the zone and checking for consistency, which
is O(n2).

5.3. Transformations

The transformations are the algorithms which modify a polyhedron in
order to determine the reachable state space for a TA. This includes the
basic algorithms of delay and reset among others.

5.3.1. Constraint intersection – and(P, xi − xj ∼ c)
Adding a constraint is done by intersecting the polyhedron P with the

difference constraint xi − xj ∼ c. An algorithm (Algorithm 7 on the next
page) for computing the intersection of a max-plus cone with the half-space
satisfying a set of max-plus inequalities is given by [3]. As any difference
constraint can be expressed as max-plus inequality, the only thing that re-
mains is to convert the constraint of the form xi − xj ∼ c to two vectors a

and b that represent the max-plus half-space {x | a ⊗ x ≤ b ⊗ x}, and use
the aforementioned algorithm on the cone representation of the polyhedron.

Without loss of generality, we can assume that the constraint is xi −xj ≤
c, because xi − xj ≥ c is equivalent to xj − xi ≤ −c and intersection with
xi − xj = c can be computed by simply computing the intersection with

18

xi − xj ≤ c and xi − xj ≥ c. This constraint can be rewritten as xi ≤ xj + c,
or in the max-plus notation, 0 ⊗xi ≤ c ⊗ xj . This means that a will be a
vector the components of which will be -∞, except for the i’th value, which
will be 0. Similarly, b will consist of negative infinities except at the j’th
place, which will be c.

Algorithm 6: and(P, xi − xj ≤ c)

a := (−∞, . . . , −∞)
b := (−∞, . . . , −∞)
ai := 0
bj := c

return cone-to-poly(intersect-halfspace(poly-to-cone(P), a, b))

Algorithm 7: intersect-halfspace(G, a, b)

G≤ := {g ∈ G | a ⊗ g ≤ b ⊗ g}
G> := {g ∈ G | a ⊗ g > b ⊗ g}
H := G≤

for all (g, h) ∈ G≤ × G> do

H := H ∪ {((a ⊗ h) ⊗ g) ⊕ ((b ⊗ g) ⊗ h)}
end for

return H

The complexity of intersect-halfspace is O(p2n) – the evaluation of
the expression inside the loop takes O(n) and may be performed O(p2) times,
which is also the upper bound on the number of computed generators. As the
conversions from and to the cone representation can be naively implemented
in O(pn), the overall time complexity of intersection with a constraint is in
O(p2n). The complexity of this operation for DBMs is O(n2).

5.3.2. Delay – up(P)
The delay operation is one of the basic algorithms used for forward explo-

ration. Delay is easily done on a max-plus polyhedron, simply by copying
all points in the convex combination to the linear combination [18]. The
complexity is O(pn), as we need to loop though all points and for each point
we need to copy its value in every dimension. For DBMs the delay algorithm
is linear in the number of clocks, O(n).

Algorithm 8: up(P)
W := W ∪ V

5.3.3. Backward delay – down(P)
Backward delay is the algorithm for determining all the states that could

have brought us into a given state by delay. It is used when doing backward

19

state-space exploration rather than forward exploration. To do backward
delay on a polyhedron we need to add the generator (−1, . . . , −1) to the
convex set and then intersect with the polyhedron for positive Euclidean
space. Since and is complexity O(p2n), the entire complexity of down is
O(p2n2). Backward delay for DBMs is O(n2).

Algorithm 9: down(P)
V := V ∪ {(−1, . . . , −1)}
for i := 1 to n do

and(P, xi ≥ 0)
end for

Proof of correctness. Let P = co(V)⊕cone(W) ⊆ ❘
n
≥0 be a polyhedron. The

polyhedron that we would like to get after applying this algorithm is ↓P =
{v | v ∈ ❘

n
≥0, v + d ∈ P, d ∈ ❘≥0}. Let P̂ = (co(V ∪ {f}) ⊕ cone(W)) ∩ ❘n

≥0,
where f is the vector which has −1 as all components. We need to prove
that ↓P = P̂ .

• ↓P ⊆ P̂ : Let p be a point in ↓P . This means that there is a point
p + d ∈ P for some d ∈ ❘≥0, from which we can derive a possible
representation of p if we consider the scalars of p + d as max-plus
multiples of d:

p + d =
p⊕

i=1

αidvi ⊕
q⊕

i=1

βidwi =

(
p⊕

i=1

αiv
i ⊕

q⊕

i=1

βiw
i

)
⊗ d,

where αi, βi ∈ ❘max, vi ∈ V , wi ∈ W and
⊕p

i=1 αid = 0. We can now
show that p ∈ P̂ – indeed:

p =
p⊕

i=1

αiv
i ⊕

q⊕

i=1

βiw
i =

p⊕

i=1

αiv
i ⊕ 0f ⊕

q⊕

i=1

βiw
i.

