
HAL Id: hal-01090128
https://inria.hal.science/hal-01090128

Submitted on 3 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service-Oriented Architectures: From Design to
Production Exploiting Workflow Patterns
Maurizio Gabbrielli, Saverio Giallorenzo, Fabrizio Montesi

To cite this version:
Maurizio Gabbrielli, Saverio Giallorenzo, Fabrizio Montesi. Service-Oriented Architectures: From
Design to Production Exploiting Workflow Patterns. 11th International Symposium on Distributed
Computing and Artificial Intelligence, Jun 2014, Salamanca, Spain. �10.1007/978-3-319-07593-8_17�.
�hal-01090128�

https://inria.hal.science/hal-01090128
https://hal.archives-ouvertes.fr

Service-Oriented Architectures: From Design

to Production Exploiting Workflow Patterns

Maurizio Gabbrielli1, Saverio Giallorenzo1, and Fabrizio Montesi2

1 Dipartimento di Informatica - Univ. di Bologna / INRIA, Bologna, Italy
2 IT University of Copenhagen, Denmark

Abstract. In Service-Oriented Architectures (SOA), services are com-
posed by coordinating their communications into a flow of interactions.
Coloured Petri nets (CPN) offer a formal yet easy tool for modelling
interactions in SOAs, however mapping abstract SOAs into executable
ones requires a non-trivial and time-costly analysis. Here, we propose a
methodology that maps CPN-modelled SOAs into Jolie SOAs (our tar-
get language), exploiting a collection of recurring control-flow patterns,
called Workflow Patterns, as composable blocks of the translation. We
validate our approach with a realistic use case. In addition, we pragmat-
ically asses the expressiveness of Jolie wrt the considered WPs.

1 Introduction

Service-Oriented Computing (SOC) is a design methodology focused on the
realisation of systems by composing autonomous entities called services. In a
Service-Oriented Architecture [1] (SOA), services are composed by coordinating
their communications into a flow of interactions. Several tools have been pre-
sented [2–4] to assist the process of SOA design, each focusing on a particular
aspect of the system, e.g., the architectural composition, the interaction among
components, etc. Coloured Petri nets [5] (CPNs) are a formal yet intuitive graph-
ical tool, largely employed in business process modelling [6] and suitable for SOA
specification. Although it is easy to understand the interactions of a CPN model,
it is unclear which components form the system, which implement the described
logic or whether it be spread among the components or centralised.

Therefore the aim of this work is to provide a methodology that allows the
translation of CPN-modelled SOAs into executable ones.

The Workflow Patterns Initiative (WPI) studied and collected a comprehensive
set of recurring patterns of process-aware information systems, dubbed Workflow
Patterns [6] (WP). In particular we remark the exhaustive set of patterns of
interaction, dubbed Control-Flow Workflow Patterns [7]1, modelled as CPNs.
Since CPNs are composable, our idea, depicted by the scheme in Fig. 1, is that
an SOA, modelled as a CPN, can be described in terms of the Workflow Patterns
it is made of. Once the SOA is defined by a composition of WPs, the developer
only has to refer to the implementation of each WP to build the whole system.

1 Here referred as Workflow Patterns for simplicity.

S. Omatu et al. (eds.), Distributed Computing and Artificial Intelligence, 131
11th International Conference, Advances in Intelligent Systems and Computing 290,
DOI: 10.1007/978-3-319-07593-8_17, c© Springer International Publishing Switzerland 2014

132 M. Gabbrielli, S. Giallorenzo, and F. Montesi

Fig. 1. The scheme of translation from abstract to executable SOAs

To realise our proposal, we provide the implementation of a substantial set
of WPs. Such implementation is not immediate since WPs are abstract spec-
ifications and it is unclear how they map into executable code for service co-
ordination. Moreover, although the same WP applies to different subnets of
interactions, its implementation may differ sensibly depending on whether its
logic is centralised in a single component or distributed among several ones.
Centralised and distributed approaches suit different contexts. E.g., if a vendor
wants to monitor its application he might prefer a single point of control to
track the whole system. On the other hand, some scenarios strictly require a
distributed approach, e.g., an interaction that comprehends different parties. In
§ 3 we consider a realistic use case that combines the two approaches.

