
HAL Id: hal-01090874
https://inria.hal.science/hal-01090874

Submitted on 13 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Models and Techniques for Analyzing Security
Protocols: A Tutorial

Véronique Cortier, Steve Kremer

To cite this version:
Véronique Cortier, Steve Kremer. Formal Models and Techniques for Analyzing Security Pro-
tocols: A Tutorial. Foundations and Trends in Programming Languages, 2014, 1 (3), pp.117.
�10.1561/2500000001�. �hal-01090874�

https://inria.hal.science/hal-01090874
https://hal.archives-ouvertes.fr

Foundations and TrendsR© in Programming Languages
Vol. 1, No. 3 (2014) 151–267
c© 2014 V. Cortier and S. Kremer
DOI: 10.1561/2500000001

Formal Models and Techniques for Analyzing
Security Protocols: A Tutorial

Véronique Cortier
LORIA, CNRS
cortier@loria.fr

Steve Kremer
INRIA Nancy

steve.kremer@inria.fr

Contents

1 Introduction 2

2 Running example 5
2.1 The Needham Schroeder public key protocol 5
2.2 Lowe’s man in the middle attack 7

3 Messages and deduction 10
3.1 Terms . 10
3.2 Message deduction . 13
3.3 An algorithm to decide message deduction 15
3.4 Exercises . 18

4 Equational theory and static equivalence 20
4.1 Equational theories . 20
4.2 Static equivalence . 24
4.3 Exercises . 30

5 A cryptographic process calculus 32
5.1 Syntax and informal semantics 33
5.2 Modelling protocols as processes 35
5.3 Formal semantics . 38
5.4 Exercises . 48

ii

iii

6 Security properties 50
6.1 Events . 50
6.2 Secrecy . 51
6.3 Authentication . 54
6.4 Equivalence properties . 60
6.5 Exercises . 70

7 Automated verification: bounded case 72
7.1 From protocols to constraint systems 73
7.2 Constraint solving . 77
7.3 Exercises . 83

8 Automated verification: unbounded case 85
8.1 Undecidability . 87
8.2 Analysis of protocols with Horn clauses 88
8.3 Exercises . 100

9 Further readings and conclusion 101

References 107

Abstract

Security protocols are distributed programs that aim at securing com-
munications by the means of cryptography. They are for instance used
to secure electronic payments, home banking and more recently elec-
tronic elections. Given the financial and societal impact in case of fail-
ure, and the long history of design flaws in such protocols, formal ver-
ification is a necessity. A major difference from other safety critical
systems is that the properties of security protocols must hold in the
presence of an arbitrary adversary. The aim of this paper is to provide
a tutorial to some modern approaches for formally modeling protocols,
their goals and automatically verifying them.

V. Cortier and S. Kremer. Formal Models and Techniques for Analyzing Security
Protocols: A Tutorial. Foundations and TrendsR© in Programming Languages,
vol. 1, no. 3, pp. 151–267, 2014.
DOI: 10.1561/2500000001.

1
Introduction

Security protocols are used to protect electronic transactions. The prob-
ably most used security protocol is the SSL/TLS protocol which un-
derlies the https protocol in web browsers. It may be used for electronic
commerce, or simply to encrypt web search queries on their way be-
tween the host and the search engine. There are of course many other
protocols in use, e.g. to authenticate to providers on mobile phones or
withdraw cash on an ATM. Moreover, the digitalization of our modern
society requires the use of security protocols in an increasing number
of contexts, such as electronic passports that may include RFID chips,
electronic elections that allow for Internet voting, etc.

We may think of security protocols as distributed programs that
make use of cryptography, e.g. encryption, to achieve a security prop-
erty, such as confidentiality of some data, e.g. your credit card number.
Given the difficulty of designing correct distributed systems in gen-
eral, it is not surprising that many flaws were discovered in security
protocols, even without breaking the underlying cryptography. Dur-
ing the last 30 years many research efforts were spent on designing
techniques and tools to analyze security protocols. One may trace this
line of work back to the seminal work of Dolev and Yao [1981] who

2

3

pioneered the ideas of an attacker who completely controls the commu-
nication network, has an unbounded computational power, but manip-
ulates protocol messages according to some predefined rules, idealizing
the protections offered by cryptography. These techniques not only al-
lowed to better understand the principles underlying secure protocol
design, but also resulted in mature tools, for automated protocol anal-
ysis, and the discovery of many attacks. For example, while designing
a formal model of Google’s Single Sign-On protocol, that allows a user
to identify himself only once and then access various applications (such
as Gmail or Google calendar), Armando et al. [2008] discovered that a
dishonest service provider could impersonate any of its users at another
service provider. This flaw has been corrected since. Basin et al. [2012]
have identified flaws and proposed fixes for the ISO/IEC 9798 standard
for entity authentication, using automated protocol verification tools.
The standard has been revised to include their proposed amendments.
Bortolozzo et al. [2010] designed a dedicated analysis tool for hard-
ware security tokens that implement the PKCS#11 standard. The tool
automatically reverse-engineers the tokens to extract its configuration,
builds an abstract model to be analyzed and verifies the attack on the
token if an attack is found. They were able to find unknown attacks on
more than 10 commercial tokens.

This paper proposes a tutorial, presenting modern techniques to
model and automatically analyze security protocols. Given the large
body of work in this area we do not aim to be exhaustive and only
present some selected methods and results. We expect that this tuto-
rial could serve as a basis for a master, or graduate course, or allow
researchers from different areas to get an overview of the kinds of tech-
niques that are used. The outline of the tutorial is as follows.
• We first present an informal description of our running exam-
ple, the Needham Schroeder public key protocol that we used for
illustration purposes in the remainder of the paper.

• Then, we explain how protocol messages can be modeled as first
order terms, and how adversary capabilities can be modeled by
an inference system. We also provide a decision algorithm for de-
duction, i.e. the adversary’s capability to construct new messages.

4 Introduction

• Next, we introduce a more general model, based on equational
theories. We revisit deduction and define a notion of message
indistinguishability, called static equivalence. We again provide a
decision procedure for static equivalence for a simple equational
theory representing symmetric encryption.

• We continue by introducing a process calculus, the applied pi cal-
culus, which we use to model protocols. One of the main differ-
ences with the original pi calculus is that the calculus allows com-
munication of messages represented by terms, rather than only
names. We illustrate how protocols can be conveniently modeled
in this formalism.

• Next we discuss how we can express security properties of proto-
cols modelled in the applied pi calculus. We cover different flavors
of confidentiality, authentication, but also anonymity properties,
expressed as behavioral equivalences of processes.

• We go on discussing automated verification. We first consider the
case when protocol participants only execute a bounded number
of sessions. We present a decision procedure based on constraint
solving which allows to decide secrecy in this setting.

• Finally, we show that the general case, where the number of ses-
sions is unbounded, is undecidable. We show that nevertheless
it is possible to design tools that are able to analyze protocols.
This comes at the cost that termination is not guaranteed. In
particular, we present an approach based on a representation of
the protocol and the adversary as Horn clauses and describe a
resolution based procedure implemented in the ProVerif tool.

• We conclude the tutorial by briefly discussing some other ap-
proaches for automated verification and other directions in this
research area.

2
Running example

We first introduce our running example, the Needham Schroeder public
key protocol [Needham and Schroeder, 1978]. We will also describe the
famous man in the middle attack, discovered by Lowe [1996] 17 years
after the publication of the original paper.

2.1 The Needham Schroeder public key protocol

The Needham Schroeder public key protocol can be described by the
following three message transmissions.

1. A→ B : {|〈A,Na〉|}apk(B)
2. B → A : {|〈Na, Nb〉|}apk(A)
3. A→ B : {|Nb|}apk(B)

The notation A→ B : m denotes that Alice (A) is sending the message
m to Bob (B). We use the notation {|m|}apk(B) to denote the asymmetric
encryption of the message m with B’s public key. 〈m1,m2〉 denotes the
pairing, i.e., the concatenation, of messages m1 and m2.

In the first message Alice sends her identity A and a nonce Na

encrypted with Bob’s public key to Bob. A nonce, (which stands for

5

6 Running example

number used once) is a fresh number that is randomly generated in
each session.

When Bob receives this first message, he decrypts the message and
checks that it is well-formed. Bob also generates a nonce Nb and en-
crypts the nonces NA and NB with Alice’s public key. This mechanism
of sending someone an encrypted nonce and waiting for the recipient to
send back this nonce is often called a challenge-response mechanism.
Here Alice’s challenge to Bob is to be able to decrypt the message and
Bob’s response consists in sending back the nonce.

When receiving the second message Alice decrypts it and verifies
that it contains her previous nonce Na. This proves to Alice that Bob
has indeed received the first message. Indeed, Bob is the only entity
able to decrypt the first message, as it was encrypted with his public
key pk(B). Then Alice retrieves the second nonce Nb and replies with
the encryption of Nb with Bob’s public key. Bob can decrypt this mes-
sage and verify that it contains the nonce Nb generated previously. We
can observe that the second and third message also form a challenge-
response from Bob to Alice.

