N. Franks and W. Lieb, Molecular and cellular mechanisms of general anaesthesia, Nature, vol.367, issue.6464, pp.607-614, 1994.
DOI : 10.1038/367607a0

M. Alkire, A. Hudetz, and . Gtononi, Consciousness and Anesthesia, Science, vol.322, issue.5903, 2008.
DOI : 10.1126/science.1149213

S. Brickley and S. Mody, Extrasynaptic GABAA Receptors: Their Function in the CNS and Implications for Disease, Neuron, vol.73, issue.1, pp.23-34, 2012.
DOI : 10.1016/j.neuron.2011.12.012

M. Murphy, M. Bruno, B. Riedner, P. Boveroux, Q. Noirhomme et al., Propofol 411 anesthesia and sleep: A high-density EEG study, Sleep, vol.34, pp.283-291, 2011.

M. Boly, R. Moran, M. Murphy, P. Boveroux, M. Bruno et al., Connectivity changes 413 underlying spectral EEG changes during propofol-induced loss of consciousness, J. Neurosci, vol.32, pp.414-7082, 2012.

G. Tononi, The Information Integration Theory of Consciousness, BMC Neurosci, vol.4, issue.15, p.42, 2004.
DOI : 10.1002/9780470751466.ch23

M. Steyn-ross, D. Steyn-ross, and J. Sleigh, Modelling general anaesthesia as a first-order phase transition in the cortex, Progress in Biophysics and Molecular Biology, vol.85, issue.2-3, pp.369-385, 2004.
DOI : 10.1016/j.pbiomolbio.2004.02.001

E. Friedman, Y. Sun, J. Moore, H. Hung, Q. Meng et al., A Conserved Behavioral State Barrier Impedes Transitions between Anesthetic-Induced Unconsciousness and Wakefulness: Evidence for Neural Inertia, PLoS ONE, vol.441, issue.7, p.11903, 2010.
DOI : 10.1371/journal.pone.0011903.s004

L. Lewis, V. Weiner, E. Mukamel, J. Donoghue, E. Eskandar et al., Rapid fragmentation of 422 neuronal networks at the onset of propofol-induced unconsciousness, Proc Natl Acad Sci, vol.109, pp.423-3377, 2012.

A. Cimenser, P. Purdon, E. Pierce, J. Walsh, A. Salazar-gomez et al., Tracking brain 425 states under general anesthesia by using global coherence analysis, Proc. Natl. Acad. Sci. USA, pp.426-8832, 2011.

P. Purdon, E. Pierce, E. Mukamel, M. Prerau, J. Walsh et al., Electroencephalogram 428 signatures of loss and recovery of consciousness from propofol, Proc. Natl. Acad. Sci. USA 110, pp.429-1142, 2012.

K. Sellers, D. Bennett, A. Hutt, and F. Frohlich, Anesthesia differentially modulates spontaneous network 431 dynamics by cortical area and layer, J. Neurophysiol. in press, 2013.

J. Vizuete, S. Pillay, K. Ropella, and A. Hudetz, Graded defragmentation of cortical neuronal firing during recovery of consciousness in rats, Neuroscience, vol.275, pp.340-351, 2014.
DOI : 10.1016/j.neuroscience.2014.06.018

S. Ching, A. Cimenser, P. Purdon, E. Brown, and N. Kopell, Thalamocortical model for a propofol- 435 induced-rhythm associated with loss of consciousness, Proc. Natl. Acad. Sci. USA, pp.22665-436, 2010.

S. Ching, P. Purdon, S. Vijayand, N. Kopell, and E. Brown, A neurophysiologicalmetabolic model for 438 burst suppression, Proc. Natl. Acad. Sci. USA, pp.3095-3100, 2012.

M. Mccarthy, E. Brown, and N. Kopell, Potential network mechanisms mediating 440 electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation

A. Hutt, J. Sleigh, A. Steyn-ross, and M. Steyn-ross, General anaesthesia, Scholarpedia, vol.8, issue.8, pp.30485-443, 2013.
DOI : 10.4249/scholarpedia.30485

URL : https://hal.archives-ouvertes.fr/hal-00872146

M. Steyn-ross, D. Steyn-ross, J. Sleigh, and D. Liley, Theoretical electroencephalogram stationary 444 spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition

M. Wilson, J. Sleigh, A. Steyn-ross, and M. Steyn-ross, General Anesthetic-induced Seizures Can Be Explained by a Mean-field Model of Cortical Dynamics, Anesthesiology, vol.104, issue.3, pp.588-593, 2006.
DOI : 10.1097/00000542-200603000-00026

M. Steyn-ross, D. Steyn-ross, and J. Sleigh, Interacting turing-hopf instabilities drive symmetry-breaking 449 transitions in a mean-field model of the cortex: A mechanism for the slow oscillation, Phys. Rev. X, vol.3

B. Foster, I. Bojak, and D. Liley, Population based models of cortical drug response: insights from anaesthesia, Cognitive Neurodynamics, vol.21, issue.3, pp.283-296, 2008.
DOI : 10.1007/s11571-008-9063-z

D. Liley and M. Walsh, The Mesoscopic Modeling of Burst Suppression during Anesthesia, Frontiers in Computational Neuroscience, vol.7
DOI : 10.3389/fncom.2013.00046

D. Bai, G. Zhu, P. Pennefather, M. Jackson, J. Macdonald et al., Distinct functional and 511 pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by 512 ??aminobutyric acid a receptors in hippocampal neurons, Molec. Pharmacol, pp.59-814, 2001.

S. Mcdougall, T. Bailey, D. Mendelowitz, and M. Andresen, Propofol enhances both tonic and phasic 514 inhibitory currents in second-order neurons of the solitary tract nucleus (nts), Neuropharmacol, vol.54, pp.515-552, 2008.