We translate both the centralised and distributed versions of WPs as com-
posable and executable SOAs. In order to provide a consistent translation we
also define a procedure in § 2. Notably, such procedure might directly map a
CPN-modelled SOA to an executable one, thus skipping the said in-between
translation to a WP-modelled SOA. However, the behaviour of some WPs needs
ad-hoc solutions (see Table 1) not directly mapped by the presented procedure.
Thus, although providing an automatic procedure is an interesting challenge, in
this work we focus on the practical implications of enabling developers trans-
late CPN-modelled SOAs into executable ones by referring to our collection of
Workflow Patterns. Our procedure applies to any service-oriented language, e.g.,
BPEL [8] but we choose to implement WPs in Jolie [9,10] for two main reasons.
First Jolie supports several communication and serialisation protocols, thus the
same implementation applies to different application domains. Second Jolie is
based on a formal process calculus [11] which we plan to use to prove relevant
correctness properties of translated SOAs. For reasons of presentation we dele-
gate to the full paper [12] the analysis and the implementation of all considered
WPs (basic and advanced branching and synchronisation patterns).

2 From Coloured Petri Nets to Jolie SOAs

Background. We assume the reader is familiar with the basic concepts of Petri
nets on which Coloured Petri nets add expressions on arcs and types to tokens2.
In order to understand our translation procedure we briefly describe the message-
passing operations in Jolie. The language supports two kinds of message-passing
operations which send or receive the content of a variable v. Sending operations

2 [12] reports a comprehensive introduction on Coloured Petri nets.

Service-Oriented Architectures 133

specify the location L the message is sent to. One-Way operations (OWs) send or
receive a message and immediately pass the thread of control to the subsequent
activity in the process. The syntax of a receiving OW is simply op name(v),
whilst a sending OW adds the location of the request op name@L(v). Request-
Response operations (RRs) either send a request and keep the thread of control
until they receive a response or they receive a message, do some computation,
and send a response. The syntax of a sending RR is op name@L(v)(v), whilst
a receiving RR adds a pair of brackets that enclose the code run before sending
the response to the invoker op name(v)(v){code}. Jolie provides also an input
choice with syntax [η1]{B1} . . . [ηn]{Bn}. When an input operation ηi is triggered
it disables all {η1, . . . , ηn}\ni and executes. Then Bi executes.

Workflow Patterns in Jolie. In this section we present a procedure for trans-
lating a CPN-modelled Workflow Pattern into an executable Jolie SOA. The
translation follows five principles: (i) transitions are services; (ii) places are
message-passing operations (i.e., communications); (iii) communications carry
typed messages, as coloured tokens do; (iv) arcs are properties on communica-
tions: they express the type of carried messages and the conditions that fire the
communication; (v) a CPN models a WP composed by several services running
in parallel. Following these principles, we translate CPN models of Workflow
Patterns into Jolie SOAs as follows. We map input, internal, and output places
into One-Way (OW) operations (principle ii). When it is compatible with the
behaviour of the pattern, we coalesce two round-trip OW operations between
two services into one Request-Response (RR) for brevity. Since in Jolie output
operations define the service they communicate to, we map output places into
OWs on default locations DefaultOutput1,.... This enables composition of the
implemented patterns by binding their locations. As exposed in § 1 we translate
both the centralised and the distributed versions of WPs. In the centralised ap-
proach a master service, called orchestrator encodes the whole behaviour of a
WP coordinating the interactions among the services participating to the SOA.
BPEL [8] is the most known technology for this approach, called orchestration.
By convention the orchestrator of a WP is the only service that receives and
sends messages outside the SOA. The distributed approach recalls that of chore-
ography languages like WS-CDL [13]. Recent works [14,15] introduced automatic
techniques to project executable services of an SOA from a choreographic spec-
ification. Following a similar approach in the distributed version of a WP we
maintain a direct relation between transitions and services, imposing no restric-
tions on the scope of external input and output operations. Fig. 2 reports an
example of a CPN in box A and informally depicts the architectural view of the
translated centralised (B) and distributed (C) implementations. Listing 1.1 re-
ports the corresponding code of, respectively, the orchestrator of the centralised
version and of the services in the distributed one. In B the orchestrator (O) re-
ceives the input message as a OW operation i1 (Line 1). O sends via RR the
content c to service A which returns the condition cond1 (Line 2). Based on
cond1, O either redirects a request to B or C (Lines 4-8). O sends c to D, which re-
turns its response. (Line 9) Finally O sends c as output to the DefaultOutput1.