The aim of the protocol is to guarantee mutual authentication: at
the end of a successful protocol run Bob should be ensured he has
been communicating with Alice while Alice has been communicating
with Bob. Moreover, the protocol should guarantee confidentiality of
the nonces Na and Nb.

While the above presentation of the protocol is convenient to read it
does however lack a formal semantics and many details are left implicit,
e.g. which messages are freshly generated, etc. It also only shows one
possible execution of the protocol, which is the honest execution where
everyone behaves as intended. However the network used for communi-
cation is not reliable, i.e. an attacker may intercept messages, re-route
and modify them. Moreover, this notation leaves implicit which part of
a message needs to be verified as being well formed, or correspond to
some known value.

A slightly more faithful representation of this protocol is given in
Figure 2.1. In this figure it is explicit that the messages sent by A

are not necessarily received by B. The empty space between outgoing

2.2. Lowe’s man in the middle attack 7

A B

BA

A B

{|〈A, Na〉|}a
pk(B) {|〈x, y〉|}a

pk(B)

{|〈y, Nb〉|}a
pk(x){|〈Na, z〉|}a

pk(A)

{|z|}a
pk(B) {|Nb|}a

pk(B)

Figure 2.1: Lowe’s attack on the Needham Schroeder public key protocol.

and incoming arrows represents the untrusted network. We also note
the use of variables in some messages. Variables are used whenever the
value of part of the message is a priori unknown. These variables may
then be used to construct other messages later. For example, the second
message from A’s point of view {|〈Na, z〉|}apk(A) explicits that A needs to
check that the first component of the encrypted pair corresponds to the
nonce Na while the second component is unknown and will be bound
to variable z. In the third message A uses variable z as the value to
be encrypted. This representation is very useful when thinking about
what could go wrong? in the protocol.

2.2 Lowe’s man in the middle attack

Lowe [1996] discovered an attack in the case where A initiates a session
with a dishonest party C: C may fool B, by making B believe he is
A. Moreover, the nonce Nb which B believes to only share with A

becomes known to C. The attack is displayed in Figure 2.2. We write
C(A) whenever C is impersonating A. The first message from A to C is
decrypted and re-encrypted with B’s public key. As the second message
is encrypted with A’s public key, C cannot modify this message, and
forwards it to A. As A has no means to know that Nb was generated
by B rather than C, he accepts this message and returns {|Nb|}apk(C).
One may say that A acts as a decryption oracle. The attacker may now
learn Nb and successfully complete the protocol with B.

This execution violates the secrecy of Nb and authentication from
B’s point of view. B believes he successfully finished a session of the
protocol with A while A did not authenticate to B.

8 Running example

A C

C(A) B

BC(A)

CA

A C

C(A) B

{|〈A, Na〉|}a
pk(C)

{|〈A, Na〉|}a
pk(B)

{|〈Na, Nb〉|}a
pk(A)

{|〈Na, Nb〉|}a
pk(A)

{|Nb|}a
pk(C)

{|Nb|}a
pk(B)

Figure 2.2: Lowe’s attack on the Needham Schroeder public key protocol.

The crucial observation is that A is willing to start a session with a
corrupted agent. This is actually in contradiction with the assumptions
made by Needham and Schroeder [1978]:

We also assume that each principal has a secure environ-
ment in which to compute, such as is provided by a personal
computer or would be by a secure shared operating system.
Our viewpoint throughout is to provide authentication ser-
vices to principals that choose to communicate securely. We
have not considered the extra problems encountered when
trying to force all communication to be performed in a se-
cure fashion or when trying to prevent communication be-
tween particular principals in order to enforce restrictions
on information flow.

It may therefore be debatable whether Lowe’s finding should be consid-
ered as an attack. Nevertheless, while the above assumption may have
been reasonable in 1978, it is certainly not the case anymore. Comput-
ers may run malware and people may connect to a malicious server,
e.g., because of a phishing attack.

Lowe also shows that the protocol can easily be fixed to avoid this
attack by adding B’s identity to the second message, i.e. replace the
message {|〈Na, Nb〉|}apk(A) by {|〈Na, 〈Nb, B〉〉|}apk(A). Indeed, this altered

2.2. Lowe’s man in the middle attack 9

message prevents the man in the middle attack as A would expect the
second message to be {|〈Na, 〈Nb, C〉〉|}apk(A) while the intruder can only
produce the message {|〈Na, 〈Nb, B〉〉|}apk(A). We will refer to the fixed
protocol as the Needham Schroeder Lowe (NSL) protocol.

3
Messages and deduction

Many different symbolic models are used to represent and reason
about protocols. Examples of symbolic models are process algebra
(e.g. CSP [Schneider, 1997], applied-pi calculus [Abadi and Fournet,
2001]), strand spaces [Thayer et al., 1999], constraint systems [Millen
and Shmatikov, 2001, Comon-Lundh and Shmatikov, 2003], or Horn
clauses [Blanchet, 2001]. These models have many differences but they
all have in common the fact that messages are represented by terms.
Intuitively, the exact values of keys, identities, or nonces are abstracted
away but the structure of the message is kept and modeled as a special
labelled graph, called term.

3.1 Terms

Terms are a common object in computer science. We introduce here
only the basic definitions of terms, substitutions, and unification and we
refer the reader to handbooks, e.g. [Baader and Nipkow, 1998, Baader
and Snyder, 2001], for a deeper introduction on terms.

10

3.1. Terms 11

3.1.1 Terms

Cryptographic primitives such as encryption or signatures are simply
represented by function symbols. A finite set of function symbols is
called a signature, where a function symbol f has an associated integer,
its arity.

Definition 3.1. Given a set X of variables and a set N of names (used
to represent atomic data such as keys, nonces, or identities), the set of
terms of the signature F , the variables X and the names N is denoted
T (F ,X ,N) and is inductively defined as names, variables, and function
symbols applied to other terms.

Variables are typically used to represent parts of messages that are
left unspecified, such as components received from the outside. The set
of variables occurring in a term t is denoted var(t), while the set of
names of t is denoted n(t). Terms without variables are called ground
or closed.

Example 3.1. In the context of security protocols, a standard signature
is Fstd = {senc, aenc, pair, pk} where senc, aenc and pair are three sym-
bols of arity 2, representing respectively symmetric encryption, asym-
metric encryption, and concatenation, while pk is a symbol of arity
1, representing the public key associated to some private key. For ex-
ample, the term t0 = aenc(pair(a, na), pk(ka)), where a, na, ka ∈ N ,
represents the encryption under the public key pk(ka) of the concate-
nation of the identity a together with the nonce na. This term t0 can be
used to represent the first message sent by a in the Needham-Schroeder
protocol.

For readability, we may write 〈t1, t2〉 instead of pair(t1, t2). We may
also write {|t1|}st2 instead of senc(t1, t2), and {|t1|}at2 for aenc(t1, t2).

The set of positions of a term t is written pos(t) ⊆ N∗. We use ε to
denote the root position. Formally, the set pos(t) is inductively defined
as follows.

pos(f(t1, . . . , tn)) = {ε} ∪
n⋃
i=1

i · pos(ti)

The set of subterms of t is written st(t). The subterm of t at position
p ∈ pos(t) is written t|p. In particular, t|ε = t. The term obtained by

12 Messages and deduction

replacing t|p with a term u in t is denoted t[u]p. The set of subterms of
a set of terms S is simply st(S) =

⋃
t∈S st(t).

Example 3.2. Let t0 = aenc(pair(a, na), pk(ka)) as defined in Exam-
ple 3.1. The set of its positions is pos(t0) = {ε, 1, 1.1, 1.2, 2, 2.1}. The
set of its subterms is st(t0) = {t0, pair(a, na), a, na, pk(ka), ka, } and
t0[aenc(na, pk(ka))]1 = aenc(aenc(na, pk(ka)), pk(ka)).

3.1.2 Substitutions

Terms with variables are used to represent partially specified messages.
For example, in the Needham-Schroeder protocol, the agent B expects
an encrypted message that contains A’s identity and some unknown
part X, that should be the nonce sent by A. However, B cannot control
that X is indeed the nonce sent by A. The message expected by B will
therefore be represented by the term aenc(pair(a, x), pk(ka)) where x is
a variable. Such variables can then be instantiated depending on the
actually received message, that is, they are replaced by a term. This is
formally defined through substitutions.

Definition 3.2 (Substitution). A substitution is a function σ from a
finite subset, called domain and denoted Dom(σ) of the set of variables
X to T (F ,X ,N). When applied to a term, a substitution replaces any
variable x by the corresponding term σ(x). Formally:

σ(x) = x if x /∈ Dom(σ)
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn))

We often write tσ instead of σ(t).

