
HAL Id: hal-01088049
https://inria.hal.science/hal-01088049

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vision Paper: Make a Difference! (Semantically)
Uli Fahrenberg, Axel Legay, Andrzej Wasowski

To cite this version:
Uli Fahrenberg, Axel Legay, Andrzej Wasowski. Vision Paper: Make a Difference! (Semantically).
MoDELS, Oct 2011, Wellington, New Zealand. pp.490 - 500, �10.1007/978-3-642-24485-8_36�. �hal-
01088049�

https://inria.hal.science/hal-01088049
https://hal.archives-ouvertes.fr


Vision Paper: Make a Difference! (Semantically)⋆

Uli Fahrenberg1, Axel Legay1, and Andrzej Wąsowski2

1 INRIA / Irisa Rennes, France, {ulrich.fahrenberg,axel.legay}@irisa.fr
2 IT University of Copenhagen, Denmark, wasowski@itu.dk

Abstract. Syntactic difference between models is a wide research area with

applications in tools for model evolution, model synchronization and version

control. On the other hand, semantic difference between models is rarely discussed.

We point out to main use cases of semantic difference between models, and then

propose a framework for defining well-formed difference operators on model

semantics as adjoints of model combinators such as conjunction, disjunction and

structural composition. The framework is defined by properties other then construc-

tively. We instantiate the framework for two rather different modeling languages:

feature models and automata specifications. We believe that the algebraic theory

of semantic difference will allow to define practical model differencing tools in

the future.

1 Introduction

The notion of syntactic difference is well established in software engineering. Textual

and graphical algorithms are used to identify differences between text files (source

code) and models, and then employed to construct versioning systems, which support

comparison and merging of files. Semantic difference between models is rarely discussed

in the modeling community. This is surprising given the wide recognition of importance

of software evolution; semantic difference can support evolution scenarios like bug

localization, or incremental verification, and enable model merging that does not fail on

ad-hoc syntactic conflicts.

While working on specification theories, within the realm of concurrency and

verification, we have observed that many familiar operators on specifications also apply

to other models: conjunction – superposition of requirements; parallel composition –

structural composition of models; refinement – subtyping, just to mention the most

important ones. However the notion of difference, as a form of (partial) inverse to the

above operators, does not attract nearly as much interest in software engineering.

Our objective is to define and present semantic difference between models in a gen-

eral fashion. We propose an unambiguous definition of difference which emphasizes its

algebraic properties. We instantiate it both for a very simple modeling language, feature

models [13], and also for the mode complicated language of automata specifications [14].

Finally, we also try to explain how difference operators can be used to make formal

software development more iterative. It is a common belief that development by stepwise

refinement, or use of component algebras, requires using a highly planned and waterfall-

like development process. See for example the following quote:

⋆ Supported by MT-LAB: a VKR Centre of Excellence in Modeling of IT Systems



An important variant of the waterfall model is formal system development,

where a mathematical model of a system specification is created. This model is

then refined, using mathematical transformations that preserve its consistency,

into executable code. Based on the assumption that your mathematical transfor-

mations are correct, you can therefore make a strong argument that a program

generated in this way is consistent with its specification. [22, p.32]

We will point out uses of difference between models involving flow of information

between the stages of the development process and abstraction layers in either way. This

allows to run the formal development process in a more agile and iterative manner.

Let us give a teaser of our approach to difference with an extremely simple example:

the difference operator for integer numbers. Observe that given two integers t and s, the

difference t− s can be defined as the maximum integer x for which s+ x ≤ t. More

succinctly: x is a difference of t by s if it holds that for any other integer y:

s+ y ≤ t iff y ≤ x.

It is then easy to see that this defines a unique notion of difference. Now observe that

we have here defined t − s by property rather than construction. To show that such a

difference actually exists, one has to do more work; but if it does, we already know that

it is unique. We will repeatedly use constructions like the above for defining differences

with respect to other binary operators and for other objects than integers.

A similar algebraic structure can be uncovered in the area of software verification:

In programming languages, there is a long established notion of weakest precondition,

as the proof obligation on the context of a piece of code which suffices to conclude

a given goal [8,11]. Let P be a fragment of imperative code consisting of a number

of sequentially composed statements s1, . . . , sk. Let the axiomatic semantics for each

statement be expressed by a Hoare triple {ϕi}si{ψi}, where ϕi is a precondition and

ψi is a postcondition, and let ψ be a desired property of the state after executing P .

