Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discovery

Mehwish Alam 1 Amedeo Napoli 1, 2
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : The data published in the form of RDF resources is increasing day by day. This mode of data sharing facilitates the exchange of information across the domains. Although it provides easier ways in the use of data such as through SPARQL queries.These queries over semantic web data usually produce list of tuples as answers which may be huge in number or may require further manipulation so that it can be understood and interpreted. Accordingly, this paper introduces a new clause {\tt View By} in the SPARQL query for creating semantic views over the raw SPARQL query answers. This approach namely, Lattice-Based View Access (LBVA), is a framework based on Formal Concept Analysis (FCA). It provides a classification of the answers of SPARQL queries based on a concept lattice, that can be navigated for retrieving or mining specific patterns in query results w.r.t. user constraints. In this way, the concept lattice can be considered as a materialized view of the data resulting from a SPARQL query.
Type de document :
Communication dans un congrès
What can FCA do for Artificial Intelligence? (Third FCA4AI Workshop), Aug 2014, Prague, Czech Republic
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01089777
Contributeur : Mehwish Alam <>
Soumis le : mardi 2 décembre 2014 - 13:37:22
Dernière modification le : jeudi 11 janvier 2018 - 06:27:33
Document(s) archivé(s) le : mardi 3 mars 2015 - 13:13:12

Fichier

ma_fca4ai_2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01089777, version 1

Collections

Citation

Mehwish Alam, Amedeo Napoli. Lattice-Based View Access: A way to Create Views over SPARQL Query for Knowledge Discovery. What can FCA do for Artificial Intelligence? (Third FCA4AI Workshop), Aug 2014, Prague, Czech Republic. 〈hal-01089777〉

Partager

Métriques

Consultations de la notice

416

Téléchargements de fichiers

96