The question of whether two terms with variables may be made
equal is called unification. Two terms u and v are said unifiable if there
exists a substitution σ, called unifier, such that uσ = vσ.

Proposition 3.1 ([Baader and Snyder, 2001]). If two terms u and v are
unifiable then there exists a most general unifier mgu(u, v) such that
any unifier is actually an instance of mgu(u, v), that is for any σ such
that uσ = vσ, there exists θ such that σ = mgu(u, v)θ.

3.2. Message deduction 13

3.2 Message deduction

Cryptographic primitives have of course particular properties. For ex-
ample, anyone can decrypt a message with the corresponding decryp-
tion key. These properties are reflected through inference rules, that
define which messages can be computed from an a priori given set of
messages.

3.2.1 Inference system

From the key k and the message senc(m, k), which represents the (sym-
metric) encryption of m over k, one can compute m. This can be rep-
resented by the rule

senc(m, k) k

m

This can be formalized as follows.

Definition 3.3. An inference rule is a rule of the form:
u1 · · · un

u
with u1, . . . , un, u are terms (with variables).

An inference system is a set of inference rules.

The standard inference system corresponding to the encryption and
concatenation is presented in Figure 3.1. It is often called the Dolev-Yao
system, in reference to the first symbolic formalisation of the deduc-
tive power of an attacker by Dolev and Yao [1981]. The first line of
Figure 3.1 corresponds to the fact that anyone can concatenate terms
and retrieve terms from a concatenation. The second line models that
one can encrypt and decrypt symmetrically whenever he/she has the
corresponding key. Similarly, the third line corresponds to asymmetric
encryption. The first inference rule of each line of Figure 3.1 is called a
composition rule while the other rules are called decomposition rules.

Of course, more inference rules may be considered, for example to
represent signatures, hashes, etc. Other inference systems are presented
in Exercises (§3.4).

14 Messages and deduction

IDY :



x y

〈x, y〉
〈x, y〉

x

〈x, y〉

y

x y

senc(x, y)
senc(x, y) y

x

x y

aenc(x, y)
aenc(x, pk(y)) y

x

Figure 3.1: Inference system IDY corresponding to a “Dolev-Yao adversary”.

3.2.2 Derivability

Inference rules may be combined to compute or derive new messages.
For example, from a set of messages S0 = {〈k1, k2〉, 〈k3, a〉, {|n|}s〈k1,k3〉},
an attacker may learn k1 from 〈k1, k2〉 and k3 from 〈k3, a〉. This allows
him to obtain 〈k1, k3〉, which in turn enables him to decrypt {|n|}s〈k1,k3〉
to get n. He may then further append a to it for example, yielding
〈n, a〉. We say that 〈n, a〉 is deducible from S0 and the corresponding
deduction steps can be conveniently represented by the following proof
tree.

{|n|}s〈k1,k3〉

〈k1, k2〉

k1

〈k3, a〉

k3

〈k1, k3〉

n

〈k3, a〉

a

〈n, a〉
Formally, the notion of deduction is defined as follows.

Definition 3.4 (deduction). Let I be an inference system. A term t is
deducible in one step from a set of terms S for the inference system I,
which is denoted S `1

I t if there exists an inference rule
u1 · · · un

u
of I, terms t1, . . . , tn ∈ S, and a substitution θ such that

ti = uiθ for 1 ≤ i ≤ n and t = uθ

We say that
t1 · · · tn

t
is an instance of

u1 · · · un

u
.

3.3. An algorithm to decide message deduction 15

A term t is deducible from a set of terms S, denoted S `I t if there
exists a proof tree Π, that is, a tree such that

• the leaves of Π are labelled by terms in S;

• if a node of Π is labelled by tn+1 and has n child nodes labelled

by t1, . . . , tn respectively then
t1 · · · tn

tn+1
is an instance of some

inference rule of I;

• the root of Π is labelled by t.

The set Terms(Π) is the set of all terms that appear in any node of Π.
We may write S ` t instead of S `I t when I is clear from the context.

Example 3.3. Let S0 = {〈k1, k2〉, 〈k3, a〉, {|n|}s〈k1,k3〉} and IDY as de-
fined in Figure 3.1. The fact that S0 ` 〈k1, k2〉 is witnessed by the
proof tree consisting of a single node labelled 〈k1, k2〉. Then k1 and k3
are derivable in one step from S0. We have S0 ` 〈n, a〉 and a proof tree
of it is the tree presented in Section 3.2.2.

3.3 An algorithm to decide message deduction

To analyse security protocols, one of the key methods is to design au-
tomatic procedures to detect whether a protocol is subject to attacks.
In this context, a very basic question is to decide whether a term t

is deducible from a (finite) set of terms S. This problem is called the
intruder deduction problem.

Definition 3.5 (Intruder deduction problem). Let I be an inference sys-
tem. The intruder deduction problem consists in deciding the following
problem:

Input a finite set of terms S and a term t

Output whether S `I t.

The intruder deduction problem is undecidable in general [Abadi
and Cortier, 2006], for arbitrary inference systems. It is however easily
decidable for the case of local theories that satisfy that whenever S ` t
then there exists a proof of it that uses only subterms of S and t.

16 Messages and deduction

Definition 3.6. An inference system I is local if for any finite set of
terms S and for any term t such that S ` t there exists a proof tree Π
of S ` t such that any term labeling Π is in st(S ∪ {t}).

Theorem 3.1. Let I be a local inference system. The intruder deduc-
tion system is decidable in polynomial time (PTIME).

Proof. Let I be a local inference system. Whether S ` t can be decided
by the following algorithm:

• Let S0 = S.

• Let Si+1 = Si ∪
(
{u | Si `1 u} ∩ st(S ∪ {t})

)
.

• If Si+1 = Si then stop.

• Check whether t ∈ Si.

Let N be the cardinality of st(S ∪ {t}). For any i, we have that Si ⊆
st(S ∪ {t}) therefore the procedure stops in at most N steps. Since
each step can be computed in polynomial time, the overall procedure
is polynomial. Its correctness is ensured by the locality property of
I.

The intruder deduction problem is decidable in PTIME for the
Dolev-Yao inference system, due to its locality property.

Proposition 3.2. The Dolev-Yao inference system IDY is local.

Proof. We say that a proof tree Π of S ` t is minimal if its number of
nodes is minimal.

We show a property that is slightly stronger than locality:
For any S, t such that S ` t, for any minimal proof Π of S ` t, it holds
that Terms(Π) ⊆ st(S ∪{t}). Moreover if Π is reduced to a leaf or ends
with a decomposition rule then Terms(Π) ⊆ st(S).

The proof proceeds by induction on the size of Π.
Base case. If Π is a leaf then by definition Terms(Π) ⊆ st(S).

3.3. An algorithm to decide message deduction 17

Induction. Let Π be a minimal proof of S ` t and consider the
last applied inference rule. Assume first it is a composition rule:

Π =


Π1

t1

Π2

t2

t

with t = f(t1, t2) for f ∈ {pair, aenc, senc}. By induction hypothesis,
it must be the case that Terms(Π1) ⊆ st(S ∪ {t1}) ⊆ st(S ∪ {t}) and
Terms(Π2) ⊆ st(S ∪ {t2}) ⊆ st(S ∪ {t}). Hence Terms(Π) ⊆ st(S ∪ {t}).

Consider now the case where the last applied inference rule is a
decomposition and assume first that it corresponds to asymmetric de-

cryption, that is Π =


Π1

aenc(t, pk(t2))
Π2

t2

t

. The last applied rule in

Π1 must be a decomposition. Indeed, if it were a composition, we would
have

Π =



Π′1
t

Π′′1
pk(t2)

aenc(t, pk(t2))
Π2

t2

t

. Therefore Π′1 would be a smaller proof

of S ` t, which contradicts the minimality of Π. Now, since the last
applied rule of Π′1 is a decomposition and applying the induction hy-
pothesis, we deduce that Terms(Π1) ∪ {aenc(t, pk(t2))} ⊆ st(S) and
Terms(Π2) ⊆ st(S ∪{t2}). We deduce that aenc(t, pk(t2)) and therefore
t and t2 are in st(S). Hence Terms(Π) ⊆ st(S ∪ {t}).

The other cases are left to the reader.

Corollary 3.2. The intruder deduction problem is decidable in PTIME
for the Dolev-Yao inference system IDY .

This follows directly from Theorem 3.1 and Proposition 3.2.

18 Messages and deduction

3.4 Exercises

Exercise 1 (*). We consider the inference system IDY introduced in
Section 3.2.2. Let

S = {{k2}〈k1,{k1}k3 〉, 〈k1, k1〉, {{k1}k3}k1}.