Proving that P is correct, i.e. that {true}P{ψ} describes P , amounts to showing that

true → ϕ1, ϕ1 → ψ1, ψ1 → ϕ2, . . . , ψk → ψ.

However this may not always be possible, since it enforces correctness regardless of

the initial state. Instead it is more reasonable to synthesize an assumption X for which

X → ϕ1, ϕ1 → ψ1, ψ1 → ϕ2, . . . , ψk → ψ. The property X is called a sufficient

precondition for P to guarantee ψ. We say that X is the weakest precondition if it is also

necessary, i.e. if it holds for all formulae Y that

Y → ϕ1, ϕ1 → ψ1, ψ1 → ϕ2, . . . , ψk → ψ iff X → Y.

The precondition X informs the user of P on what conditions she has to meet.

Dually if the precondition ϕ for P is fixed by the users of the program, the strongest

post-condition shows the developer what can be guaranteed with P . If this conclusion is

unsatisfactory, the developer can use it to improve P , to give stronger guarantees.

In the following section we will see that this weakest precondition structure, will

also appear in differencing feature models.

2



2 Case Study: Difference for Feature Models

We will now define difference for the language of feature models [13]. To the best of our

knowledge, semantic differences for feature models have not been studied before.

Definition 1. A feature model is a tuple M=(F,H,G, ϕ). F is a finite set of features,

H ⊆ F×F is a set of directed edges, G⊆2F is a set of or-groups, and ϕ is a Boolean

formula over F expressing so-called cross-tree constraints. We demand that i) (F,H) is

a forest3 and write parent(f), for f ∈ F , for the unique p ∈ F for which (p, f) ∈ H ,

and that ii) all states in an or-group share the same parent, so for all e, f ∈ g ∈ G,

parent(e) = parent(f).

Fig. 1 presents feature models of two applets (in the spirit of [1]) which we will use as

examples. We will use single letter names for features (underlined in the diagram). In

applet1, the root feature is a and represents the concept of an applet itself. The diagram

says that the applet is decomposed into three smaller features (m, d, t). The empty circles

above the names of d and t mean that implementing these two features is optional: an

applet may, but does not have to override d and t. However, each applet must override

(m) at least one of the methods p, s, and i; this necessity is denoted by the filled circle

above the feature m and the filled arc in the concrete syntax. In the abstract syntax, this

is expressed by or-groups {m}, {p, s, i} ∈ G. Moreover the cross-tree constraint (placed

under the diagram) requires that any applet overriding d or s must also override i.

The variant of feature models presented above is among the simplest (and perhaps

most popular) in use. The semantics of the language is defined in terms of translation to

Boolean logics, see [2]. Let M = (F,H,G, ϕ) be a feature model, then

[[M ]] = ϕ ∧
(

∧

(p,c)∈H

c→ p
)

∧
∧

{f1,...,fk}∈G

(

parent(f1) →
k
∨

i=1

fi
)

.

The generated formula describes the configurations allowed by M . All of them need

to satisfy the cross-tree constraint ϕ. Also, whenever a feature f is included in a

configuration, its parent must be included, too. Finally, for each group at least one

of its members must be present as soon as its (unique) parent is present. The semantics

of our example is hence

(

(d → i) ∧ (t → i)
)

∧
(

(m → a) ∧ (d → a) ∧ (t → a)

∧ (p → m) ∧ (s → m) ∧ (i → m)
)

∧
(

(a → m) ∧ (m → (p ∨ s ∨ i))
)

.

Analysis techniques for feature models often rely on SAT solving or BDDs [23,16,24,17].

Consider now the feature model applet2 of Fig. 1, which could emerge as a result of

the same concept being modeled by another engineer. To focus attention we will assume

that this model has been created by a designer of a component that needs to satisfy model

applet1 as a requirement. A few questions arise: How do these two models differ? Are

they equivalent? If not, what is the actual difference?

