Minimal time problem for a chemostat model with growth rate of Haldane type

Abstract : In this work, we consider an optimal control problem for a system describing a chemostat with one species and one substrate. Our objective is to find an optimal feedback control in order to reach in minimal time a target point. This problem has been addressed in the case where the growth rate is of Monod type. Here, we suppose that the growth rate is of Haldane type, which implies the existence of a singular arc. Thanks to Pontryagin maximum principle, we provide an optimal synthesis (optimal feeding strategy) of the problem.
Type de document :
Communication dans un congrès
ECC 2014 : European Control Conference, Jun 2014, Strasbourg, France. pp.1562-1567, 〈http://www.ecc14.eu/〉. 〈10.1109/ECC.2014.6862401〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01090654
Contributeur : Jérôme Harmand <>
Soumis le : mercredi 3 décembre 2014 - 21:35:24
Dernière modification le : lundi 11 juin 2018 - 10:46:08

Identifiants

Citation

Terence Bayen, Jérome Harmand. Minimal time problem for a chemostat model with growth rate of Haldane type. ECC 2014 : European Control Conference, Jun 2014, Strasbourg, France. pp.1562-1567, 〈http://www.ecc14.eu/〉. 〈10.1109/ECC.2014.6862401〉. 〈hal-01090654〉

Partager

Métriques

Consultations de la notice

148