1. Show that k1 and k2 are deducible from S, that is S `IDY k1 and
S `IDY k2.

2. Show that k3 is not deducible from S, that is S 6`IDY k3.

Exercise 2 (**). We consider two binary symbols sign and blind. Intu-
itively, the term sign(m, k) is meant to represent the message m signed
by the key k while blind(m, r) represents the message m blinded by the
random factor r. Blind signatures have the following property: given
the signature of a blinded message and given the blinding factor, one
can compute a valid signature of the original message. This is reflected
by the following deduction rule:

sign(blind(m, r), k) r

sign(m, k)

Such blind signatures are used for example in voting protocols [Fujioka
et al., 1992].

The complete inference system corresponding to this primitive is
Isign defined as follows.

Isign :



x y

pair(x, y)
x y

blind(x, y)
x y

sign(x, y)

pair(x, y)
x

pair(x, y)
y

sign(blind(x, y), z) y

sign(x, z)
blind(x, y) y

x

1. Exhibit a set of messages S and a name n such that S `Isign n

but S 6`IDY n where IDY has been defined in Section 3.2.2.

2. Show that Isign is not a local inference system.

3. Provide an algorithm to decide the intruder deduction problem
for Isign.

3.4. Exercises 19

Hint: Show that Isign is a “local” inference system, for the follow-
ing notion of subterm: the set stext(t) of extended subterms of t
is the smallest set such that

• st(t) ⊆ stext(t), and
• if sign(blind(t1, t2), t3) ∈ stext(t) then sign(t1, t3) ∈ stext(t).

Exercise 3 (***). Exhibit an inference deduction system I such that
the intruder deduction problem associated to I is undecidable.
Exercise 4 (**). We propose an alternative procedure to decide the
intruder deduction problem associated to IDY (defined in Section 3.2.2).

On input S and t, do:
• Decompose the terms of S as much as possible, that is, compute

a fixed point S∗ of S applying only decomposition inference rules.

• Check whether t can be obtained from S∗ applying only compo-
sition inference rules.

1. Show that this procedure always terminate.

2. Why this procedure is not complete? That is, exhibit S and t

such that the procedure fails to detect that S `IDY t.

3. Provide additional assumptions on the inputs such that the pro-
cedure becomes complete.

Exercise 5 (**). We add to the inference system IDY a rule correspond-
ing to block encryption modes such as ECB (Electronic codebook) or
CBC (Cipher-block chaining).

aenc(pair(x, y), z)
aenc(x, z)

It reflects the fact that an attacker may compute the prefix of an en-
crypted message (provided the length of the prefix is a multiple of the
length of a block).

Show that the intruder deduction system remains decidable.
Hint: you may introduce a different notion of subterm, such that this
inference system can be shown to be “local” w.r.t. this notion of sub-
term.

4
Equational theory and static equivalence

Inference systems model what an attacker can compute. This is how-
ever still not sufficient in cases where the attackers gains information
not by learning new values but by observing the difference between two
behaviors. Consider for example the case of an election where voters
vote 0 or 1. An important security property is that votes remain confi-
dential. However, the question is not whether the values 0 or 1 remain
confidential since they are both public. The votes remains confidential
if an attacker cannot distinguish whether some agent A is voting 0 or 1.

We first start this chapter by enriching term algebras with equa-
tional theories, to model more primitives. We then provide a formal
notion of indistinguishability, called static equivalence.

4.1 Equational theories

A pure free algebra does not always suffice to accurately represent
cryptographic primitives. Consider for example the bit-wise exclusive
or operator ⊕. This operation has a cancellation property: m⊕m = 0.
This is of course true even if this operation is nested in other primitives.
For example {m ⊕m}k = {0}k. The exclusive or is also commutative

20

4.1. Equational theories 21

and associative. These properties cannot be accurately reflected by an
inference system. Instead, it is convenient to quotient the term algebra
with an equational theory.

4.1.1 Definitions

Let F be a signature. An equational theory E is simply a set of equations
u = v, where u and v are terms in T (F ,X ,N).

The equivalence relation =E is defined by the equalities of E closed
by reflexivity, transitivity, substitutions and context. Formally, =E is
the smallest equivalence relation such that:

• uθ =E vθ for any u = v ∈ E and any substitution θ,

• u1 =E v1, . . . , uk =E vk implies f(u1, . . . , uk) =E f(v1, . . . , vk).

4.1.2 Examples

Exclusive Or

The standard equational theory E⊕ for representing the exclusive or is
defined as follows

x⊕ (y ⊕ z) = (x⊕ y)⊕ z x⊕ y = y ⊕ x
x⊕ x = 0 x⊕ 0 = x

where ⊕ is a function symbol of arity 2. The two equations of the
first line model resp. associativity and commutativity while the last
ones model the cancellation property and the identity element of the
exclusive or.

Example 4.1. Let u = k1 ⊕ k2, v = k2 ⊕ k3, and w = k1 ⊕ k3. Then
w =E⊕ u⊕ v.

Modular Exponentiation

Another standard primitive that cannot be modeled by an inference
system is modular exponentiation. Modular exponentiation is used in
many encryption schemes (such as RSA or El Gamal) and is at the heart
of the Diffie-Hellman key exchange protocol [Diffie and Helman, 1976]

22 Equational theory and static equivalence

for example. A minimal equational theory for modular exponentiation
is Eexp induced by the equation

exp(exp(x, y), z) = exp(exp(x, z), y)

where exp is a function symbol of arity 2.
Of course, this is not the only equation that holds for modular

exponentiation but it suffices to reflect the property needed to execute
the Diffie-Hellman protocol:

A → B : exp(g, na)
B → A : exp(g, nb)

At the end of an honest execution, the two agents A and B share the
same key exp(exp(g, na), nb) =Eexp exp(exp(g, nb), na).

Encryption

Encryption and concatenation can also be modeled by an equational
theory, with the introduction of explicit destructor operators. Let

Fdec = {sdec, adec, fst, snd}

corresponding to, respectively, symmetric decryption, asymmetric de-
cryption, first, and second projections. Let F0 be an arbitrary (finite)
set of constant symbols. The properties of concatenation and standard
symmetric and asymmetric encryption are modeled by the following
set of equations Eenc, over the term algebra T (Fstd ∪ Fdec ∪ F0,X):

sdec(senc(x, y), y) = x adec(aenc(x, pk(y)), y) = x

fst(pair(x, y)) = x snd(pair(x, y)) = y

4.1.3 Deduction

It is again possible to model what an attacker can deduce from a given
set of messages. Actually, when cryptographic primitives are modeled
by an equational theory, the notion of deduction can be defined in a
uniform way: the intruder may deduce any term that he can obtain

4.1. Equational theories 23

by applying functions. Formally, given an equational theory E, the
associated deduction system `E is defined as follows:

t1 · · · tn

f(t1, . . . , tn)
t

if t =E t
′

t′

Example 4.2. Consider the equational theory E⊕ ∪ Eenc of XOR and
encryption, over terms in T (Fstd ∪ Fdec ∪ {⊕},X). Let

S = {senc(a, a⊕ c), a⊕ b, b⊕ c}.

Then S `E⊕∪Eenc a. Indeed

senc(a, a⊕ c)
a⊕ b b⊕ c

a⊕ c

a

Alternatively, deduction can be characterized as a variant of a uni-
fication problem.

Proposition 4.1. Let E be an equational theory. Let S be a set of terms
and t a term. Then S `E t if and only if there exist a context C such
that n(C) = ∅ and terms t1, . . . , tn ∈ S such that t =E C[t1, . . . , tn].

A context is a term with holes (more formally, with variables
x1, . . . , xn) and C[t1, . . . , tn] denotes C where the holes (more formally
the variables xi) are replaced by the ti.

Proof. The implication S `E t ⇒ ∃C, t1, . . . , tn ∈ S s.t. n(C) =
∅ and t =E C[t1, . . . , tn] is proved by a simple induction of the size
of the proof tree of S `E t.

The converse implication is proved again by induction, on the size
of the context C.

This property was first noticed by Abadi and Cortier [2004] and
the existence of a context C such that t =E C[t1, . . . , tn] has been later
called the cap unification problem [Anantharaman et al., 2007].

4.1.4 The case of explicit decryption

Back to the case of encryption, there are two ways of defining deduc-
tion: either through the inference system IDY introduced in §3.2.1 or

24 Equational theory and static equivalence

through the deduction system induced by the equational theory Eenc.
Both definitions actually coincide.

Proposition 4.2. Let S be a set of terms and t be a term in the term
algebra T (Fstd,X). Then

S `IDY t if and only if S `Eenc t.

The proof is left as an exercise.

4.2 Static equivalence

Deduction does not always suffice to reflect the attacker’s abilities. For
example, the attacker can observe in which order messages are sent.
Messages are therefore organized into frames.

Definition 4.1 (frame). A frame is an expression ϕ = νñθ =
νñ{M1/x1, . . . ,Mn/xn} where θ is a substitution and ñ is a set of
names that are restricted in ϕ. The terms M1, . . . ,Mn represent the
attacker knowledge while the names in ñ are initially unknown to the
attacker. If k is a name νkϕ denotes ν(ñ∪{k})θ. We define the domain
of ϕ, Dom(ϕ), to be Dom(θ).

