
HAL Id: hal-01088953
https://inria.hal.science/hal-01088953

Submitted on 2 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized Distribution of Synchronous Programs via a
Polychronous Model

Ke Sun, Loïc Besnard, Thierry Gautier

To cite this version:
Ke Sun, Loïc Besnard, Thierry Gautier. Optimized Distribution of Synchronous Programs via a
Polychronous Model. Formal Methods and Models for System Design (MEMOCODE’14), Oct 2014,
Lausanne, Switzerland. pp.42 - 51, �10.1109/MEMCOD.2014.6961842�. �hal-01088953�

https://inria.hal.science/hal-01088953
https://hal.archives-ouvertes.fr

Optimized Distribution of Synchronous Programs

via a Polychronous Model

Ke Sun∗, Loı̈c Besnard†, and Thierry Gautier∗

∗INRIA Rennes - Bretagne Atlantique, †CNRS/IRISA
∗†Campus de Beaulieu, Rennes, France

Email: ∗{firstname}.{lastname}@inria.fr, †Loic.Besnard@irisa.fr

Abstract—This paper presents a distribution methodology for
synchronous programs, applied in particular on programs written
in the Quartz language. The given program is first transformed
into an intermediate model of guarded actions. After user-
specified partitioning, the generated sub-models are transformed
into Signal processes. Using the multi-clock calculation model
of the Signal language, an optimized data-flow network can be
automatically constructed. The optimization includes reducing
the communication quantity and the computation load, with no
change to the interface behaviors.

I. INTRODUCTION

Synchronous programming languages such as Esterel [1],
Lustre [2] or Quartz [3] are all based on the synchronous
hypothesis [4]. Under this assumption, system behaviors are
projected onto a discrete sequence of logical instants. As the
sequence is discrete, nothing occurs between two consecutive
instants. Such temporal abstraction can greatly facilitate safety-
critical reactive system design. It enforces deterministic con-
currency of the system: Heisenbugs (i.e., bugs that disappear
when one tries to simulate/test the system) are avoided; the
system behaviors become predictable. It is also the key to a
straightforward translation of synchronous programs to hard-
ware circuits [5]. Furthermore, it guarantees semantic preci-
sion by using mathematical models, such as Mealy machine,
as supporting foundations. These models enable a series of
efficient optimization, compilation and verification techniques
to be applied on synchronous programs.

Synchronous programs are modeled on centralized archi-
tectures with zero-time communications: any signal emitted
by some component is instantaneously received by others.
However, in real world, safety-critical reactive systems [6] [7]
practically operate over distributed architectures with delayed
communications. This mismatch results in a wide gap between
centralized design model and distributed implementation. To
get over this, desynchronization is introduced with the fol-
lowing requirement: how to distribute a synchronous program
while preserving the same observable behaviors, i.e., the same
interface behaviors. This issue has drawn a considerable atten-
tion both in theoretical challenges and in industrial relevance.

For Esterel and Lustre, a series of distribution methods
have been proposed [8]. In [9], starting from a synchronous
program, a network of communicating codesign finite state
machines is constructed. The distribution of synchronous
programs via the modeling as finite deterministic automata
[10] is presented in [11]. Based on it, the extended method
in [12] focused on the automatic deduction of distributed
systems from centralized synchronous circuits. Furthermore,
how to distribute synchronous programs to fulfill temporal

constraints is introduced in [13]. The primary goal of these
distribution methods does not include an optimization of the
communication and the computation, which is in the focus of
this paper.

A related distribution methodology is presented in [14]. Its
procedure consists of three steps: 1) the given synchronous
program is compiled into an intermediate AIF model [15],
which is a common intermediate format for various syn-
chronous languages [16] [17]; 2) the data dependencies within
the model are analyzed and represented in a dependency graph,
then the generated graph is subsequently partitioned into sub-
graphs in which partitions can be made horizontal (for a
pipelined execution) or vertical (for a parallel execution); 3) a
synchronous elastic system [18] is synthesized by generating
a distributed component for each sub-graph and establishing
a communication infrastructure with synchronous elastic flow
(SELF) protocol [18].