K. Kretschmannova, R. Hines, R. Revilla-sanchez, M. Terunuma, V. Tretter et al., Enhanced 517 tonic inhibition influences the hypnotic and amnestic actions of the intravenous anesthetics etomidate 518 and propofol, J. Neurosci, pp.33-7264, 2013.

T. Papouin, L. Ladépêche, J. Ruel, S. Sacchi, M. Labasque et al., Synaptic and Extrasynaptic NMDA Receptors Are Gated by Different Endogenous Coagonists, Cell, vol.150, issue.3, pp.633-646, 2012.
DOI : 10.1016/j.cell.2012.06.029

URL : http://doi.org/10.1016/j.cell.2012.06.029

J. Mothet, A. Parent, H. Wolosker, B. Jr, R. Linden et al., -serine is an endogenous 522 ligand for the glycine site of the n-methyl-d-aspartate receptor, Proc. Natl. Acad. Sci. USA 97, pp.4926-4931, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00966202

P. Sah, S. Hestrin, and N. R. , Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons, Science, vol.246, issue.4931, pp.815-818, 1989.
DOI : 10.1126/science.2573153

T. Fleming, V. Scott, K. Naskar, J. N. Brown, C. Stern et al., State-dependent changes in astrocyte regulation 527 of extrasynaptic nmda receptor signalling in neurosecretory neurons, J. Physiol, pp.589-3929, 2011.

L. Meur, K. Galante, M. Angulo, M. Audinat, and E. , Tonic activation of nmda receptors by ambient 530 glutamate of non-synaptic origin in the rat hippocampus, J. Physiol, pp.580-373, 2007.

A. Panatier, D. Theodosis, J. Mothet, B. Touquet, L. Pollegioni et al., Glia-Derived d-Serine Controls NMDA Receptor Activity and Synaptic Memory, Cell, vol.125, issue.4, pp.775-784, 2006.
DOI : 10.1016/j.cell.2006.02.051

URL : https://hal.archives-ouvertes.fr/inserm-00078312

H. Wolosker, S. Blackshaw, and S. Snyder, Serine racemase: A glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission, Proc. Natl. Acad. Sci. USA 96, pp.13409-535, 1999.
DOI : 10.1073/pnas.96.23.13409

D. Martin, M. Plagenhoef, J. Abraham, R. Dennison, and R. Aronstam, Volatile anesthetics and glutamate activation of N-methyl-D-aspartate receptors, Biochemical Pharmacology, vol.49, issue.6, pp.809-817, 1995.
DOI : 10.1016/0006-2952(94)00519-R

S. Daniels and R. Roberts, Post-synaptic inhibitory mechanisms of anaesthesia; glycine receptors, Toxicology Letters, vol.100, issue.101
DOI : 10.1016/S0378-4274(98)00167-2

J. Pender, Dissociative anesthesia, Calif. Med, vol.113, p.73, 1970.
DOI : 10.1001/jama.1971.03180200050011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1501800

S. Kratzer, C. Mattusch, E. Kochs, M. Eder, R. Haseneder et al., Xenon Attenuates Hippocampal Long-term Potentiation by Diminishing Synaptic and Extrasynaptic N-methyl-D-aspartate Receptor Currents, Anesthesiology, vol.116, issue.3, pp.673-682, 2012.
DOI : 10.1097/ALN.0b013e3182475d66

P. Bressloff, Spatiotemporal dynamics of continuum neural fields, 2012) 033001. 548 62 .Coombes S. Neural Fields. Scholarpedia, p.1373, 2006.
DOI : 10.1088/1751-8113/45/3/033001

A. Hutt, Oscillatory activity in excitable neural systems, Contemporary Physics, vol.202, issue.1, pp.3-16, 2009.
DOI : 10.1109/TMI.2002.1009385

URL : https://hal.archives-ouvertes.fr/inria-00434441

J. Wright and R. Kydd, The electroencephalogram and cortical neural networks, Network: Computation in Neural Systems, vol.3, issue.3, pp.341-362, 1992.
DOI : 10.1088/0954-898X_3_3_006

D. Liley and I. Bojak, Understanding the transition to seizure by modeling the epileptiform activity of 555 general anaesthetic agents, J. Clin. Neurophysiol, vol.22, pp.300-313, 2005.

A. Hutt and A. Longtin, Effects of the anesthetic agent propofol on neural populations, Cognitive Neurodynamics, vol.12, issue.7, pp.37-59, 2009.
DOI : 10.1007/s11571-009-9092-2

URL : https://hal.archives-ouvertes.fr/inria-00434443

R. Hindriks and M. Van-putten, Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms, NeuroImage, vol.60, issue.4, pp.2323-2344, 2012.
DOI : 10.1016/j.neuroimage.2012.02.042

P. Fiset, T. Paus, T. Daloze, G. Plourde, P. Meuret et al., Brain mechanisms of propofol- 615 induced loss of consciousness in humans: a positron emission tomographic study, J. Neurosci, vol.19, pp.616-5506, 1999.

N. Franks, General anesthesia: from molecular targets to neuronal pathways of sleep and arousal

F. Laalou, A. De-vasconcelos, P. Oberling, H. Jeltsch, J. Cassel et al., Involvement of the Basal Cholinergic Forebrain in the Mediation of General (Propofol) Anesthesia, Anesthesiology, vol.108, issue.5, pp.888-896, 2008.
DOI : 10.1097/ALN.0b013e31816d919b

M. Alkire, R. Haier, and J. Fallon, Toward a unified theory of narcosis: brain imaging evidence 623 for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. 624 Conscious Cogn, pp.370-386, 2000.