Example 4.3. νk{1/x1, 0/x2, senc(0, k)/x3} is a frame. It models the
fact that the attacker has seen two constants 1 and 0 in addition to
the encryption senc(0, k) where the key k is initially unknown to the
attacker.

4.2.1 Deduction and recipe

The notion of deduction can easily be extended to frames.

Definition 4.2 (deduction). A term t is deducible from a frame ϕ = νñθ

if it can be deduced using ϕ and any name that does not occur in ñ.
More formally, given an equational theory E and a frame ϕ = νñθ, we
write ϕ `E t if

Dom(ϕ) ∪ (N\ñ) `E t.

4.2. Static equivalence 25

Consider for example the frame ϕ1 = νn, kθ1 where

θ1 = {senc(pair(n, n), k)/x, k/y}

and consider the equational theory Eenc defined in §4.1.2. Then ϕ1 `Eenc

n. More precisely, n can be obtained from ϕ1 by first decrypting the
message stored in x by the key in y and then projecting on the first
component. Let M = fst(dec(x, y)). We have that Mθ1 =Eenc n. Such a
term M is called a recipe of n w.r.t. ϕ1.

Definition 4.3 (recipe). Let ϕ = νñθ be a frame and t a term such that
ϕ `E t. A term R is said free w.r.t. ϕ if n(R) ∩ ñ = ∅. A term R is a
recipe of t in ϕ if R is free w.r.t. ϕ and if Rθ =E t.

A term is deducible if and only if there exists a recipe of it.

Proposition 4.3. Let ϕ = νñθ be a frame and t a term. ϕ `E t if and
only if there exists a recipe R of t in ϕ.

The proof is very similar to the proof of Proposition 4.1.

4.2.2 Definition of static equivalence

Consider the two frames ϕ1 = {0/x, 1/y} and ϕ2 = {1/x, 0/y} where
0 and 1 are constants. Clearly, the same terms can be deduced from
ϕ1 and ϕ2. However, the two frames model two different situations. In
ϕ1, the attacker observed 0 and 1, while in ϕ2, the attacker observed 1
then 0. To reflect the ability of the attacker to compare messages, Abadi
and Fournet [2001] introduced the notion of static equivalence. Before
defining static equivalence we require the following auxiliary definition.

Definition 4.4. Given frames ϕ1, ϕ2 we write ϕ1 =α ϕ2 if ϕ1 is equal
to ϕ2 up to α-conversion of restricted names.

We say that the equation M =E N holds in a frame ϕ, written
(M =E N)ϕ if and only if there exist ñ and θ such that ϕ =α νñθ,
M,N are free w.r.t. νñθ and Mθ =E Nθ.

Definition 4.5 (static equivalence). Two frames ϕ1 and ϕ2 are stati-
cally equivalent w.r.t. an equational theory E, denoted ϕ1 ∼E ϕ2, if
Dom(ϕ1) = Dom(ϕ2) and for any two terms M,N we have that

(M =E N)ϕ1 if and only if (M =E N)ϕ2.

26 Equational theory and static equivalence

We may write ϕ1 ∼ ϕ2 instead of ϕ1 ∼E ϕ2 when E is clear from
the context.

Example 4.4. Let Eenc be the equational theory of encryption as de-
fined in §4.1.2. Let ϕ1 = {0/x, 1/y} and ϕ2 = {1/x, 0/y}. Then
ϕ1 6∼ ϕ2. Indeed (x = 0)ϕ1 while (x 6= 0)ϕ2.

Example 4.5. Let ϕ1 = νk{aenc(0, pk(k))/x, pk(k)/y} and ϕ2 =
νk{aenc(1, pk(k))/x, pk(k)/y} corresponding respectively to the asym-
metric encryption of 0 and 1. Then ϕ1 6∼ ϕ2. Indeed (aenc(0, y) = x)ϕ1
while (aenc(0, y) 6= x)ϕ2. An attacker may encrypt 0 itself and checks
for equality.

This is not the case anymore if encryption is randomized.
Let ϕ′1 = νk, n{aenc(pair(0, n), pk(k))/x, pk(k)/y} and ϕ′2 =
νk, n{aenc(pair(1, n), pk(k))/x, pk(k)/y}. Then ϕ′1 ∼ ϕ′2.

Static equivalence is closed under restriction and composition.

Proposition 4.4. Let ϕ = νñσ, ϕ1 = νñ1σ1, and ϕ2 = νñ2σ2 be three
frames such that ϕ1 ∼ ϕ2, Dom(σ) ∩ Dom(σi) = ∅ and ñ ∩ ñi = ∅
(1 ≤ i ≤ 2). Then

1. νs ϕ1 ∼ νs ϕ2, and

2. ψ1 = ν(ñ ∪ ñ1)(σ ∪ σ1) ∼ ν(ñ ∪ ñ1)σ ∪ σ2 = ψ2

Proof. Property 1 follows from the fact that n(νs ϕi) ⊆ n(ϕi). Prop-
erty 2 is also simple to prove. Assume (M = N)ψ1. This can be rewrit-
ten as (Mσ = Nσ)ϕ1 assuming n(M,N)∩ñ = ∅, which can be enforced
through α-renaming. Since ϕ1 ∼ ϕ2, this implies (Mσ = Nσ)ϕ2, there-
fore (M = N)ψ2. The case where (M = N)ψ2 is symmetric.

4.2.3 Decision procedure for encryption

In this section, we consider the equational theory of symmetric encryp-
tion Esenc restricting the theory Eenc (defined in §4.1.2) to pair and
symmetric encryption. Our goal is to present a decision procedure for
static equivalence, for the theory Esenc. The procedure is a special case
of the procedure presented by Baudet [2005], for arbitrary subterm
convergent equational theories.

4.2. Static equivalence 27

For the sake of clarity of exposition, we consider only frames where
all names are restricted (public names should be explicitly added in the
frame). That is, we only consider frames of the form νñθ where n(θ) ⊆
ñ. Therefore, by abuse of notations, we write θ1 ∼Esenc θ2 whenever
νn(θ1)θ1 ∼Esenc νn(θ2)θ2. We first need to introduce some vocabulary.

Definition 4.6 (extended frame). An extended frame is an expression
{M1 .u1, . . . ,Mn .un} where ui andMi are terms. The extended frame
associated to a frame νñ{u1/x1, . . . , un/xn} (where n(ui) ⊆ ñ) is simply
defined as {x1 . u1, . . . , xn . un}.

Initialization Given a substitution θ, the decision procedure starts
by eliminating duplicated terms, replacing them by equations. Suppose
the extended frame corresponding to θ is

{x1
1 . t1, . . . , x

k1
1 . t1, . . . , x

1
n . tn, . . . , x

kn
n . tn}

where the ti are pairwise distinct. Then we define

Init(θ) = ({x1
1 . t1, x

1
2 . t2, . . . , x

1
n . tn}, {x1

i �x
j
i | 1 ≤ i ≤ n, 1 ≤ j ≤ ki})

Saturation Let ϕ0 be an extended frame and E0 a set of equations
M �N where M and N are terms. We define the saturation procedure
for ϕ0 and E0 as follows.
Sat(ϕ0, E0) =

1. Let ϕ := ϕ0 and E := E0.

2. Repeat until reaching a fixed point.
For any M1 . t1,M2 . t2 ∈ ϕ, f ∈ {senc, dec, pair}, g ∈ {fst, snd}:

• If f(t1, t2) =Esenc t for some term t subterm of ϕ then
– if ∃M. M . t ∈ ϕ then E := E ∪ {f(M1,M2) �M};
– else ϕ := ϕ ∪ {f(M1,M2) . t}.

• If g(t1) =Esenc t for some term t subterm of ϕ then
– if ∃M. M . t ∈ ϕ then E := E ∪ {g(M1) �M};
– else ϕ := ϕ ∪ {g(M1) . t}.

28 Equational theory and static equivalence

3. Return E.

This procedure terminates and reaches a fixed point (left as exer-
cise).

Theorem 4.1. Let θ1 and θ2 be two substitutions. then θ1 ∼Esenc θ2 if
and only if

• for any (M �N) ∈ Sat(Init(θ1)) it holds that Mθ2 =Esenc Nθ2.

• for any (M �N) ∈ Sat(Init(θ2)) it holds that Mθ1 =Esenc Nθ1.

This theorem is a particular case of the decision procedure devel-
oped by Baudet [2005]. Its proof will not be given here.