3 A forest is a finite disjunction of rooted trees, so technically we capture sets of feature models.

3



applet
stopdestroy

paint init

must-override

start
(d → i) ∧ (t → i)

applet
1

applet

stopdestroypaint

initmust-override

start
(¬m → i)

applet
2

applet

stopdestroypaint

initmust-override

start

(¬m → i)

Quotient approximation

Fig. 1. The two example feature models and an over-approximation of their quotient

Syntactic difference algorithms cannot address these questions. A textual difference

algorithm applied to the cross-tree constraint would just say that they differ, being unable

to qualitatively explain the difference. An edit-distance based algorithm applied to the

tree diagram could likely discover that i has been moved to become a parent of d and t,

but not more – tree difference algorithms inform about the editing steps, but they cannot

explain their impact. Admittedly, syntactic difference has a proven record of usefulness

in many situations. However a modeler trying to understand the difference between the

two diagrams, would likely ask a non-syntactic question: What does this change mean?

Such question is best addressed semantically.

Following the pattern of the examples in the introduction, we will define the semantic

difference of formulae ϕ and ψ as the “weakest” solution X to the implication ϕ∧X →
ψ. Hence:

Definition 2. Given two formulae ϕ and ψ, a formula X is an adjoint to the conjunction

ϕ ∧ ψ if it holds for all formulae Y that

ϕ ∧ Y → ψ iff Y → X.

Thus X satisfies ϕ ∧X → ψ and is implied by any Y which also solves this “equation”.

The next lemma shows that adjoints to conjunction are defined uniquely up to bi-

implication, hence we may speak of the adjoint to a conjunction ϕ ∧ ψ and denote it

X = ψ \∧ ϕ (provided that it exists, which we shall show below):

Lemma 1. If X1 and X2 are adjoints to the conjunction ϕ ∧ ψ, then X1 ↔ X2.

Proof. X1→X1 entails ϕ∧X1→ψ and hence X1→X2. Similarly for X2→X1. ⊓⊔

Existence of adjoints to conjunction is settled by the following lemma, whose proof is a

routine verification of the property in the definition.

Lemma 2. For formulae ϕ, ψ, we have ψ \∧ ϕ ≡ ϕ→ ψ.

Coming back to our example, a routine computation shows that [[applet1]] \
∧ [[applet2]] =

m ∨ p ∨ s ∨ ¬ a ∨ ¬ i. We have computed the weakest cross-tree constraint which

needs to be added to applet2 for it to act like applet1. In other cases it might not be useful

just to compute a cross-tree constraint as the difference of two feature models; instead

one might want a representation which is closer to the concrete feature-model syntax.

4



QUOTIENT-AND

Input: ϕ,ψ : formulae in CNF

Output: an over-approx. to ψ \∧ ϕ
1 Let X = ∅
2 for each clause c ∈ ψ do

3 if SAT(ϕ ∧ ¬c) then add c to X

4 return X

For this the algorithm displayed on the right can

be used. It takes as input two formulae ϕ and ψ in

conjunctive normal form (note that semantics of

feature models are easily converted to CNF) and

then finds for the quotient all clauses in ψ which

are not entailed by ϕ (through the satisfiability

check of ϕ ∧ ¬c in line 3). This is clearly an over-

approximation of the quotient, but might fail at

maximality. It can still be useful in the software development process as a more syntactic

representation.

As an example, the approximation computed for the quotient of applet1 by applet2 is

(¬a∨m)∧ (¬i∨m) = (a → m)∧ (i → m), and this can easily be added to the syntactic

representation of applet2 to signal the changes necessary, see Fig. 1 (rightmost).

In [6] we have presented a general feature model synthesis algorithm. The concrete

syntax for the difference in the example above could be automatically computed by

this algorithm. In general the algorithm could be used in a modeling tool visualizing

semantic differences between feature models.

3 A Categorical Intermezzo

We will now generalize the considerations on adjoints and difference.

Definition 3. A preorder category is a class C of objects and a morphism relation

→C ⊆ C×C which is reflexive and transitive. A functor of preorder categories C, D is

a mapping F : C→D which respects the morphisms: if x→C y then F (x) →D F (y).

A preorder category is just a usual preorder, and a functor is a preorder homomorphism.

We use categorical language here because adjoints are categorical concepts:

Definition 4. Let C, D be preorder categories and L : C → D, R : D → C functors.