Owing to the analogy to synchronous hardware circuit, one
can assume that the given synchronous program holds a master
clock driving the whole program computation. We refer to
such program as a mono-clocked program [19]. Furthermore,
it follows the model of computation (MoC) strict synchrony:
during each instant, each input channel always reads data
and each output channel always produces data. This feature
may cause unnecessary communications or computations. In
[20], the communication quantity is reduced, according to an
evaluation of communication necessity: a producer transmits
a value only when it is really required for the calculation
of a receiver. However, it may result in highly overesti-
mated computations for evaluating communication necessity.
To avoid this, the evaluation can be refined by constructing
additional communications, while this operation may augment
the communication. An optimization method on computations
is presented in [21]: a condition is computed for every variable
to determine whether its value is required for current or
future computations; when the condition does not hold, the
computation of the corresponding variable can be suppressed.

A new optimized distribution methodology is proposed,
which is based on a more flexible MoC. In contrast to
synchronous languages, the polychronous language Signal [22]
[23] [24] is based on the MoC polychrony1. As its name
suggests, a polychronous program makes use of multiple
clocks to drive its execution, the system behaviors are defined
on a partially ordered set of instants. One can consider that
each component in the program holds its own master clock,
and there is no longer a master clock for the whole program.

1From the Greek “poly chronos” to mean multiple clocks.

We refer to such program as a multi-clocked program. If there
is no relation between the master clocks, the multi-clocked
program does not follow a linear timeline, but a nonlinear
one. Nonlinear instants t1, t2 are such that there is no order
relation between them. The system behaviors over nonlinear
instants occur asynchronously. Hence, the Signal language
allows one to conveniently model the asynchronous commu-
nications between synchronous modules. This exactly accords
with the requirement of distributed systems. In addition, non-
linear timeline implies the possibility to avoid unnecessary
synchronization, thereby enabling potential optimization [25].
Due to these advantages, Signal is particularly suited as a
coordination layer to finally build a data-flow network over
desynchronized processing locations.

Based on the multi-clock calculation model of the Signal
language, we propose a distribution methodology for the
synchronous programs. First, the given synchronous program
is compiled into AIF model. Second, according to the user
specifications, the generated model is partitioned into sub-
models. After the partitioning, the generated sub-models are
transformed into equivalent Signal processes. Then, the un-
necessary constraints are eliminated from the processes to
avoid unnecessary synchronization. Finally, within the Signal
framework, the minimal frequencies of communication and
computation are computed via multi-clock calculation. This
operation can efficiently reduce the communication quantity
and the computation load. Along this way, an optimized data-
flow network over desynchronized processing locations can be
constructed. Note that both the methodology in [14] and ours
process AIF model. Both methods are thereby independent of
particular synchronous languages.

The rest of this paper is organized as follows. Section II
briefly reviews the intermediate AIF model, which serves as
the starting point for the distribution procedure, and introduces
the Signal language and its associated polychronous semantic
model. Section III presents the user-specified model partition-
ing and the transformation from partitioned models to Signal
processes. In Section IV, how to achieve the optimization both
on communications and on computations is presented in detail.
Meanwhile, our methodology is illustrated through case studies
in Section V. Finally, we conclude this paper and look forward
the perspectives.

II. FOUNDATIONS

A. AIF Model & Synchronous Guarded Actions

To process synchronous programs, it is quite natural to
compile them into intermediate models at first. In this way,
the whole processing can be modularly divided into several
steps and the models can be reused for different purposes [8],
such as validation, comparison, model transformation and code
generation. Furthermore, the processing on the intermediate
model is independent of particular synchronous languages. The
distribution of synchronous programs converts to two steps: 1)
compilation into intermediate models; 2) distribution of inter-
mediate models. The intermediate model devoted to the Quartz
language is the Averest Intermediate Format (AIF) model [15].
The compilation of Quartz programs into AIF models has
been implemented in the Quartz/Averest framework2 [26]. The
essential part of AIF model is AIF model behaviors that are
described by a set of synchronous guarded actions.

2http://www.averest.org

Guarded actions are designed in the spirit of traditional
guarded commands [27], which are well-established interme-
diate code for the description of concurrent systems. The
guarded actions are in the form of γ ⇒ A, where the Boolean
condition γ is called guard and A is called action. The guards
represent the complex control structure of the synchronous
program. The actions represent the assignments to variables.
Due to the category of assignments, each guarded action has
either the form γ ⇒ x = τ (called guarded immediate
action) or γ ⇒ next(x) = τ (called guarded delayed action).
Once the guard is evaluated to true, the corresponding action
instantaneously starts. Both kinds of assignments evaluate
the expression τ at the current instant. Then, the immediate
assignment x = τ instantaneously transfers the value of τ to
the variable x, whereas the assignment effect of the delayed
one next(x) = τ takes place at the next instant. When the
value of a variable x cannot be determined by any action, its
value is determined by the absence reaction. It determines the
value, according to the storage type of the assigned variable: a
non-memorized variable is reset to the default value (denoted
as def value, the particular value depends on the data type);
a memorized variable keeps its previous value, or takes its
default value at the initial instant.