Example 4.6. Consider θ = {senc(pair(n, n), k)/x, k/y}. Then

Init(θ) = ({x . senc(pair(n, n), k), y . k}, ∅)

and Sat(Init(θ)) = (ϕ,E)

with

ϕ = x . senc(pair(n, n), k), y . k, dec(x, y) . pair(n, n), fst(dec(x, y)) . n

and E = {snd(dec(x, y)) � fst(dec(x, y))}

4.2.4 More decision procedures

A much more general decision procedure has been developed by Baudet
[2005] for any convergent theory. It is guaranteed to terminate for the
class of convergent subterm theories1 and it also works in more general
cases that encompass for example blind signatures [Baudet et al., 2013].
The corresponding implementation is the tool YAPA. Another available
tool for static equivalence is KISS by Ciobâcă et al. [2012]. This tool also
handles a large class of equational theories that includes for example
trapdoor commitments.

1A convergent theory is an equational theory induced by a convergent rewriting
system. The theory is subterm convergent if there is a corresponding (convergent)
rewriting system such that any rewrite rule ` → r is such that r is a subterm of `
or a constant.

4.2. Static equivalence 29

Decidability of static equivalence has also been obtained for the
class of monoidal theories [Cortier and Delaune, 2012] that captures
e.g. Exclusive Or and pure Associativity and Commutativity. It also
encompasses homomorphic equations of the form h(x+y) = h(x)+h(y)
where + is an associative and commutative symbol. Decidability results
can be combined [Cortier and Delaune, 2012] : if static equivalence is
decidable for two disjoint theories E1 and E2 then it is also decidable
for E1 ∪ E2 (provided deduction is also decidable for E1 and E2).

Some more decidability results have been obtained for specific the-
ories such as the theory of trapdoor commitment and that of reen-
cryption [Berrima et al., 2011] as well as theories for Diffie-Hellman
exponentiation [Kremer and Mazaré, 2007] and bilinear pairings [Kre-
mer et al., 2012].

30 Equational theory and static equivalence

4.3 Exercises

Exercise 6 (**). Consider the equational theory E⊕ of the Exclusive
Or, defined in §4.1.2. Show that the following problem is decidable.

Input a finite set of terms S and a term t over T ({⊕},N)

Output whether S `E⊕ t.

Discuss the complexity of your algorithm (Note: there exists a polyno-
mial time algorithm).

Exercise 7 (**). Consider the equational theory EAC of associativity
and commutativity, defined by the two following equations.

{(x+ y) + z = x+ (y + z), x+ y = y + x}

Show that the following problem is decidable.

Input a finite set of terms S and a term t over T ({+},N)

Output whether S `E+ t.

Discuss the complexity of your algorithm (Note: this problem is actually
NP-complete).

Exercise 8 (***). Let S be a set of terms and t be a term in the term
algebra T (Fstd,X). Show that

S `IDY t if and only if S `Eenc t.

Exercise 9 (*). Let ϕ1 = νñ1θ1 and νϕ2 = ñ2θ2. We define ϕ1
◦∼E ϕ2

if and only if

• Dom(ϕ1) = Dom(ϕ2), and

• for all M,N that are free in ϕ1 and ϕ2 we have that

(Mθ1) =E (Nθ1) iff (Mθ2) =E (Nθ2)

Show that static equivalence (∼E) and
◦∼E do not coincide.

4.3. Exercises 31

Exercise 10 (**). Show that the saturation procedure described in
§4.2.3 terminates.

Exercise 11 (*). Let θ1 = {senc(pair(n, n), k)/x, k/y},
θ2 = {senc(pair(senc(n, k′), senc(n, k′)), k)/x, k/y}, and θ2 =
{senc(pair(n, n′), k)/x, k/y},

1. Show that θ1 6∼Esenc θ3.

2. Show that θ1 ∼Esenc θ2.

Hint: you may use the decision procedure of §4.2.3.

Exercise 12 (***). Consider the theory Eenc defined in §4.1.2. Let h
be a unary symbol (that has no equation). Show that for any ground
term t,

νn. {h(n)/x} ∼Eenc νn. {h(pair(t,n))/x}

5
A cryptographic process calculus

The previous chapter describes how messages exchanged in crypto-
graphic protocols can be represented as terms. In this chapter, we dis-
cuss how the protocols themselves can be modelled. While the kind of
“Alice - Bob” notation used in §2 are convenient for explaining pro-
tocols, these notations generally only describe a honest protocol exe-
cution, and contain ambiguities. Fundamentally, security protocols are
concurrent programs and formalisms for representing such programs
do exist. In particular process algebras and calculi have been devel-
oped for this purpose. Some “general purpose process algebras”, e.g.
CSP [Ryan et al., 2000], have indeed been used to reason about security
protocols. There also exist dedicated calculi which integrate support
for sending messages that use cryptographic primitives. Examples of
such dedicated process calculi are CryptoSPA [Focardi and Martinelli,
1999], which extend the CCS process algebra, the spi calculus [Abadi
and Gordon, 1999], and the applied pi calculus [Abadi and Fournet,
2001], that both extend the pi calculus. We present here in more de-
tails the applied pi calculus. In contrast to the pure pi calculus it is not
restricted to communicating names, but processes may output terms
that represent messages. One may also note that some people have con-

32

5.1. Syntax and informal semantics 33

P,Q,R := plain processes
0
P ‖ Q
!P
νn.P

if t1 = t2 then P else Q
in(u, x).P
out(u, t).P

Figure 5.1: Syntax: plain processes

sidered the problem of compiling “Alice - Bob” kind notations to more
formal models, e.g., [Jacquemard et al., 2000, Millen and Denker, 2002,
Chevalier and Rusinowitch, 2010], but we will not discuss them here.

5.1 Syntax and informal semantics

We assume a set of names N , a set of variables X , and a signature F
which define the set of terms T (F ,X ,N) equipped with an equational
theory E (see §4). The equational theory is left implicit throughout
this chapter. Moreover, we rely on a simple sort system that distin-
guishes channels and basic messages. We distinguish the set Nch ⊂ N
of channel names and partition X = Xb] Xch in the set of variables
of base sort and variables of channel sort. We suppose that function
symbols cannot be applied to variables or names of channel sort, and
cannot return terms of that sort. Hence, channels are always atomic:
the only terms of channel sort are variables and names of that sort.

The applied pi calculus has two kind of processes: plain and ex-
tended processes. Plain processes are generated by the grammar given
in Figure 5.1, where t, t1, t2, . . . range over terms, n over names, x over
variables and u is a meta-variable that stands for either a name or a
variable of channel sort. The 0 process is the process that does noth-
ing. Parallel composition P ‖ Q models that processes P and Q are
executed in parallel. The replication of P , denoted !P , allows an un-
bounded number of copies of P to be spawned. New names can be

34 A cryptographic process calculus

A,B,C := extended processes
P

A ‖ B
νn.A

νx.A

{t/x}

Figure 5.2: Syntax: extended processes

created using the new operator νn, which acts as a binder and gener-
ates a restricted name. The conditional if t1 = t2 then P else Q behaves
as P whenever t1 =E t2 and as Q otherwise. Finally, in(u, x).P expects
an input on channel u that is bound to variable x in P and out(u,M).P
outputs term M on channel u and then behaves as P .

Extended processes are generated by the grammar given in Fig-
ure 5.2. They extend plain processes by active substitutions, and allow
restrictions on both names and variables. An active substitution {t/x}
allows processes to address a term by a variable. The scope of this
access may be restricted using the ν operator on variables. This also
allows to define local variables as follows: the construct let x = t in P
is defined as νx.(P ‖ {t/x}). When the variable x is not restricted, it
means that the environment, which represents the attacker, may use x
to access the term t. As exemplified in the description of the labelled
semantics of the applied pi calculus, these active substitutions are typ-
ically used to record the terms output by the processes and represent
the attacker knowledge. Given several active substitutions in parallel
{t1/x1} ‖ . . . ‖ {tn/xn} we often regroup them in a single substitu-
tion {t1/x1 , . . . ,

tn /xn}. We suppose that these substitutions are cycle
free, that there is at most one substitution defined for each variable,
and exactly one when this variable is restricted, and substitutions only
contain terms of base sort. Given an extended process A we denote
by φ(A) the process obtained by replacing any plain process with 0.
φ(A) is called the frame of the process A. We also note that extended
processes must not appear under a replication, an input, an output, or
a conditional.

5.2. Modelling protocols as processes 35

For readability we often omit trailing 0 processes and else 0
branches, e.g. we write

if t1 = t2 then out(c, t)

instead of
if t1 = t2 then out(c, t).0 else 0

As usual we define free and bound names for processes, denoted n(A)
and bn(A). Similarly we define free and bound variables, denoted fv(A)
and bv(A). The set of bound variables contains all variables that have
been bound by an input and the ones that are restricted by the ν oper-
ator. For an active substitution {t/x} the set of free variables contains
x in addition to the variables occurring in t.

Finally, we define the notion of context. A context is a process with
a “hole”, often denoted _. Given a context C, we write C[A] for the
process obtained by replacing _ with the process A. An evaluation
context is a context whose hole is neither under replication, nor input,
output or conditional.

5.2 Modelling protocols as processes

Before defining the formal semantics of the applied pi calculus we illus-
trate how the calculus can be used for modelling security protocols. As
an example we consider the Needham-Schroeder public key protocol,
introduced in §2. The protocol can be informally described as follows.

