Asymptotic Preserving scheme for a kinetic model describing incompressible fluids

Abstract : The kinetic theory of fluid turbulence modeling developed by Degond and Lemou in [6] is considered for further study, analysis and simulation. Starting with the Boltzmann like equation representation for turbulence modeling, a relaxation type collision term is introduced for isotropic turbulence. In order to describe some important turbulence phe-nomenology, the relaxation time incorporates a dependency on the turbulent microscopic energy and this makes difficult the construction of efficient numerical methods. To investi-gate this problem, we focus here on a multi-dimensional prototype model and first propose an appropriate change of frame that makes the numerical study simpler. Then, a numerical strategy to tackle the stiff relaxation source term is introduced in the spirit of Asymptotic Preserving Schemes. Numerical tests are performed in a one-dimensional framework on the basis of the developed strategy to confirm its efficiency.
Type de document :
Article dans une revue
Kinetic and Related Models , AIMS, 2016, 9, pp.51-74
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger
Contributeur : Nicolas Crouseilles <>
Soumis le : jeudi 4 décembre 2014 - 06:41:42
Dernière modification le : mercredi 28 février 2018 - 10:22:56
Document(s) archivé(s) le : lundi 9 mars 2015 - 05:56:01


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01090677, version 1



Nicolas Crouseilles, Mohammed Lemou, S.V. Raghurama Rao, Ankit Ruhi, M. Sekhar. Asymptotic Preserving scheme for a kinetic model describing incompressible fluids. Kinetic and Related Models , AIMS, 2016, 9, pp.51-74. 〈hal-01090677〉



Consultations de la notice


Téléchargements de fichiers