134 M. Gabbrielli, S. Giallorenzo, and F. Montesi

(Line 10). Notably, O uses RRs to invoke operations on the services its composes,
waiting for their responses.C maintains a direct relation between transitions and
services which pass the thread of control using OW operations. Service A receives
the input message i1 (Line 1), evaluates condition cond1 and redirects c to either
service B (Line 3) or C (Line 4) which, in turn, forwards c to service D. Finally D

receives c on operation p3 and sends it to the output location DefaultOutput1

(Line 10).

Fig. 2. (A) a CPN model, its centralised (B), and distributed (C) realisations

Listing 1.1. Centralised (right) and distributed (left) implementations of CPN A

1 //orchestrator
2 i1(c)�
3 p1�A(c)(cond1)�
4 ��(cond1){
5 p2�B(c)(c)
6 } ���� {
7 p3�C(c)(c)
8 }�
9 p4�D(c)(c)�

10 o1�DefaultOutput1(c)

1 // se rv i c e A
2 i1(c)�
3 ��(cond1){

p1�B(c) }
4 ���� { p2�C(c) }
5 // se rv i c e B
6 p1(c)� p3�D(c)
7 // se rv i c e C
8 p2(c)� p3�D(c)
9 // se rv i c e D

10 p3(c)� o1�DefaultOutput1(c)

3 The Upload Service Use Case

This section shows how a realistic SOA, modelled as a Coloured Petri net, trans-
lates into an executable SOA. The goal of this section is twofold. (i) We show
the benefits of CPNs as SOA design tool. CPNs let the designer model the sys-
tem focusing on interactions, whilst the control on message flow is left to the
developer. (ii) We exhibit how a developer can easily map a CPN into a compo-
sition of WPs. With just the flow of interactions as model, the developer can mix
distributed and centralised implementations of patterns and build the system.

The use case describes a typical interaction between a User, a file upload
Service Provider, and an Identity Provider. In particular the Identity Provider
offers an OpenID-like [16] authentication with a multi-factor mechanism [17]

Service-Oriented Architectures 135

Fig. 3. The CPN model of the interactions in the Upload Service SOA

whilst the Service Provider offers a multipart upload procedure. Fig. 3 depicts
the CPN model of the use case. The two double-line bordered boxes in the figure
act as placeholders for the two subnets related to the multi-factor authentication
and the Multipart Upload procedure, the latter modelled in Fig. 4.

Let us identify the WPs3 that compose the CPN-modelled SOA. Interaction
starts from the User that requests the service. This basic interaction is a dis-
tributed Sequence that passes the thread of control to the Service Provider.
The Service Provider employs a distributed Parallel Split to start the multi-
factor authentication and redirects the authentication request to the User. The
Identity Provider allows users to identify themselves with a multi-factor authen-
tication. Let us suppose that the Identity Provider demands a minimum number
of different authentication procedures. Such M-out-of-N mechanism maps to the
centralised version of the Cancelling Partial Join pattern being completely con-
trolled by the Identity Provider. For reasons of presentation we choose not to
discuss about the implementation of this pattern as it maps directly and does not
show interesting interactions with other patterns. For the model and the code rel-
ative to the multi-factor authentication refer to [12]. After the successful authen-
tication, the thread of control passes back to the Service Provider with another
distributed Sequence which notifies the User (s)he can proceed to upload the
file. The User and the Service Provider enter the Multipart Upload interaction
whose behaviour results from the composition of several patterns. Fig. 4 depicts
such interactions and highlights the most relevant WPs. Fig. 5 depicts the archi-
tectural view of the translation following the same informal representation used
in Fig. 2. The User-controlled part of the interaction mixes centralised and dis-
tributed WPs. Listing 1.2 reports the code relative to the services orchestrator
and SendChunks at User’s side. When the uploadRequest arrives (Line 1), the
orchestrator requires the User to select a file, passing the thread of control as a
centralised Sequence to service SelectFile (Line 2). At file selection, the thread
of control returns to the orchestrator which passes it to service CreateChunks