Guarded actions describe model behaviors via two parts:
the data-flow part computes locals and outputs; the control-
flow part computes labels, which denote the pause locations
of control-flow. Guarded actions in the control-flow part are
in the form of γ ⇒ next(l) = true, where label l is a non-
memorized Boolean local denoting a pause location. If l holds
at the current instant, it means that the control-flow reached
the pause location of l at the end of the previous instant, then
it resumes from this location at the beginning of the current
instant. Note that more than one label can hold at the same
instant. This enables the description of the parallelism feature
[3] of synchronous programs.

B. The Signal Language

In Section II-B1, we introduce the polychronous model as
the formal basis of Signal. Then, an overview of the language
is given in Section II-B2.

1) Polychronous Model: We start with the following sets: X
is a countable set of variables; B = {ff, tt} is a set of Boolean
data values where ff and tt respectively denote false and true;
V is a non-empty set of data values, B ⊂ V ; and T is a dense
set equipped with a partial order relation, denoted by ≤. The
elements in T are called tags. We now introduce the notion of
time domain.

Definition 1 (time domain). A time domain is a partially
ordered set (T ,≤) where T ⊂ T that satisfies: T is countable;
T has a lower bound 0T for ≤, i.e., ∀t ∈ T , 0T ≤ t; ≤ over
T is well-founded; the width of (T ,≤) is finite.

(T,≤) provides a continuous time dimension. (T ,≤) de-
fines a discrete time dimension that corresponds to the logical
instants [24], at which the presence/absence of data can be
observed during the system execution. Thus, the mapping of
T on T allows one to move from “abstract” descriptions to
“concrete” descriptions [28].

A chain (C,≤) ⊆ (T ,≤) is a totally ordered set of tags
that admits a lower bound 0C . The notation t + 1 means the
immediate successor of a tag t in C, which satisfies ∀t′ ∈
C, t ≤ t′ ⇒ t + 1 ≤ t′. We denote the set of all chains in T

by CT .

Definition 2 (event). An event on a given time domain T is
a pair (t, v) ∈ T × V , which associates a tag t with a data
value v.

All the events whose tags belong to the same chain, can
constitute a data-flow. Formally,

Definition 3 (signal). A signal s : C → V is a function from a
chain of tags to a non-empty set of data values, where C ∈ CT .
The domain of s is denoted by tags(s).

Two signals s1 and s2 are identical, denoted by s1 = s2, if
and only if tags(s1) = tags(s2) and ∀t ∈ tags(s1), s1(t) =
s2(t). S = ∪C∈CT

(s : C → V) is the set of signals over the
time domain (T ,≤).

Definition 4 (behavior). Given a finite subset X of a countable
set X of variables, a behavior over X is an injective function
b : X → S. The domain of b is denoted by vars(b).

The restriction of b over a set of variables X , denoted by
b|X , is the behavior defined by vars(b|X) = X ∩vars(b) and
∀x ∈ vars(b|X), (b|X)(x) = b(x).

Two behaviors b1 and b2 are compatible, denoted by b1 l
b2, if and only if b1|vars(b2) = b2|vars(b1). The composition
of two compatible behaviors b1 : X1 → S, b2 : X2 → S
is a behavior (b1|b2) : (X1 ∪ X2) → S defined by ∀x ∈
X1, (b1|b2)(x) = b1(x) and ∀x ∈ X2, (b1|b2)(x) = b2(x).

Definition 5 (process). A process p is a set of behaviors
defined over the same domain. The domain is denoted by
vars(p), which satisfies ∀b ∈ p, vars(b) = vars(p).

Definition 6 (composition of processes). The composition of
two processes p1 and p2, denoted as p1|p2, is a process
consisting of the compositions of any two compatible behaviors
b1 ∈ p1 and b2 ∈ p2:

p1|p2 = {(b1|b2)|(b1, b2) ∈ p1 × p2, b1 l b2}.

