F. Beaufays, V. Vanhoucke, and B. Strope, Unsupervised Discovery and Training of Maximally Dissimilar Cluster Models, Proc. IN- TERSPEECH. pp. 66?69. Makuhari, p.377, 2004.

M. Benzeghiba, R. De-mori, O. Deroo, S. Dupont, T. Erbes et al., Automatic speech recognition and speech variability: A review, Speech Communication, vol.49, issue.10-11, pp.763-786, 2007.
DOI : 10.1016/j.specom.2007.02.006

URL : https://hal.archives-ouvertes.fr/inria-00616506

D. C. Burnett and M. Fanty, Rapid unsupervised adaptation to children's speech on a connected-digit task, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96, pp.1145-1148, 1996.
DOI : 10.1109/ICSLP.1996.607809

M. J. Gales, Maximum likelihood linear transformations for HMM-based speech recognition, Computer Speech & Language, vol.12, issue.2, pp.75-98, 1998.
DOI : 10.1006/csla.1998.0043

J. L. Gauvain and C. H. Lee, Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains. Speech and audio processing, IEEE transactions on, vol.2, issue.2, pp.291-298, 1994.

A. Gorin and D. Jouvet, Class-based speech recognition using a maximum dissimilarity criterion and a tolerance classification margin, 2012 IEEE Spoken Language Technology Workshop (SLT), pp.91-96, 2012.
DOI : 10.1109/SLT.2012.6424203

URL : https://hal.archives-ouvertes.fr/hal-00753454

A. Gorin and D. Jouvet, Efficient constrained parametrization of GMM with classbased mixture weights for Automatic Speech Recognition, Proc. LTC-6th Language & Technologies Conference, pp.550-554, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00923202

D. Jouvet, A. Gorin, and N. Vinuesa, Exploitation d'une marge de tolérance de classification pour améliorer l'apprentissage de modèles acoustiques de classes en reconnaissance de la parole, pp.763-770, 2012.

R. Kuhn, P. Nguyen, J. C. Junqua, L. Goldwasser, N. Niedzielski et al., Eigenvoices for speaker adaptation, Proc. ICSLP, pp.1774-1777, 1998.

R. G. Leonard and G. Doddington, Tidigits speech corpus, 1993.

O. Shaughnessy and D. , Acoustic Analysis for Automatic Speech Recognition, Proceedings of the IEEE, vol.101, issue.5, pp.1038-1053, 2013.
DOI : 10.1109/JPROC.2013.2251592

S. Panchapagesan and A. Alwan, Frequency warping for VTLN and speaker adaptation by linear transformation of standard MFCC, Computer Speech & Language, vol.23, issue.1, pp.42-64, 2009.
DOI : 10.1016/j.csl.2008.02.003

R. M. Stern and N. Morgan, Hearing Is Believing: Biologically Inspired Methods for Robust Automatic Speech Recognition, IEEE Signal Processing Magazine, vol.29, issue.6, pp.34-43, 2012.
DOI : 10.1109/MSP.2012.2207989

C. J. Wellekens, Explicit time correlation in hidden Markov models for speech recognition, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.384-386, 1987.
DOI : 10.1109/ICASSP.1987.1169614

T. Wenxuan, G. Gravier, F. Bimbot, and F. Soufflet, Rapid speaker adaptation by reference model interpolation, Proc. INTERSPEECH, pp.258-261, 2007.

P. Zhan and A. Waibel, Vocal tract length normalization for large vocabulary continuous speech recognition, 1997.

Y. Zhao and B. H. Juang, Stranded Gaussian mixture hidden Markov models for robust speech recognition, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4301-4304, 2012.
DOI : 10.1109/ICASSP.2012.6288870