Y. Bas, O. Dufour, and H. Glotin, Overview of the nips4b bird classification, Proc. of Neural Information Processing Scaled for Bioacoustics: from Neurons to Big Data, joint to NIPS, pp.12-16, 2013.

F. Briggs, B. Lakshminarayanan, L. Neal, X. Z. Fern, R. Raich et al., Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach, The Journal of the Acoustical Society of America, vol.131, issue.6, p.4640, 2012.
DOI : 10.1121/1.4707424

J. Cai, D. Ee, B. Pham, P. Roe, and J. Zhang, Sensor Network for the Monitoring of Ecosystem: Bird Species Recognition, 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, pp.293-298, 2007.
DOI : 10.1109/ISSNIP.2007.4496859

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.886-893, 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

O. Dufour, T. Artieres, H. Glotin, and P. Giraudet, Clusterized mel filter cepstral coefficients and support vector machines for bird song idenfication, Soundscape Semiotics -Localization and Categorization, 2014.

F. Eyben, M. Wöllmer, and B. Schuller, Opensmile, Proceedings of the international conference on Multimedia, MM '10, pp.1459-1462, 2010.
DOI : 10.1145/1873951.1874246

K. J. Gaston and M. A. Neill, Automated species identification: why not? Philosophical Transactions of the, Royal Society of London. Series B: Biological Sciences, vol.359, pp.655-667, 1444.

H. Glotin and J. Sueur, Overview of the 1st int'l challenge on bird classification, Proc. of the first workshop on Machine Learning for Bioacoustics, joint to ICML, pp.17-21, 2013.

A. Joly, J. Champ, and O. Buisson, Instance-based bird species identification with undiscriminant features pruning -lifeclef2014, 2014.

M. Lasseck, Large-scale identification of birds in audio recordings, Working notes of CLEF 2014 conference, 2014.

D. J. Lee, R. B. Schoenberger, D. Shiozawa, X. Xu, and P. Zhan, Contour matching for a fish recognition and migration-monitoring system, Two- and Three-Dimensional Vision Systems for Inspection, Control, and Metrology II, pp.37-48, 2004.
DOI : 10.1117/12.571789

R. Martinez, L. Silvan, E. V. Villarreal, G. Fuentes, and I. Meza, Svm candidates and sparse representation for bird identification, 2014.

J. Northcott, Overview of the lifeclef 2014 bird task, Working notes of CLEF 2014 conference, 2014.

L. Y. Ren, W. Dennis, J. Huy-dat, and T. , Bird classification using ensemble classifiers, 2014.

C. Silla and A. Freitas, A survey of hierarchical classification across different application domains, Data Mining and Knowledge Discovery, vol.1, issue.487, pp.31-72, 2011.
DOI : 10.1007/s10618-010-0175-9

D. Stowell and M. D. Plumbley, Audio-only bird classification using unsupervised feature learning, 2014.

D. Stowell and M. D. Plumbley, Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. arXiv preprint arXiv:1405, p.6524, 2014.

M. Towsey, B. Planitz, A. Nantes, J. Wimmer, and P. Roe, A toolbox for animal call recognition, Bioacoustics, vol.123, issue.1, pp.107-125, 2012.
DOI : 10.1109/TASL.2006.872624

URL : http://eprints.qut.edu.au/51616/1/51616.pdf

V. M. Trifa, A. N. Kirschel, C. E. Taylor, and E. E. Vallejo, Automated species recognition of antbirds in a Mexican rainforest using hidden Markov models, The Journal of the Acoustical Society of America, vol.123, issue.4, p.2424, 2008.
DOI : 10.1121/1.2839017

V. Koops, H. Van-balen, J. Wiering, and F. , A deep neural network approach to the lifeclef 2014 bird task, 2014.

L. Wang and D. C. He, Texture classification using texture spectrum, Pattern Recognition, vol.23, issue.8, pp.905-910, 1990.
DOI : 10.1016/0031-3203(90)90135-8

Q. D. Wheeler, P. H. Raven, and E. O. Wilson, Taxonomy: Impediment or Expedient?, Science, vol.303, issue.5656, 2004.
DOI : 10.1126/science.303.5656.285