(Line 3). The service employs a centralised Thread Split (A) to split the file
into n chunks. Then the orchestrator implements a centralised Thread Merge
(B) to collect triplets of chunks and send them to service SendChunks (Lines

3 [12] reports the description of the considered patterns and their implementations.

136 M. Gabbrielli, S. Giallorenzo, and F. Montesi

5-7). Notably, since the orchestrator passes the thread of control to the invoked
service and waits for its response, we can coalesce the OW operations between
them into one RequestResponse. SendChunks implements a distributed Parallel
Split to forward each chunk in parallel to the Service Provider (Lines 11-13). At
Service Provider’s side the service StoreChunks employs a centralised Gener-
alised AND-Join (C) to receive the chunks (Listing 1.3 Lines 1-13). When the
nth chunk reaches the service, it passes the thread of control with a distributed
Sequence to service ComposeFile which employs a centralised Thread Merge (D)
to restore the chunks into a single file. Finally a distributed Sequence returns
the thread of control to the User, notifying the success of the upload procedure.

Listing 1.2. User’s side

1 // o rc he s t ra to r
2 uploadRequest(c) ;
3 s e l e c t F i l e@S e l e c tF i l e (c) (c) ;
4 createChunks@CreateChunks (c) (c) ;
5 for (i =0, i<#c , i++){
6 r . c1=c [i++] ; r . c2=c [i++] ; r . c3=c [i] ;
7 sendTr ip l et@SendChunks (r) ()
8 }
9 // SendChunks

10 sendTr ip l e t (c) (){
11 sendFileChunk1@StoreChunk (c . c1)
12 | sendFileChunk2@StoreChunk (c . c2)
13 | sendFileChunk3@StoreChunk (c . c3)
14 }

Listing 1.3. Service Provider’s side

1 // StoreChunks
2 [sendFileChunk1 (c)]{
3 // s t o r e f i l e chunk on queue 1
4 // check f o r upload completion
5 }
6 [sendFileChunk2 (c)]{
7 // s t o r e f i l e chunk on queue 2
8 // check f o r upload completion
9 }

10 [sendFileChunk3 (c)]{
11 // s t o r e f i l e chunk on queue 3
12 // check f o r upload completion
13 }

Fig. 4. Multipart Upload modelled as composition of Workflow Patterns

Fig. 5. The architectural view of Multipart Upload in Fig. 4

Service-Oriented Architectures 137

4 Conclusions

Contributions of this work are: (i) the definition of a methodology for trans-
lating CPN-modelled SOAs into composable and executable ones and (ii) the
creation of a collection of implemented Workflow Patterns (reported in [12]).
Such implementations follow both a centralised and a distributed approach to
allow developers the flexibility to choose and mix them. A realistic use case
proves our claim that the patterns obtained in this way can be used for build-
ing real SOAs starting from abstract specifications. In addition, (iii) our work
also allows us to provide a pragmatic assessment on the expressiveness of the
Jolie language. Table 1 summarizes the results of such an assessment. For each
pattern, we indicate in the second column the kind of support offered by Jolie:
“+” means direct support, i.e., the implementation of the pattern either uses
some specific primitives provided by the language or is a composition of directly
supported patterns. “+/–” indicates a “non direct” support, i.e., the translation
of the CPN of the pattern does not completely follow the rules described in § 2
although it complies with the general structure of the pattern. In the third col-
umn of Table 1 we indicate the specific Jolie primitive and/or the other patterns
used to implement a given pattern. Note that we report both the centralised and
distributed implementations which, as expected, in some cases vary. As shown
in Table 1 we can conclude that Jolie allows to implement most WPs.