In the last expression, we have (
⊕p

i=1 αi) ⊕ 0 = 0 and as we know
that p ∈ ❘

n
≥0, the addition of 0 ⊗f will not change the resulting point.

Therefore p ∈ P̂ .

• P̂ ⊆ ↓P : Let p ∈ P̂ :

p =
p⊕

i=1

αiv
i ⊕ γf ⊕

q⊕

i=1

βiw
i,

where αi, βi, γ ∈ ❘max, vi ∈ V , wi ∈ W and (
⊕p

i=1 αi) ⊕ γ = 0. Let
d = − maxp

i=1 αi. Now we can show that p + d ∈ P :

p + d =

(
p⊕

i=1

αiv
i ⊕

q⊕

i=1

βiw
i

)
⊗ d =

p⊕

i=1

αidvi ⊕
q⊕

i=1

βidwi,

20

since
⊕p

i=1 αid = 0. According to the definition, this also means that
p ∈ ↓P. �

5.3.4. Resetting clocks – reset(P, xi = c)
Reset is the operation of resetting one clock to a given value. In effect it

is an affine projection to the hyperplane equivalent to a given constant for
the given dimension. It is done by iterating through all generators, setting
the given dimension to the given reset value for the convex generators, and
setting the given dimension to −∞ for the linear generators [18]. This
operation can be done in linear time in the number of generators O(p). The
reset operation on DBMs is done in linear time in the number of clocks O(n).

Algorithm 10: reset(P, xi = c)
for all v ∈ V do

vi := c

end for

for all w ∈ W do

wi := −∞
end for

5.3.5. Removing constraints – free(P, xi)
Freeing a clock on a polyhedron is done by removing all constraints on

that particular clock. It is used in combination with constraint intersection
to handle resets when exploring the state-space backward. Performing the
free operation on a polyhedron can be done by resetting the polyhedron
with respect to the clock being freed, and then adding the generator con-
taining −∞ for all clocks except xi, where the value should be 0, to the set
W. Complexity-wise, free is O(n + p) since reset is linear in the number
of points, and creating a vector is linear in the number of clocks. The free

operation on DBMs has complexity O(n).

Algorithm 11: free(P, xi)
reset(P, xi = 0)
g := (−∞, . . . , −∞)
gi := 0
W := W ∪ {g}

Proof of correctness. Let P be a polyhedron. Removing a constraint on
clock xd in P should result in the set P∗d = {v | ∃v′ ∈ P. ∀1 ≤ i ≤ n, d 6=
i. vi =v′

i}. Let P̂ be the polyhedron obtained by running our algorithm on
P , i.e. by resetting the clock xd to zero and adding a generator with zero

21

at the d’th place and negative infinities at all others to the set of linear
generators. Let ✵d denote this generator. We shall now prove that P∗d = P̂ .

• P∗d ⊆ P̂ : Let p be a point in P∗d. By the definition of P∗d, there
must be a point q ∈ PR[xd=0] such that it has the same values of all
components except the d’th. From the definition of the reset operation,
we also know that qd = 0. We can see that q ⊕ (pd ⊗✵d) is equal to p

and is still contained in P̂ , because of the added generator. In other
words, q ⊕ (pd ⊗ ✵d) = p ∈ P̂ .

• P̂ ⊆ P∗d: Let p ∈ P̂ . Because the reset and addition of ✵d only affected
the d’th coordinate, we know that there is a point p′ ∈ P that is equal
to p except for the d’th coordinate. Because the d’th coordinate was
first set to zero and then possibly incremented by some scalar multiple
of ✵d, it cannot be negative and therefore satisfies the second condition
of membership in P∗d. Thus, p ∈ P∗d. �

5.3.6. Union overapproximation – convex-union(P1, P2)
This operation returns the smallest polyhedron that contains both P1

and P2. Such an operation is useful when performing reachability analysis
with convex hull overapproximation of the state space. The algorithm which
is simply taking the union of the generators of P1 and P2 returns the smallest
overapproximating polyhedron. As max-plus polyhedra can represent any
given DBM, the max-plus convex hull of two given zones can never be bigger
than the DBM convex hull. On the other hand, as seen in the example in
Section 4.2 on page 12 there exists convex-hull polyhedra which are tighter
overapproximations than convex-hull DBMs. For more details cf. [18].

The time complexity of taking the union of two sets is O(pn). For DBMs,
the overapproximation algorithm is O(n2) as it simply involves searching
through the matrices, picking the higher value for every constraint from
them.