The notions presented in this section are sufficient to
express the semantics of Signal elementary concepts within
this polychronous model [24]. In the remainder of this paper,
we also use them to formulate the optimization scheme.

2) An Overview of the Signal Language: Signal is a
polychronous language processing unbounded series of typed
values, called signals. At any tag t, a signal x (corresponding
to b(x) in the polychronous model, where b is a behavior)
may be present or absent: when present (i.e., t ∈ tags(b(x))),
it holds some value; when absent (i.e., t /∈ tags(b(x))), it holds
no value.

The presence status of x is denoted by its associated clock
x̂ : tags(b(x)) → {tt}. Furthermore, the Signal language
supports clock calculation. The basic operations contain clock
union x1+̂x2: tags(b(x1)) ∪ tags(b(x2)) → {tt}; clock inter-
section x1∗̂x2: tags(b(x1)) ∩ tags(b(x2)) → {tt}; and clock
difference x1−̂x2: tags(b(x1))\tags(b(x2)) → {tt}. In order

to enable reasoning on clock calculation, we define 0̂ for the
empty clock (i.e., 0̂ : ∅ → {tt}) and [x] (resp. [¬x]) for the
clock at which tags a Boolean signal x holds the value true
(resp. false).

a) Declarative Constraints

A Signal program declares constraints on the involved
signals, that must be satisfied by both values and clocks.

The constraints on clocks are referred to as clock relations,
including synchronization relation x1=̂x2, i.e., tags(b(x1)) =
tags(b(x2)); inclusion relation x1≤̂x2, i.e., tags(b(x1)) ⊆
tags(b(x2)); and mutual exclusion relation x1#̂x2, i.e.,
tags(b(x1)) ∩ tags(b(x2)) = ∅.

Besides the explicit clock relations, constraints can be
implicitly declared by the Signal equations. Each equation
is a definition associating one defined signal with a Signal
expression built on operators over signals. The operands of
the operators can be signals or expressions.

There are two kinds of definitions:

• A complete definition (:=) is an equation in which
the defined signal is assigned with the associated ex-
pression. For instance, y := x is a complete definition
of y that is assigned with x when x is present; y is
synchronized with x:

∀t ∈ tags(b(x)), b(y)(t) = b(x)(t) and y=̂x.

• A partial definition (::=) is an equation in which
the defined signal is assigned with the associated ex-
pression when the expression is present. For instance,
y ::= x is a partial definition of y that is assigned with
x when x is present; when x is not present, the value
of y depends on other partial definitions:

∀t ∈ tags(b(x)), b(y)(t) = b(x)(t).

According to the implied clock relations, the Signal ex-
pressions can be classified into two families: synchronous
expressions (i.e., all the involved signals have the same clock)
and polychronous expressions (i.e., the involved signals may
have different clocks). The primitive expressions include

• Instantaneous function: x := f(x1, . . . , xn) defines a
point-wise n-ary function on sequences of values, in
which all the signals x, x1, . . . , xn are synchronous.

• Delay: x := x′$1 init def value defines that x and
x′ are synchronous; the current value of x is equal to
the previous value of x′ and equal to the default value
def value at the initial tag.

◦ x=̂x′

◦ b(x)(0Cx
) = def value

◦ ∀t ∈ tags(b(x)), 0Cx
< t+1 ⇒ b(x)(t+1) =

b(x′)(t)

where Cx = tags(b(x)).
• Downsampling: x := x′ when b defines a downsam-

pling of the signal x′ that occurs only when both x̂′

and the downsampling condition b hold true.

◦ x=̂x′∗̂[b], where [b]=̂when b
◦ ∀t ∈ tags(b(x)), b(x)(t) = b(x′)(t)

• Deterministic merging: x := x1 default x2 defines
that the clock of x is the clock union of x1 and x2,
its value is equal to x1 when x1 is present, otherwise
equal to x2 when x1 is absent but x2 is present.

◦ x=̂x1+̂x2

◦ ∀t ∈ tags(b(x1)), b(x)(t) = b(x1)(t)
◦ ∀t ∈ tags(b(x2))\tags(b(x1)),

b(x)(t) = b(x2)(t)

• Completion: x ::= defaultvalue x′ completes the
definition of x. Given the partial definitions x ::=
x1, x ::= x2, where x1#̂x2, x is then identical to x′

when x1 and x2 are absent but x and x′ are present.

