F. Bartels, GSOS for probabilistic transition systems, Proc. CMCS'02, pp.29-53, 2002.
DOI : 10.1016/S1571-0661(04)80358-X

B. Bloom, S. Istrail, and A. R. Meyer, Bisimulation can't be traced, Journal of the ACM, vol.42, issue.1, pp.232-268, 1995.
DOI : 10.1145/200836.200876

URL : http://ecommons.cornell.edu/bitstream/1813/6990/1/90-1150.pdf

S. D. Brookes, C. A. Hoare, and A. W. Roscoe, A Theory of Communicating Sequential Processes, Journal of the ACM, vol.31, issue.3, pp.560-599, 1984.
DOI : 10.1145/828.833

G. Castagna, J. Vitek, and F. Z. Nardelli, The Seal Calculus, Information and Computation, vol.201, issue.1, pp.1-54, 2005.
DOI : 10.1016/j.ic.2004.11.005

URL : https://hal.archives-ouvertes.fr/hal-00152521

P. R. Argenio and M. D. Lee, Probabilistic transition system specification: Congruence and full abstraction of bisimulation, Proc. FoS- SaCS'12, pp.452-466, 2012.

R. and D. Nicola, Extensional equivalences for transition systems, Acta Informatica, vol.24, issue.2, pp.211-237, 1987.
DOI : 10.1007/BF00264365

R. , D. Nicola, and M. Hennessy, Testing equivalences for processes, Theoretical Comp. Sci, vol.34, pp.83-133, 1984.

Y. Deng, R. J. Van-glabbeek, M. Hennessy, and C. Morgan, Characterising Testing Preorders for Finite Probabilistic Processes, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pp.1-33, 2008.
DOI : 10.1109/LICS.2007.15

URL : http://arxiv.org/abs/0810.3708

Y. Deng, R. J. Van-glabbeek, M. Hennessy, and C. Morgan, Testing finitary probabilistic processes, Proc. CONCUR'09, pp.274-288, 2009.
DOI : 10.1007/978-3-642-04081-8_19

J. C. Godskesen and T. T. Hildebrandt, Extending Howe???s Method to Early Bisimulations for Typed Mobile Embedded Resources with Local Names, Proc. FSTTCS'05, pp.140-151, 2005.
DOI : 10.1007/11590156_11

J. F. Groote and F. W. Vaandrager, Structured operational semantics and bisimulation as a congruence, Information and Computation, vol.100, issue.2, pp.202-260, 1992.
DOI : 10.1016/0890-5401(92)90013-6

URL : http://doi.org/10.1016/0890-5401(92)90013-6

B. Jonsson and K. G. Larsen, Specification and refinement of probabilistic processes Compositional testing preorders for probabilistic processes, Proc. LICS'91 Proc. LICS'95, pp.266-277, 1991.

C. Jou and S. A. Smolka, Equivalences, congruences, and complete axiomatizations for probabilistic processes, Proc. CONCUR'90, pp.367-383, 1990.
DOI : 10.1007/BFb0039071

V. Koutavas and M. Hennessy, Symbolic bisimulation for a higherorder distributed language with passivation, Proc. CONCUR'13, pp.167-181, 2013.

M. Kwiatkowska and G. Norman, A Testing Equivalence for Reactive Probabilistic Processes, Proc. EXPRESS'98, pp.114-132, 1998.
DOI : 10.1016/S1571-0661(04)00121-5

R. Lanotte and S. Tini, Probabilistic bisimulation as a congruence, ACM Transactions on Computational Logic, vol.10, issue.2, 2009.
DOI : 10.1145/1462179.1462181

K. G. Larsen and A. Skou, Bisimulation through probabilistic testing, Information and Computation, vol.94, issue.1, pp.1-28, 1991.
DOI : 10.1016/0890-5401(91)90030-6

URL : http://doi.org/10.1016/0890-5401(91)90030-6

S. Lenglet, A. Schmitt, and J. Stefani, Howe???s Method for Calculi with Passivation, Proc. CONCUR'09, pp.448-462, 2009.
DOI : 10.1007/BF01200262

S. Lenglet, A. Schmitt, and J. Stefani, Normal Bisimulations in Calculi with Passivation, Proc. FoSSaCS'09, pp.257-271, 2009.
DOI : 10.1007/978-3-540-31794-4_9

URL : https://hal.archives-ouvertes.fr/inria-00330565

S. Lenglet, A. Schmitt, and J. Stefani, Characterizing contextual equivalence in calculi with passivation, Information and Computation, vol.209, issue.11, 2011.
DOI : 10.1016/j.ic.2011.08.002

URL : https://hal.archives-ouvertes.fr/hal-00903877

R. Milner, Communication and Concurrency, 1989.

I. Phillips, Refusal testing, Theoretical Computer Science, vol.50, issue.3, pp.241-284, 1987.
DOI : 10.1016/0304-3975(87)90117-4

URL : http://doi.org/10.1016/0304-3975(87)90117-4

A. Piérard and E. Sumii, A Higher-Order Distributed Calculus with Name Creation, 2012 27th Annual IEEE Symposium on Logic in Computer Science, pp.531-540, 2012.
DOI : 10.1109/LICS.2012.63

D. Sangiorgi, Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms, 1992.

A. Schmitt and J. Stefani, The M-calculus: a higher-order distributed process calculus, Proc. POPL'03, pp.50-61, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00072227

A. Schmitt and J. Stefani, The Kell Calculus: A Family of Higher-Order Distributed Process Calculi, Proc. GC'04, pp.146-178, 2005.
DOI : 10.1007/3-540-45694-5_19

R. Segala, Testing probabilistic automata, Proc. CONCUR'96, pp.299-314, 1996.
DOI : 10.1007/3-540-61604-7_62

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Sewell, J. J. Leifer, K. Wansbrough, F. Zappa-nardelli, M. Allen-williams et al., Acute: High-level programming language design for distributed computation, J. Funct. Program, vol.17, pp.4-5547, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00070671

B. Thomsen, Plain CHOCS A second generation calculus for higher order processes, Acta Informatica, vol.5, issue.2, pp.1-59, 1993.
DOI : 10.1007/BF01200262

F. Van-breugel, M. Mislove, J. Ouaknine, and J. Worrell, Domain theory, testing and simulation for labelled Markov processes, Theoretical Computer Science, vol.333, issue.1-2, pp.171-197, 2005.
DOI : 10.1016/j.tcs.2004.10.021

R. J. Van-glabbeek, The linear time - branching time spectrum, Handbook of Process Algebra, pp.3-99, 2001.
DOI : 10.1007/BFb0039066

W. Yi and K. G. Larsen, Testing Probabilistic and Nondeterministic Processes, Proc. PSTV'92, pp.47-61, 1992.
DOI : 10.1016/B978-0-444-89874-6.50010-6