Then (L,R) is called an adjoint pair if it holds for all x ∈ C, y ∈ D that

L(x) →D y iff x→C R(y).

In an adjoint pair (L,R), L is called the left and R the right adjoint. The notion of

adjoints is important in category theory; note that we have simplified things here by only

working in preorder categories, see e.g. [15, Ch. 4] for the full story. We can generalize

the proof of Lemma 1 to show that up to isomorphism, one half of an adjoint pair

determines the other:

Lemma 3. If (L1, R1), (L1, R2), and (L2, R1) are adjoint pairs between preorder

categories C, D, then R1(y) ↔C R2(y) and L1(x) ↔D L2(x) for all x ∈ C, y ∈ D.

To apply these considerations to the setting of Section 2, we need only notice that we

are working there in the category F with logical formulae as objects and implications

as morphisms. If we denote by Aϕ and Iϕ, for ϕ ∈ F , the mappings F → F given by

Aϕ(ψ) = ϕ ∧ ψ, Iϕ(ψ) = ψ \∧ ϕ, then the biimplication of Definition 2 reads

Aϕ(Y ) → ψ iff Y → Iϕ(ψ),

5



hence we are defining an adjoint pair (Aϕ, Iϕ) for all formulae ϕ. Lemma 2 then says

that such an adjoint pair exists for each formula ϕ. Another way to state this is that with

tensor product ∧, the category F is (strict symmetric) closed monoidal; in this context,

the adjoint \∧ is also called the exponential to ∧.

4 Difference and Development Processes

The adjoint to conjunction is useful in a top-down development scenario, when a general

requirements model is given (applet1) and a refinement is developed by a component

designer (applet2). By visualizing the difference [[applet1]] \
∧[[applet2]], the designer can

monitor his refinement, and see how to constrain it to meet the general requirements.

In this scenario, information flows top-down – as in the quote in the introduction. The

difference is used to refine models at lower abstraction levels. As much as this is useful,

this is not fully satisfactory. In software engineering processes, information flows both

ways. Especially in iterative processes the implementations are continuously adjusted to

meet requirements, while requirements themselves are also continuously adjusted as a

result of changing business conditions, and learning from experience in implementing

the previous iterations. So we need to not only have ways for communicating model

changes top-down in the refinement hierarchy, but also bottom-up.

Let us link these observations to differencing feature models. Observe that ϕ∧X →
ψ is equivalent to ϕ→ ¬X ∨ψ. Moreover, if X is the weakest constraint that makes the

former valid, then ¬X is the strongest constraint that makes the latter valid. If interpreted

in modeling terms, ¬X represents the least amount of weakening that needs to be added

to the model whose semantics is given by ψ (in the example applet1) in order for the

requirements to be possible to meet with components satisfying ϕ (applet2). So ¬X
represents the information that flows upwards in the refinement hierarchy whenever it is

not the component that needs to be ’fixed’, but the requirements that need to be relaxed.

In our example, the negation of the difference formula is ¬m ∧ ¬p ∧ ¬s ∧ a ∧ i. It

directly describes a configuration of applet2 that needs to be admitted by applet1 in order

to make the two models equivalent. In general this negation encodes all configurations of

applet2 that need to be admitted by applet1 in order to make the two models equivalent.

We define the adjoint to disjunction using a universal property as in Def˙ 2: Given

formulae ϕ, ψ, say that a formula X is an adjoint to the disjunction ϕ∨ ψ if it holds that

ϕ→ Y ∨ ψ iff X → Y

for all formulae Y ; hence X is now to be the “strongest” (with respect to implication

ordering) solution to the implication ϕ→ X ∨ ψ.

If we denote by Oψ the mapping Oψ(ϕ) = ϕ ∨ ψ, the above bi-implication defines

a left adjoint Jψ to Oψ , i.e. an adjoint pair (Jψ, Oψ). By the considerations of Section 3

we know that such left adjoint, if it exists, is unique; using Lemma 2 and self-duality

of the category F we can conclude that ψ \∨ ϕ := Jψ(ϕ) = ¬(ψ \∧ ϕ) = ¬(ϕ → ψ),
hence the adjoint to disjunction always exists.