Table 1. Support of basic and advanced branching and synchronisation WPs in Jolie

Related Work. A close concept to Workflow Pattern is that of service interac-
tion pattern, introduced in [18]. Service interaction patterns define recurring in-
teraction patterns among services but, differently from Workflow Patterns, they
are informally specified and therefore not employable in this work. Variants of
Petri nets have been used for system modelling [19] and static analysis [20].
Finally WPI used WPs as a tool to evaluate the expressive power of business
process languages, in particular for the cases of BPEL [21] and BPML [22].

138 M. Gabbrielli, S. Giallorenzo, and F. Montesi

Future Work. We plan to provide a formal definition of our technique for
translating CPNs into Jolie code. Such a formalisation would enable to mechan-
ically translate CPN-modelled SOAs into executable ones, also applying known
methodologies of static analysis to assess properties of SOAs implemented in
Jolie. We also plan to investigate the remaining patterns described by the WPI
and to use the implemented WP to offer pattern composition as APIs [23].

References

1. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. PH
(2005)

2. OMG, Service oriented architecture Modeling Language (2009)
3. OASIS, Reference architecture foundation for SOA version 1.0 (December 2012)
4. Mayer, P., Koch, N., Schroeder, A.: The UML4SOA Profile (July 2009)
5. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of

Concurrent Systems. Springer (2009)
6. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:

Workflow patterns. Distrib. Parallel Databases 14, 5–51 (2003)
7. Russell, N., Hofstede, A.H.M.T., Mulyar, N.: Workflow control-flow patterns: A

revised view. Tech. Rep. (2006)
8. OASIS, BPEL, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
9. Jolie Website, http://www.jolie-lang.org/

10. Montesi, F., Guidi, C., Zavattaro, G.: Service Oriented Programming with Jolie.
Web Services Foundations, vol. 1

11. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: Sock: A calculus for
service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

12. Gabbrielli, M., Giallorenzo, S., Montesi, F.: Executable SOAs exploiting workflow
patterns. Tech. Rep., http://www.cs.unibo.it/~sgiallor/p/eSOAs.html

13. W3C WS-CDL Working Group, Web services choreography description language
version 1.0 (2004), http://www.w3.org/TR/ws-cdl-10/

14. Carbone, M., Montesi, F.: Deadlock freedom by design: multiparty asynchronous
global programming. SIGPLAN Not. 48, 263–274 (2013)

15. Dalla Preda, M., Lanese, I., Mauro, J., Gabbrielli, M., Giallorenzo, S.: Deadlock
freedom by construction for distributed adaptative applications. Tech. Rep.,
http://www.cs.unibo.it/projects/jolie/aioc.pdf

16. OpenID, Specifications, http://openid.net/developers/specs/
17. Multi-factor authentication, http://aws.amazon.com/iam/details/mfa/
18. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service interaction patterns. In: van

der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

19. Mendes, J., Leitao, P., Restivo, F., Colombo, A.: Composition of petri nets models
in service-oriented industrial automation. In: INDIN 2010, pp. 578–583 (2010)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.jolie-lang.org/
http://www.cs.unibo.it/~sgiallor/p/eSOAs.html
http://www.w3.org/TR/ws-cdl-10/
http://www.cs.unibo.it/projects/jolie/aioc.pdf
http://openid.net/developers/specs/
http://aws.amazon.com/iam/details/mfa/

Service-Oriented Architectures 139

20. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing bpel4chor: verification
and participant synthesis. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS,
vol. 4937, pp. 46–60. Springer, Heidelberg (2008)

21. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis of
web services composition languages: The case of bpel4ws. In: Song, I.-Y., Liddle,
S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 200–215.
Springer, Heidelberg (2003)

22. van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Wohed, P.: Pattern-
based analysis of BPML (and WSCI). FIT-TR-2002-05 (2002)

23. Guidi, C., Giallorenzo, S., Gabbrielli, M.: Towards a composition-based APIaaS
layer. CLOSER 2014. SciTePress (to appear, 2014)

	Service-Oriented Architectures: From Design
to Production Exploiting Workflow Patterns

	1 Introduction
	2 From Coloured Petri Nets to Jolie SOAs
	3 The Upload Service Use Case
	4 Conclusions
	References