1. A→ B : aenc(〈a, na〉, pkb)
2. B → A : aenc(〈na, nb〉, pka)
3. A→ B : aenc(nb, pkb)

We assume the previously defined equational theory Eenc on signa-
ture Fdec∪Fstd and model each of the roles A and B by a process. It is
important to distinguish between the role of the initiator A, modelled
by a process, and the agent (a in the above informal description) who
is executing the role. To make this distinction explicit we parametrize
the processes representing the initiator and responder with the keys of
the agents who execute the role.

36 A cryptographic process calculus

PA(ski, pkr) =̂ νna. out(c, aenc(〈pk(ski), na〉, pkr)).
in(c, x).
if fst(adec(x, ski)) = na then
let xnb = snd(adec(x, ski)) in
out(c, aenc(xnb, pkr))

The process first generates a fresh nonce na and then outputs the
first message on channel c. Note that for simplicity we assume that the
agent’s identity is his public key. Next, the initiator is waiting for a
message which is going to be bound to the variable x. Using a con-
ditional the initiator checks that the message contains the previously
sent nonce na. For readability we then create a local variable xnb and
store in this variable what is expected to be the nonce generated by
the responder.

We can model similarly the responder process PB.

PB(skr) =̂ in(c, y).
let pki = fst(adec(y, skr)) in
let yna = snd(adec(y, skr)) in
νnb.out(c, aenc(〈yna, nb〉, pki))
in(c, z).
if adec(z, skr)) = nb then Q

One may note that PB only takes a single argument, the responder’s
private key. The initiator’s public key is received during the execution.
When the final test succeeds we suppose that the responder continues
to execute some task modelled by the process Q.

We can now put the processes together into a process that models
the Needham Schroeder public key protocol as a whole.

P 1
nspk =̂ νska, skb.(PA(ska, pk(skb)) ‖ PB(skb) ‖

out(c, pk(ska)) ‖ out(c, pk(skb)))

This first version models that a (or more precisely the agent identified
by pk(ska)) is executing an instance of the role PA with b (identified
by pk(skb)). We also output the public keys of a and b to make these
available to the adversary.

5.2. Modelling protocols as processes 37

However, one may notice that the above modeling would miss
Lowe’s man in the middle attack since this setting does not involve
any dishonest agent c. To capture this attack one could explicitly in-
clude that a is willing to start a session with the intruder. We suppose
that the intruder possesses a secret key skc which formally is just a free
name.

P 2
nspk =̂ νska, skb.(PA(ska, pk(skb)) ‖ PA(ska, pk(skc)) ‖ PB(skb) ‖

out(c, pk(ska)) ‖ out(c, pk(skb)))

This second version explicitly includes a session started by a with the
intruder and indeed captures Lowe’s man in the middle attack. How-
ever, this situation is not satisfactory, as one does not know a priori
with whom agents should start a session. One trick is to leave this choice
to the attacker: we add an input that is used to define the public key
given to the initiator role.

P 3
nspk =̂ νska, skb.(in(c, xpk).PA(ska, xpk) ‖ PB(skb) ‖

out(c, pk(ska)) ‖ out(c, pk(skb)))

Now the attacker can just input the public key that suits him best to
create an attack. Note that he may input one of the two regular public
keys pk(ska) and pk(skb), or any other term, including in particular his
own key pk(skc). Note that the attacker may also trigger the agent a
to execute a protocol “with himself”, i.e., with the public key pk(ska).
There exist indeed attacks, sometimes called reflection attacks, that
rely on this behavior.

This version has still a shortcoming. We only consider one session
for each role. Many attacks do however require several parallel sessions
of the same role. Millen [1999] has even shown that there is a priori no
upper bound on the number of parallel sessions that would avoid all
attacks. We therefore add replication.

P 4
nspk =̂ νska, skb.(!in(c, xpk).PA(ska, xpk) ‖!PB(skb) ‖

out(c, pk(ska)) ‖ out(c, pk(skb)))

This new version allows a and b to execute an arbitrary number of
sessions. Note that a may execute several sessions with the same as well

38 A cryptographic process calculus

as different responders. However, this modeling still misses that both
initiator and responder may be executed by the same agent. We there-
fore include explicitly that a and b may execute both roles. Moreover,
the above process only allows two honest agents while an attack may
a priori require the presence of more honest agents. Therefore we add
an additional replication that allows the creation of an arbitrary num-
ber of honest private keys, each of which can be used in an arbitrary
number of sessions.

P 5
nspk =̂ !νska, skb.(!in(c, xpk).PA(ska, xpk) ‖ !PB(ska) ‖

!in(c, xpk).PA(skb, xpk) ‖ !PB(skb) ‖
out(c, pk(ska)) ‖ out(c, pk(skb)))

Observing the symmetric roles of a and b this process can be written
more succinctly and elegantly as

P 6
nspk =̂ !νsk.(!in(c, xpk).PA(sk, xpk) ‖ !PB(sk) ‖ out(c, pk(sk)))

This final modeling allows the adversary to spawn an arbitrary number
of instances of PA and PB with either the same or different private keys.

5.3 Formal semantics

As the goal is to prove security properties of protocols modelled as
processes, we need to define the semantics of the calculus in order to
have a precise definition on how a process can be executed.

5.3.1 Operational semantics

We first define the notion of structural equivalence. Intuitively, struc-
tural equivalence relates identical processes that are simply written in
a different way.

Formally, structural equivalence ≡ is the smallest equivalence re-
lation closed under α-conversion of bound names and variables and
application of evaluation contexts and such that:

5.3. Formal semantics 39

Par-0 A ‖ 0 ≡ A

Par-C A ‖ B ≡ B ‖ A
Par-A (A ‖ B) ‖ C ≡ A ‖ (B ‖ C)
Repl !P ≡ P ‖ !P

New-0 ν n. 0 ≡ 0
New-Par A ‖ ν u.B ≡ ν u.(A ‖ B) when u 6∈ fv(A) ∪ n(A)
New-C ν u.ν v.A ≡ ν v.ν u.A

Alias ν x.{t/x} ≡ 0
Subst {t/x} ‖ A ≡ {t/x} ‖ A{t/x}
Rewrite {t1/x} ≡ {t2/x} when t1 =E t2

While most of the above rules are standard the last three rules may
require some explanation. Alias allows the creation of a new local
variable. Subst allows the application of an active substitution to a
process and Rewrite allows to relate two active substitutions modulo
the equational theory.

Example 5.1. Let us illustrate these rules by showing that out(c, t1) ≡
out(c, t2) when t1 =E t2.

out(c, t1) ≡ out(c, t1) ‖ 0 by Par-0
≡ out(c, t1) ‖ ν x.{t1/x} by Alias
≡ ν x.(out(c, t1) ‖ {t1/x}) by New-Par
≡ ν x.({t1/x} ‖ out(c, t1)) by Par-C
≡ ν x.({t1/x} ‖ out(c, x)) by Subst
≡ ν x.({t2/x} ‖ out(c, x)) by Rewrite
≡ ν x.({t2/x} ‖ out(c, t2)) by Subst
≡ ν x.(out(c, t2) ‖ {t2/x}) by Par-C
≡ out(c, t2) ‖ ν x.{t2/x} by New-Par
≡ out(c, t2) ‖ 0 by Alias
≡ out(c, t2) by Par-0

Note that we also implicitly used the fact that structural equivalence
is closed under application of evaluation contexts as we applied some
of the rules directly under a context.

40 A cryptographic process calculus

One may also note that for any extended process A, we have that
φ(A) ≡ νñ.σ for some sequence of names ñ and substitution σ. There-
fore we can lift static equivalence to processes and we write A ∼E B

whenever φ(A) ≡ νñA.σA, φ(B) ≡ νñB.σB, and ñA.σA ∼ νñB.σB.
We can now define how processes interact together. Internal re-

duction is the smallest relation on processes closed under structural
equivalence and application of evaluation contexts such that

Comm out(c, t).P1 ‖ in(c, x).P2 → P1 ‖ P2{t/x}
Then if t = t then P else Q → P

Else if t1 = t2 then P else Q → Q

where t1, t2 are ground and t1 6=E t2

The first rule (Comm) models communication: whenever a process
is ready to output a term t on channel c and another process, running
in parallel, is ready to input on channel c, i.e., it starts with in(c, x)
then a communication can take place and x is replaced by t. Rules
Then and Else model a conditional. One may note that the Then
rule requires syntactic equality of terms (if t = t). However as internal
reduction is closed under structural equivalence this rule is equivalent
to the rule

Then’ if t1 = t2 then P else Q → P

where t1 =E t2

using structural equivalence in a similar way as in Example 5.1. One
may also note that in the Else rule, contrary to the Then rule we
require t1, t2 to be ground. This is due to the fact that equality is closed
under substitution while disequality is not, e.g. even though x 6= y we
have that xσ = yσ for σ = {x/y}.