Use Cases for Semantic Difference of Feature Models. Let us conclude the feature

modeling example with a list of concrete applications for the difference of feature

models, seen as a difference of their semantics (some of them already suggested above):

6



– Visualizing and explaining difference between models as specifications.
– The difference is a debugging information. Instances satisfying applet2 but not the

adjoint, are examples of configurations that are illegal in the requirements model.
– Dually they can be shown to the designer of applet1 as examples of possible

configurations, which might be used to expand requirements.
– If system configurations in [[applet2]] ∧ ¬([[applet1]] \

∧[[applet2]]) pass correctness

tests then the modeler should consider communicating them upward, to negotiate

relaxation of these (otherwise reuse may be hindered).

5 Difference for Automata Specifications

We will now briefly show that the same construction of adjoint is applicable (and in fact

known) for automata specifications. Assume a fixed alphabet of actions Σ.

Definition 5 ([14]). A modal specification (MS) is a tuple R=(P, λ0, ∆m, ∆M ) whereP

is a set of states, λ0∈P is the initial state and ∆M ⊆ ∆m ⊆ P×Σ×P . ∆M and∆m

are respectively must- and may-transitions, both deterministic and total: for every state

p∈P and action a∈Σ, there is exactly one λ∈P such that (p, a, λ)∈∆m.

An automaton is a MS where ∆M = ∆m. An instance of a MS is an automaton that is

obtained by unfolding the modal specification and cutting some may transitions while

ensuring that all the must transitions stay present. Formally, let R=(P, λ0, ∆m, ∆M ) be a

MS and A=(M,m0, ∆) an automaton. A is an instance of R, written A |= R, if there

exists a binary relation ρ ⊆M × P such that (m0, λ0) ∈ ρ, and for all (m, p) ∈ ρ:

(1) for every (p, a, λ) ∈ ∆M there is a transition (m, a,m′) ∈ ∆ with (m′, λ) ∈ ρ

(2) for every (m, a,m′) ∈ ∆ there is a transition (p, a, λ) ∈ ∆m with (m′, λ) ∈ ρ.

We write [[R]] for the set of instances of a MS R and say that a MS S refines another MS

T , written S ≤ T , iff [[S]] ⊆ [[T ]].
Two modal specifications over the same alphabet can be composed by synchronizing

on common actions, similarly to composition for regular transition systems, but with

the provision that the composition of two may-transitions is again a may-transition, and

the composition of two must-transitions is a must-transition. The composition M1 ‖M2

accepts all compositions between models of M1 and of M2, so [[M1 ‖M2]] = {(m1 ‖
m2) | m1∈ [[M1]],m2∈ [[M2]]}.

Given specifications S and T , the quotient operation \‖ computes the greatest

specification X (with respect to the refinement order) such that S ‖ X ≤ T . So T \‖ S
is essentially the difference between S and T with respect to structural composition – it

describes the component that is missing in order to provide T . In a more succinct way

we can say that X is a quotient of T by S if it holds that

S ‖ Y ≤ T iff Y ≤ X

for all specifications Y . In the spirit of Section 3, we can note that modal specifications

and refinements form a preorder category M, and then the bi-implication above means

that quotient is the right adjoint to structural composition, i.e. that for any specification

S, the functors PS(T ) = S ‖ T and QS(T ) = T \‖ S form an adjoint pair (PS , QS).
Algorithms for computing these quotients are known for many behavioral component

algebras [7,4,19,3,10].

7



6 Discussion: Towards Difference Between Languages

We have characterized semantic distance as an adjoint of a composition operator, and

exemplified it for conjunction, disjunction, and parallel composition. In this section we

want to illustrate an interesting direction into discussing semantic difference, namely

characterizing distance between an instance of a modeling language and a subclass of

this language.

This problem appears often in practice. For instance model-checkers for automata-

like models may assume that models are deterministic to improve efficiency. Similarly,

analysis tools for class diagrams may assume use of a subset of OCL, in order to make

the validity (or consistency) problem decidable. For feature models, it is sometimes

interesting to look at a class of models that are possible to represent purely diagrammati-

cally (i.e. without cross-tree constraints). However modeling using the full power of the

language is usually easier. It is efficient to abstract behaviors with nondeterminism; it is

easier to write constraints in full OCL; and it is often natural to express some cross-tree

constraints in propositional logics. So the problem arises, whether the full-featured

instance of the language is far, or not far, from the subclass of models which are easy to

analyse. Is it easy to translate into this subclass? How much expressivity is lost (if any)?

