Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems

Abstract : This article deals with the analysis of the contact complementarity problem for Lagrangian systems subjected to unilateral constraints, and with a singular mass matrix and redundant constraints. Previous results by the authors on existence and uniqueness of solutions of some classes of variational inequalities are used to characterize the well-posedness of the contact problem. Criteria involving conditions on the tangent cone and the constraints gradient are given. It is shown that the proposed criteria easily extend to the case where the system is also subjected to a set of bilateral holonomic constraints, in addition to the unilateral ones. In the second part, it is shown how basic convex analysis may be used to show the equivalence between the Lagrangian and the Hamiltonian formalisms when the mass matrix is singular.
Type de document :
Article dans une revue
Multibody System Dynamics, Springer Verlag, 2015, 35 (1), pp.39-61. 〈10.1007/s11044-014-9437-4〉
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01088286
Contributeur : Bernard Brogliato <>
Soumis le : dimanche 29 octobre 2017 - 16:31:05
Dernière modification le : jeudi 11 janvier 2018 - 06:21:53

Fichier

BBDG.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Bernard Brogliato, Daniel Goeleven. Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems. Multibody System Dynamics, Springer Verlag, 2015, 35 (1), pp.39-61. 〈10.1007/s11044-014-9437-4〉. 〈hal-01088286〉

Partager

Métriques

Consultations de la notice

302

Téléchargements de fichiers

12