Support vector machine under uncertainty: An application for hydroacoustic classification of fish-schools in Chile

Abstract : In this work we apply multi-class support vector machines (SVM) and a multi-class stochastic SVM formulation to the classification of fish schools of three species: anchovy, common sardine, and jack mackerel, and we compare their performance. The data used come from acoustic measurements in southern-central Chile. These classifications were carried out by using a diver set of descriptors including morphology, bathymetry, energy, and space positions. In both type of formulations, the deterministic and the stochastic one, the strategy used to classify multi-class SVM consists in employing the criterion one-species-against-the-Rest. We thus provide an empirical way to adjust the parameters involved in the stochastic classifiers with the aim of improving its performance. When this procedure is applied to the classification of fish schools we obtain a classifier with a better performance than the deterministic classifier.
Type de document :
Article dans une revue
Expert Systems with Applications, Elsevier, 2013, 40, pp.4029 - 4034. 〈10.1016/j.eswa.2013.01.006〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01088228
Contributeur : Pablo Koch <>
Soumis le : jeudi 27 novembre 2014 - 16:47:57
Dernière modification le : jeudi 26 juillet 2018 - 12:16:02
Document(s) archivé(s) le : vendredi 14 avril 2017 - 21:44:23

Fichier

SVMR_peces 05Dic2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Paul Bosch, Julio López, Héctor Ramírez, Hugo Robotham. Support vector machine under uncertainty: An application for hydroacoustic classification of fish-schools in Chile. Expert Systems with Applications, Elsevier, 2013, 40, pp.4029 - 4034. 〈10.1016/j.eswa.2013.01.006〉. 〈hal-01088228〉

Partager

Métriques

Consultations de la notice

204

Téléchargements de fichiers

326