Such translation is usually performed by an abstraction operation. Automata can be

determinized; OCL (and propositional) constraints can be weakened to approximate their

semantics within the sublanguage. Interestingly such an abstraction is also an adjoint,

manifesting the same abstract structure as the instance-to-instance differences. Below

we detail this for the example of determinization of modal automata.

The essence of a determinization operator det for (non-deterministic) modal spec-

ifications is that for any specification S, det(S) is the smallest deterministic over-

approximation of S. Hence det(S) is deterministic, S ≤ det(S), and for any determin-

istic specification D, S ≤ D implies det(S) ≤ D. Now the last two properties can be

combined by demanding that

S ≤ D iff det(S) ≤ D

for all deterministic D, which is almost the property we have encountered earlier.

Now let M be the preorder category of deterministic modal specifications as before,

and let N be the larger category of non-deterministic specifications. We have a functor

I : M → N (which “forgets” that the specification is deterministic; hence called a

forgetful functor), and det is a functor N → M. The equation above then becomes

det(S) ≤M D iff S ≤N I(D)

for all S ∈ N , D ∈ M. Hence the determinization functor det is left adjoint to the

forgetful functor I; this type of functors is usually called free.

We see in this example that existence of a faithful abstraction to the subclass of our

modeling language, which maps a model to an abstraction which is “not too far” away, is

the same as a free functor from the language to the subclass, left adjoint to the forgetful

functor. This is indeed characteristic of a number of other examples, and motivates the

search for free functors also in other areas.

8



7 Final Remarks and Related Work

We have described a formal approach to defining semantic difference between models.

Perhaps somewhat unexpectedly, our proposal relies on using a preorder on models,

instead of using equality (equivalence) and attempting to construct some sort of coun-

terpart of subtraction. Our difference is an operator that is defined as an adjoint. In

modeling it makes sense to consider differencing with respect to various composition

operators, with conjunction and structural composition being the two main contenders.

Let us briefly summarize the process of defining a semantic difference:

1. Identify a set of models S and a preorder ≤ on S×S (here this was a refinement on

automata, or implication of formulae; in other contexts it could be subtyping).

2. Choose a binary composition operator (merge) ⊗ : S×S → S. We have used

entailment, parallel composition, conjunction and disjunction in this role.

3. The semantics of models is given as a mapping [[·]] : S→D to a semantic domain.

4. Usually the semantic domain D has better algebraic structure than the syntactic

domain S. Thus it is easier to define the difference, as an operator \⊗ on the semantic

domain: \⊗ : D × D → D. By definition T \⊗ S returns the maximum X for which

S ⊗X ≤ T , or (as for disjunction) the minimum X for which S ≤ X ⊗ T . Not in

all semantic domains such a maximum, or minimum, may exist, but if it does, it is

unique (up to the equivalence relation induced by the preorder ≤).

In the future we intend to work on semantic differences for other modeling languages,

including UML class diagrams. Providing a difference for this language requires that we

are able to compute differences for a substantial fragment of first order logics.

Related Work Semantic difference is discussed in [21], which defines the difference

operator between models T − S as a set of witnesses, which are instances of T but

not instances of S. While this definition is natural, and can be useful in many practical

cases (for example it directly allows providing counterexamples for non-emptiness of

difference), it also has drawbacks. Unlike our proposal, such definition of difference

defines an operator which has a different co-domain than the domains of operands. A

difference between models is no longer a model. Secondly, in most practical cases, the

set of witnesses is infinite and cannot easily be enumerated.

Model merging [5] is composing overlapping models, typically, without prior com-

putation of differences between them. In [18] a semantics oriented merge operation

is discussed for statecharts. It would be interesting to see whether this work could be

extended to provide visualization of semantic differences for statecharts.

Gerth and co-authors [9] present a semantic-based notion between change operations

in a version control scenario. Two operations are equivalent if they lead to equivalent

business process models (in the sense of trace inclusion). They are not concerned with

synthesizing difference models, but with detecting and avoiding merge conflicts. Our

operator, could potentially be used in conflict resolution or visualizing changelogs.

