B. Baudry, M. Monperrus, C. Mony, F. Chauvel, F. Fleurey et al., DIVERSIFY: Ecology-inspired software evolution for diversity emergence, 2014 Software Evolution Week, IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE)
DOI : 10.1109/CSMR-WCRE.2014.6747203

URL : https://hal.archives-ouvertes.fr/hal-00916281

D. Beasley, R. Martin, and D. Bull, An overview of genetic algorithms: Part 1. fundamentals. University computing, pp.58-58, 1993.

G. Blair, N. Bencomo, and R. B. France, Models@ run.time, Computer, vol.42, issue.10, pp.22-27, 2009.
DOI : 10.1109/MC.2009.326

URL : https://hal.archives-ouvertes.fr/hal-00733338

D. Buche, N. N. Schraudolph, and P. Koumoutsakos, Accelerating evolutionary algorithms with gaussian process fitness function models. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol.35, issue.2, pp.183-194

. Woodward, A classification of hyper-heuristic approaches, Handbook of Metaheuristics, pp.449-468, 2010.

S. Chaisiri, B. Lee, and D. Niyato, Optimization of resource provisioning cost in cloud computing. Services Computing, IEEE Transactions on, vol.5, issue.2, pp.164-177, 2012.

C. Chao, Using security levels to improve permission checking performance and manageability, 2009.

Q. Chen, P. Grosso, K. Van-der-veldt, C. De-laat, R. Hofman et al., Profiling Energy Consumption of VMs for Green Cloud Computing, 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, pp.768-775, 2011.
DOI : 10.1109/DASC.2011.131

C. A. Coello and G. B. Lamont, Applications of multi-objective evolutionary algorithms, 2004.

C. Darwin, On the origins of species by means of natural selection, 1859.
DOI : 10.5962/bhl.title.24329

K. Deb, Multi-objective optimization using evolutionary algorithms, 2001.

K. Deb, L. Thiele, M. Laumanns, E. H. Zitzler14-]-j, E. Drake et al., Scalable multiobjective optimization test problems Controlling crossover in a selection hyper-heuristic framework, Proceedings of the Congress on Evolutionary Computation (CEC-2002), pp.825-830, 2002.

D. Kateb, F. Fouquet, G. Nain, J. A. Meira, M. Ackerman et al., Generic cloud platform multi-objective optimization leveraging models@ run. time, 2014.

F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau et al., A dynamic component model for cyber physical systems, Proceedings of the 15th ACM SIGSOFT symposium on Component Based Software Engineering, CBSE '12, pp.135-144, 2012.
DOI : 10.1145/2304736.2304759

URL : https://hal.archives-ouvertes.fr/hal-00713769

S. Frey, F. Fittkau, and W. Hasselbring, Search-based genetic optimization for deployment and reconfiguration of software in the cloud, 2013 35th International Conference on Software Engineering (ICSE), pp.512-521, 2013.
DOI : 10.1109/ICSE.2013.6606597

M. Friedman, A Theory of the Consumption, 1957.

I. Güney, G. Küçküç¨küçük, and E. Ozcan, Hyper-Heuristics for Performance Optimization of Simultaneous Multithreaded Processors, Information Sciences and Systems 2013, pp.97-106, 2013.
DOI : 10.1007/978-3-319-01604-7_10

M. Harman, K. Lakhotia, J. Singer, D. R. White, S. Yoo et al., Cloud engineering is Search Based Software Engineering too, Evolutionary Multi-Criterion Optimization, pp.2225-2241, 2001.
DOI : 10.1016/j.jss.2012.10.027

URL : http://doi.org/10.1016/j.jss.2012.10.027

H. Ishibuchi, Y. Nojima, and T. Doi, Comparison between singleobjective and multi-objective genetic algorithms: Performance comparison and performance measures, Evolutionary Computation, 2006.

H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations, 2009 IEEE International Conference on Systems, Man and Cybernetics, pp.1758-1763, 2009.
DOI : 10.1109/ICSMC.2009.5346628

M. T. Jensen, Reducing the Run-Time Complexity of Multiobjective EAs: The NSGA-II and Other Algorithms, IEEE Transactions on Evolutionary Computation, vol.7, issue.5, pp.503-515, 2003.
DOI : 10.1109/TEVC.2003.817234

Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation, Soft Computing, vol.9, issue.1, pp.3-12, 2005.
DOI : 10.1007/s00500-003-0328-5

G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu, Mistral: Dynamically Managing Power, Performance, and Adaptation Cost in Cloud Infrastructures, 2010 IEEE 30th International Conference on Distributed Computing Systems, pp.62-73, 2010.
DOI : 10.1109/ICDCS.2010.88

J. O. Kephart and D. M. Chess, The vision of autonomic computing, Computer, vol.36, issue.1, pp.41-50, 2003.
DOI : 10.1109/MC.2003.1160055

V. Khare, X. Yao, and K. Deb, Performance Scaling of Multi-objective Evolutionary Algorithms, Proceedings of the 2Nd International Conference on Evolutionary Multi-criterion Optimization, EMO'03, pp.376-390, 2003.
DOI : 10.1007/3-540-36970-8_27

C. León, G. Miranda, and C. Segura, Hyperheuristics for a dynamicmapped multi-objective island-based model, Distributed Computing Soft Computing, and Ambient Assisted Living, pp.41-49, 2009.

S. W. Mahfoud, E. Ozcan, B. Bilgin, and E. E. Korkmaz, Niching methods for genetic algorithms A comprehensive analysis of hyper-heuristics, Urbana Intelligent Data Analysis, vol.12, issue.950011, pp.513-536, 1995.

P. Patel, A. H. Ranabahu, and A. P. Sheth, Service level agreement in cloud computing, 2009.

H. Plaskett, Artificial transmutationof the gene, tic, p.66, 1699.

C. R. Reeves and J. E. Rowe, Genetic algorithms: principles and perspectives: a guide to GA theory, 2003.

C. Seah, Y. Ong, I. W. Tsang, and S. Jiang, Pareto rank learning in multi-objective evolutionary algorithms, Evolutionary Computation (CEC), 2012 IEEE Congress on, pp.1-8, 2012.

V. Selvi and D. R. Umarani, Comparative Analysis of Ant Colony and Particle Swarm Optimization Techniques, International Journal of Computer Applications, vol.5, issue.4, 2010.
DOI : 10.5120/908-1286

K. C. Tan, T. H. Lee, and E. F. Khor, Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization, IEEE Transactions on Evolutionary Computation, vol.5, issue.6, pp.565-588, 2001.
DOI : 10.1109/4235.974840

D. A. Van-veldhuizen, Multiobjective evolutionary algorithms: classifications , analyses, and new innovations, 1999.

D. A. Van-veldhuizen and G. B. Lamont, Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art, Evolutionary Computation, vol.8, issue.2, pp.125-147, 2000.
DOI : 10.1109/4235.797969

B. Yuan and M. Gallagher, Statistical Racing Techniques for Improved Empirical Evaluation of Evolutionary Algorithms, Parallel Problem Solving from Nature-PPSN VIII, pp.172-181, 2004.
DOI : 10.1007/978-3-540-30217-9_18

A. Zhou, B. Qu, H. Li, S. Zhao, P. N. Suganthan et al., Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm and Evolutionary Computation, vol.1, issue.1, pp.32-49, 2011.
DOI : 10.1016/j.swevo.2011.03.001

E. Zitzler, D. Brockhoff, and L. Thiele, The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration, Evolutionary Multi-Criterion Optimization, pp.862-876, 2007.
DOI : 10.1007/978-3-540-70928-2_64