5.4. Cleaning up

All transformations on max-plus polyhedra may introduce redundant
generators, i.e. generators that are not extreme points and can therefore
be expressed as a combination of the extreme points. Because the time
complexity of most of the algorithms depends on the number of generators,
it is desirable to remove such redundant generators to store only the minimal
number of generators.

5.4.1. Removing redundant generators – cleanup(P)
Cleaning up results in a combination of a unique and minimal represen-

tation for max-plus polyhedra. The uniqueness part is to be understood as
a minimal unique convex part, and a minimal but not necessarily unique
linear part. Making the linear part unique would require a slight alteration

22

of cleanup which normalizes the linear vectors in some way. However, we do
not believe this will give us any significant advantage, so we have decided
not to do this.

Algorithm 12: cleanup(P)
G := poly-to-cone(P)
for all g ∈ G do

if contains-point(g, G r {g}) then

G := G r {g}
end if

end for

return cone-to-poly(G)

This is done by checking for each point whether it can be generated by
the other points. If it does, it is removed. Every such check costs O(pn),
which makes the time complexity of this algorithm O(p2n).

A cleaned up polyhedron can be considered to be canonical in the sense
that a cleaned up polyhedron is the optimal input for the different algorithms
in a similar way as a canonical DBM is for the DBM algorithms. Therefore
the clean algorithm can be compared to the canonicalization algorithm for
DBMs, which is the standard Floyd-Warshall algorithm and therefore O(n3).

5.5. Summary

Table 1 on the next page shows a comparison of the complexity of the
algorithms for max-plus polyhedra and for DBMs. The number of clocks
is denoted n, while p denotes the number of generators of the polyhedron.
Noting that in general, p will be greater than n (especially when we are
using max-plus polyhedra to represent complex shapes), we may conclude
from the comparison that the complexity of our polyhedra-based algorithms
is comparable to the one of the standard DBM algorithms, with a slight
advantage to the DBM side.

The main argument in favor of the max-plus approach is thus the fact
that overapproximation using max-plus polyhedra is tighter than the DBM
overapproximations; max-plus polyhedra allow more complex shapes to be
represented by a single instance than DBMs, which can indeed be a major
advantage in real-time model checking.

Table 1 notes.

a. This does require the zone to always be canonical and that every other
operation checks whether the upper bound is lower than the correspond-
ing lower bound whenever a bound is changed, setting D00 to a negative
value if this is the case.

b. We believe that this can be done in O(p). However, the verification of
this is left as future work, see Section 6.1.

23

Max-plus polyhedra DBM
Emptiness test O(1) O(1)a

Inclusion test O(p2n) O(n2)
Constraint satisfaction O(p2n)b O(n2)
Constraint intersection O(p2n) O(n2)
Delay O(pn) O(n)
Backward delay O(p2n2) O(n2)
Resetting clocks O(p) O(n)
Removing constraints O(p + n) O(n)
Union overapproximation O(pn) O(n2)
Removing redundant generators O(p2n) O(n3)c

Table 1: Complexity of algorithms for max-plus polyhedra and DBMs.

c. As mentioned in Section 5.4.1, we have decided to compare this to DBM
canonicalization. Note that some of the DBM algorithms accommodate
the possibility of a slight altering which preserves canonicity, allowing
canonicalization to be skipped.

6. Conclusion and future work

We have shown that convex max-plus polyhedra are a suitable data
structure for real-time reachability analysis. We have developed the neces-
sary algorithms for both forward and backward reachability analysis, and
we have seen that their complexity is comparable to the one of the standard
DBM algorithms.

We have also shown that overapproximations using max-plus polyhedra
are more tight than the ones one gets in the DBM-based approach, in that
max-plus polyhedra can express some non-convex properties without resort-
ing to disjunction. As any disjunction essentially doubles the state space to
be checked, hence leads to state-space explosion, we believe that max-plus
polyhedra can provide a useful tool for combating state-space explosion.

6.1. Performance

To show that our max-plus approach works in practice, we have created a
proof-of-concept implementation on top of the Python-based model checker
opaal [30]. This works as expected, but is very slow compared to state-
of-the-art tools as e.g. Uppaal. The main reason for this is that neither
our implementation nor the opaal model checker itself are optimized for
performance, but also some of our algorithms use a rather naïve approach
and can certainly be optimized. One example of such optimization is the

24

satisfied algorithm from Section 5.2.4: instead of using constraint inter-
section, one could compare the constraint against the generators one by one,
which would cut complexity down to O(p).