Segura et al. [20] define a syntactic merge operator for feature models using graph

transformations. Closer to semantics, Thüm et al. [23] discuss semantic differences of

edits to feature models. They do not compute differences but simply classify them as

strengthening, weakening, refactoring, and incomparable.

9



Semantic difference for programs is understood better than for models. For instance,

in [12] differences between procedures are approximated by dependence relations.

Acknowledgments. We thank Krzysztof Czarnecki for indicating the semantic difference

problem to us, and Jose Fiadeiro for an encouraging discussion on the subject.

References

1. M. Antkiewicz and K. Czarnecki. Framework-specific modeling languages with round-trip

engineering. In MoDELS, volume 4199 of LNCS. Springer, 2006.
2. D. S. Batory. Feature models, grammars, and propositional formulas. In J. H. Obbink and

K. Pohl, editors, SPLC, volume 3714 of LNCS. Springer, 2005.
3. N. Bertrand, A. Legay, S. Pinchinat, and J.-B. Raclet. A compositional approach on modal

specifications for timed systems. In ICFEM, volume 5885 of LNCS. Springer, 2009.
4. P. Bhaduri and S. Ramesh. Synthesis of synchronous interfaces. In ACSD. IEEE, 2006.
5. G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh. A manifesto

for model merging. In GaMMa. ACM, 2006.
6. K. Czarnecki and A. Wąsowski. Feature diagrams and logics: There and back again. In SPLC,

pages 23–34. IEEE Computer Society, 2007.
7. A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wąsowski. Timed I/O automata: a

complete specification theory for real-time systems. In HSCC. ACM, 2010.
8. E. W. Dijkstra and C. S. Scholten. Predicate calculus and program semantics. Springer, 1990.
9. C. Gerth, J. M. Küster, M. Luckey, and G. Engels. Precise detection of conflicting change

operations using process model terms. In MoDELS (2), volume 6395 of Lecture Notes in

Computer Science, pages 93–107. Springer, 2010.
10. G. Goessler and J.-B. Raclet. Modal contracts for component-based design. In D. V. Hung

and P. Krishnan, editors, SEFM. IEEE Computer Society, 2009.
11. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10), 1969.
12. D. Jackson and D. A. Ladd. Semantic diff: A tool for summarizing the effects of modifications.

In H. A. Müller and M. Georges, editors, ICSM. IEEE Computer Society, 1994.
13. K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-oriented domain analysis

(FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, 1990.
14. K. G. Larsen. Modal specifications. In AVMS, volume 407 of LNCS, 1989.
15. S. Mac Lane. Categories for the Working Mathematician. Graduate texts in mathematics.

Springer, second edition, 1998.
16. M. Mendonca, A. Wąsowski, and K. Czarnecki. SAT-based analysis of feature models is easy.

In SPLC’09. IEEE Computer Society, 2009.
17. M. Mendonça, A. Wąsowski, K. Czarnecki, and D. D. Cowan. Efficient compilation techniques

for large scale feature models. In GPCE, 2008.
18. S. Nejati, M. Sabetzadeh, M. Chechik, S. M. Easterbrook, and P. Zave. Matching and merging

of statecharts specifications. In ICSE. IEEE Computer Society, 2007.
19. J.-B. Raclet. Residual for component specifications. ENTCS, 215:93–110, 2008.
20. S. Segura, D. Benavides, A. R. Cortés, and P. Trinidad. Automated merging of feature models

using graph transformations. In GTTSE, volume 5235 of LNCS. Springer, 2007.
21. J. R. Shahar Maoz and B. Rumpe. A manifesto for semantic model differencing. In

International Workshop on Models and Evolution, 2010.
22. I. Sommerville. Software Engineering, 9/E. Addison-Wesley, 2011.
23. T. Thüm, D. S. Batory, and C. Kästner. Reasoning about edits to feature models. In ICSE,

pages 254–264. IEEE Computer Society, 2009.
24. P. Trinidad, D. Benavides, A. R. Cortés, S. Segura, and A. Jimenez. FAMA framework. In

SPLC, page 359. IEEE Computer Society, 2008.

10