We are also working on an optimized implementation of a max-plus
library which can be used by real-time model checkers such as Uppaal as
a drop-in replacement for their DBM library. As we are replacing the basic
data structures however, this is not an easy task.

6.2. Strict constraints

As we are using them here, max-plus polyhedra can only represent sets
of non-strict constraints. To extend our approach to strict constraints poses
some difficulties which are not present in the DBM approach, essentially
because DBMs represent zones by their codimension-one faces, whereas we
represent max-plus polyhedra by their corners (generators).

We currently see no way to represent strict constraints using the internal
representation of max-plus polyhedra, other than carrying around extra in-
formation as to strictness of their codimension-one faces, which so to speak
is a step in the wrong direction. We know of some approaches to solve the
same problem for classical polyhedra in [9], but they do not seem to carry
over to the max-plus setting.

6.3. Federation data structure

The forward reachability algorithm described in Section 2.4 on page 6
needs to check whether newly discovered symbolic states have already been
processed – passed. The set of passed states can be implemented as a list
of such states, but this is very inefficient. It has been shown that a more
efficient data structure, such as clock decision diagrams [25] in the zone-
based case, provides a considerable reduction of the space needed to store
passed states.

This data structure (also referred to as federation) needs to represent
finite union of symbolic states, i.e. max-plus polyhedra in our case, and
support following two operations efficiently:

1. Checking whether a polyhedron P in internal representation is a subset
of the federation.

2. Adding a new polyhedron P in internal representation to the federa-
tion.

Therefore a new BDD-based data structure to be used for federations of
max-plus polyhedra is called for.

6.4. Extrapolation operation

In general, the symbolic state space explored during reachability check-
ing may be infinite. One solution is to apply an extrapolation operation

25

to each computed successor, which will make the state space finite while
keeping the properties of the original one. Several such operations exist for
zones [10, 13], but as with strict constraints above, the problem is that they
are manipulating the codimension-one faces of zones, whereas we need algo-
rithms which work on the corners (generators). Hence new algorithms for
extrapolation are necessary.

Bibliography

[1] Luca Aceto, Anna Ingólfsdóttir, Kim G. Larsen, and Jiří Srba. Reactive
Systems. Cambridge University Press, 2007.

[2] Xavier Allamigeon, Stéphane Gaubert, and Éric Goubault. Inferring
min and max invariants using max-plus polyhedra. In María Alpuente
and Germán Vidal, editors, SAS, volume 5079 of Lecture Notes in Com-
puter Science, pages 189–204. Springer, 2008.

[3] Xavier Allamigeon, Stéphane Gaubert, and Éric Goubault. Computing
the extreme points of tropical polyhedra, 2009. arXiv:0904.3436.

[4] Xavier Allamigeon, Stéphane Gaubert, and Éric Goubault. The trop-
ical double description method. In Jean-Yves Marion and Thomas
Schwentick, editors, STACS, volume 5 of LIPIcs, pages 47–58. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2010.

[5] Rajeev Alur, Costas Courcoubetis, David L. Dill, Nicolas Halbwachs,
and Howard Wong-Toi. An implementation of three algorithms for
timing verification based on automata emptiness. In IEEE Real-Time
Systems Symposium, pages 157–166, 1992.

[6] Rajeev Alur and David L. Dill. Automata for modeling real-time sys-
tems. In Mike Paterson, editor, ICALP, volume 443 of Lecture Notes
in Computer Science, pages 322–335. Springer, 1990.

[7] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[8] Eugene Asarin, Marius Bozga, Alain Kerbrat, Oded Maler, Amir
Pnueli, and Anne Rasse. Data-structures for the verification of timed
automata. In Oded Maler, editor, Hybrid and Real-Time Systems,
volume 1201 of Lecture Notes in Computer Science, pages 346–360.
Springer Berlin / Heidelberg, 1997. 10.1007/BFb0014737.

[9] Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and Patricia M. Hill.
Possibly not closed convex polyhedra and the parma polyhedra library.
In Proceedings of the 9th International Symposium on Static Analysis,
volume 2477 of Lecture Notes in Computer Science, pages 213–229.
Springer-Verlag, 2002.

26

[10] Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pelánek.
Lower and upper bounds in zone-based abstractions of timed au-
tomata. International Journal on Software Tools for Technology Trans-
fer, 8:204–215, June 2006.

[11] Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and
Wang Yi. Efficient timed reachability analysis using clock difference dia-
grams. In Nicolas Halbwachs and Doron Peled, editors, Proc. CAV’99,
volume 1633 of Lecture Notes in Computer Science, pages 682–682.
Springer, 1999.

[12] Johan Bengtsson. Clocks, DBMs, and States in Timed Systems. PhD
thesis, Uppsala University, June 2002.

[13] Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. Diag-
onal constraints in timed automata: Forward analysis of timed systems.
In In Proc. FORMATS’05, vol. 3829 of LNCS, pages 112–126. Springer,
2005.

[14] Marius Bozga, Oded Maler, Amir Pnueli, and Sergio Yovine. Some
progress in the symbolic verification of timed automata. In Lecture
Notes in Computer Science, pages 179–190. Springer-Verlag, 1997.

[15] Peter Butkovič, Hans Schneider, and Sergĕı Sergeev. Generators, ex-
tremals and bases of max cones. Linear Algebra and its Applications,
421(2-3):394 – 406, 2007.

[16] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In POPL ’78: Proceedings
of the 5th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, pages 84–96. ACM Press, 1978.

[17] David L. Dill. Timing assumptions and verification of finite-state con-
current systems. In Joseph Sifakis, editor, Automatic Verification Meth-
ods for Finite State Systems, volume 407 of Lecture Notes in Computer
Science, pages 197–212. Springer, 1989.

[18] Jesper Dyhrberg, Qi Lu, Michael Madsen, and Søren Ravn. Compu-
tations on zones using max-plus algebra. Bachelor’s project, Aalborg
University, 2010. https://services.cs.aau.dk/public/tools/library/

details.php?id=1274952619.

[19] Rüdiger Ehlers, Daniel Fass, Michael Gerke, and Hans-Jörg Peter. Fully
symbolic timed model checking using constraint matrix diagrams. Real-
Time Systems Symposium, IEEE International, pages 360–371, 2010.

27

[20] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. Verification, perfor-
mance analysis and controller synthesis for real-time systems. In Man-
fred Broy, Wassiou Sitou, and Tony Hoare, editors, Engineering Meth-
ods and Tools for Software Safety and Security, volume 22 of NATO
Science for Peace and Security Series – D: Information and Commu-
nication Security. IOS Press, 2009.

[21] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5:345,
June 1962.

[22] Stéphane Gaubert and Ricardo D. Katz. The Minkowski theo-
rem for max-plus convex sets. Linear Algebra and its Applications,
421(2–3):356–369, 2007.

[23] Roberto Giacobazzi and Francesco Ranzato. Compositional optimiza-
tion of disjunctive abstract interpretations. In Proc. of the 1996 Eu-
ropean Symposium on Programming, volume 1058 of Lecture Notes in
Computer Science, pages 141–155. Springer-Verlag, 1996.

[24] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. Inf. Comput.,
111(2):193–244, 1994.

[25] Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock
difference diagrams. Nordic J. of Computing, 6:271–298, September
1999.

[26] Qi Lu, Michael Madsen, Martin Milata, and Søren Ravn. Computations
on zones using max-plus algebra. Project report, Aalborg University,
January 2011. http://download.birdiesoft.dk/maxplus.pdf.

[27] Antoine Miné. A new numerical abstract domain based on difference-
bound matrices. In Proceedings of the 2nd Symposium on Programs as
Data Objects (PADO 2001), volume 2053 of Lecture Notes in Computer
Science, pages 155–172. Springer-Verlag, 2001.

[28] Antoine Miné. The octagon abstract domain. In In AST 2001 in WCRE
2001, IEEE, pages 310–319. IEEE CS Press, 2001.

[29] Jesper B. Møller, Jakob Lichtenberg, Henrik Reif Andersen, and Hen-
rik Hulgaard. Difference decision diagrams. In Jörg Flum and Mario
Rodríguez-Artalejo, editors, CSL, volume 1683 of Lecture Notes in
Computer Science, pages 111–125. Springer, 1999.

[30] Mads Chr. Olesen and Kenneth Y. Jørgensen. opaal. http://www.

opaal-modelchecker.com/.

28

[31] Sriram Sankaranarayanan, Franjo Ivancic, Ilya Shlyakhter, and Aarti
Gupta. Static analysis in disjunctive numerical domains. In
Kwangkeun Yi, editor, Static Analysis, volume 4134 of Lecture Notes
in Computer Science, pages 3–17. Springer Berlin / Heidelberg, 2006.
10.1007/11823230/2.

[32] Uppsala University and Aalborg University. UPPAAL. http://www.

uppaal.com/.

[33] Sergio Yovine. KRONOS: A verification tool for real-time systems.
International Journal on Software Tools for Technology Transfer, 1(1–
2):123–133, 1997.

[34] Karel Zimmermann. A general separation theorem in extremal algebras.
Ehkon.-Mat. Obz., 13:179–201, 1977.

29