Example 5.2. We illustrate internal reduction by modelling the honest
execution of the Needham Schroeder public key protocol. For simplicity,

5.3. Formal semantics 41

we consider a naive model that only considers two honest participants:

νska, skb. PA(ska, pk(skb)) ‖ PB(skb)
→ νska, skb, na, nb. in(c, x).

if fst(adec(x, ski)) = na then
let xnb = snd(adec(x, ski)) in
out(c, aenc(xnb, pkr))

‖ out(c, aenc(〈na, nb〉, pk(ska)))
in(c, z).
if adec(z, skb)) = nb then Q

→ νska, skb, na, nb. if na = na then
out(c, aenc(nb, pkr))

‖ in(c, z).
if adec(z, skb)) = nb then Q

→ νska, skb, na, nb. out(c, aenc(nb, pkr))
‖ in(c, z).

if adec(z, skb)) = nb then Q
→ νska, skb, na, nb. if nb = nb then Q
→ νska, skb, na, nb. Q

5.3.2 Observational equivalence

In order to model security properties we often rely on the notion of
observational equivalence. Examples of security properties relying on
observational equivalence are provided in §6. Intuitively, two processes
are observationally equivalent if they cannot be distinguished by an
attacker. Here the attacker may be an arbitrary process written in the
applied pi calculus. The formal definition of observational equivalence
uses the concept of barbs: we write A ⇓ a if process a is able to send
a message on channel a, i.e. A →∗ C[out(a, t).P] for some evaluation
context C[_] that does not bind a, some process P and term t.

Definition 5.1. Observational equivalence, denoted ≈, is the largest
symmetric relation R on closed extended processes with same domain
such that if A R B then

42 A cryptographic process calculus

1. if A ⇓ a then B ⇓ a;

2. if A→∗ A′ then there exists B′ such that B →∗ B′ and A′ R B′;

3. for all closing evaluation context C[_] we have that C[A] R C[B].

Intuitively, the aim of the attacker (modelled by the context C[_])
is to output on channel a whenever he believes that he interacts with
A and not with B.

Example 5.3. Consider the following two processes A and B.

A = in(c, x). if x = 0 then out(c, 1)
B = in(c, x). if x = 0 then out(c, 0)

where 0 and 1 are constants. These two processes are not observation-
ally equivalent, i.e., A 6≈ B. A witness of the non-equivalence is for
instance provided by the context

C[_] = out(c, 1). in(c, y). if y = 1 then out(a, 1) ‖ _

We indeed have that C[A] →∗ out(a, 1) and therefore C[A] ⇓ a while
C[B] can never emit on a.

Example 5.4. As another example consider the following processes A
and B

A = in(c, x). νn. out(c, h(n))
B = in(c, x). νn. out(c, h(〈x, n〉))

where h is a free symbol, i.e., not appearing in the equational the-
ory. One may think of h as modeling a hash function. These two pro-
cesses are observationally equivalent, i.e. A ≈ B even though this is
not straightforward to prove.

5.3.3 Labelled semantics and labelled bisimulation

In the previous example we presented two processes A and B that are
observationally equivalent. Showing observational equivalence formally
is however tricky as it requires to show that the processes behave in
the same way for all context C[_]. This universal quantification over

5.3. Formal semantics 43

contexts is generally difficult to reason about and motivates the in-
troduction of a labelled semantics, which allows processes to directly
interact with the environment.

The labelled operational semantics defines the relation α→ where α
is either in(a, t) (a is a channel name and t is a term that can contain
names and variables), or νx.out(a, x) (x is a variable of base type), or
out(a, c) or νc.out(a, c) (c is a channel name). α→ extends the internal
reduction (→) by the following rules:

In in(a, x).P in(a,t)−−−−→ P{t/x}

Out-Ch out(a, c).P out(a,c)−−−−−→ P

Open-Ch A
out(a,c)−−−−−→ A′ c 6= a

νc.A
νc.out(a,c)−−−−−−→ A′

Out-T out(a, t).P νx.out(a,x)−−−−−−−→ P | {t/x} x 6∈ fv(P) ∪ fv(t)

Scope A
α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

Par A
α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A | B α−→ A′ | B

Struct A ≡ B B
α−→ B′ A′ ≡ B′

A
α−→ A′

The rule In allows the environment to input a term and annotates this
transition by the label in(a, t). Intuitively, t is the recipe (as in §4.2.1)
that allows to deduce the term that is input. The fact that recipes
do not contain restricted names is enforced by the rule Scope. We
distinguish different ways of outputting terms. The distinction is due
to the fact that channel names are handled differently from terms of
base type to ensure that they do not appear in the frame. The rule
Out-Ch simply outputs a public channel name. Open-Ch allows to
output a private channel name: this channel name is opened and be-

44 A cryptographic process calculus

comes public by removing the “νc” specified in the label νc.out(a, c).
The side-condition c 6= a simply ensures that one cannot open a private
channel, by outputting it on itself. The rule Out-T allows to output
terms of base type. Terms are output by reference, i.e., an output cre-
ates an entry {t/x} in the frame, allowing the environment to address
t through the variable x. The label νx.out(c, x) indicates that x is a
fresh variable that has been “opened” and can now be used by the
environment. Scope and Par are used to close the labelled reduction
under evaluation context, provided these contexts do not interfere with
the bound names and variables. We provide examples below illustrat-
ing the importance of these side-conditions. Finally, the rule Struct
states that labelled reduction is closed under structural equivalence.

Remark 5.1. Our definition of labelled semantics slightly differs from
the definition given in [Abadi and Fournet, 2001]. We prefer this presen-
tation as it clarifies the distinction between channel names and terms
of base type. Delaune et al. [2010a] show that observational equivalence
coincides for both semantics.

Example 5.5. Let A be the following process

A = νs. out(c, enc(s, k)). in(c, y). if y = s then P

where x, y 6∈ fv(P). This models a simple challenge-response proto-
col: the protocol outputs a secret s encrypted with a key k and only
proceeds if it receives s. However, the key k has not been declared pri-
vate. Therefore an attacker can indeed provide s through the following
transition sequence.

A
νx.out(c,x)−−−−−−−→ νs. A1

in(c,dec(x,k))−−−−−−−−→ νs. A2 → P

where
A1 = in(c, y). if y = s then P ‖ {enc(s,k)/x}
A2 = if dec(x, k) = s then P ‖ {enc(s,k)/x}

The step νs. A1
in(c,dec(x,k))−−−−−−−−→ νs. A2 can be shown to be a valid transi-

tion as follows.

5.3. Formal semantics 45

In
in(c, y). if y = s then P in(c,dec(x,k))−−−−−−−−→ if dec(x, k) = s then P

Par
A1

in(c,dec(x,k))−−−−−−−−→ A2
Scope

νs. A1
in(c,dec(x,k))−−−−−−−−→ νs. A2

We may now consider the process νk. A, which uses a private key k for
the challenge-response. Then we have that

νk. A
νx.out(c,x)−−−−−−−→ νk. νs. A1

However the transition

νk. A1
in(c,dec(x,k))−−−−−−−−→ νk. νs. A2

is not valid. In particular, the above proof that νs. A1
in(c,dec(x,k))−−−−−−−−→

νs. A2 cannot be extended using the rule Scope: the rule’s side condi-
tion is violated because k does appear in the label in(c, dec(x, k)). In
this way we ensure that the attacker may not directly use restricted
names in the terms that are input. In other words, only deducible terms
may be sent by the attacker.

As discussed above proving observational equivalence is particularly
tricky due to the universal quantification over all contexts. Therefore
we now introduce a labelled bisimulation.

Definition 5.2. Labelled bisimilarity, denoted ≈`, is the largest sym-
metric relation R on closed extended processes, such that if ARB then
we have

• A ∼ B;

• if A→ A′ then there exists B′ such that B →∗ B′ and A′RB′;

• if A α−→ A′ and fv(α) ⊆ Dom(A) and bn(α)∩ n(B) = ∅ then there
exists B′ such that B →∗ α−→→∗ B and A′RB′;

46 A cryptographic process calculus

The conditions 2 and 3 correspond to the standard definition of
(weak) bisimulation. The first condition requires that the processes are
statically equivalent, i.e., the attacker cannot distinguish the sequence
of terms output so far by the processes.

Abadi and Fournet [2001] show that labelled bisimulation and ob-
servational equivalence coincide.

Theorem 5.1 ([Abadi and Fournet, 2001]). Let A and B be two closed
extended processes. A ≈ B if and only if A ≈` B.

We can therefore use labelled bisimulation as a proof technique to
show that two processes are (or are not) observationally equivalent.
Labelled bisimulation indeed avoids the universal quantification over
all possible contexts. One may nevertheless notice that the transition
system defined by the labelled reduction relation is infinite branching
as the input rule may allow an infinite number of possible terms to be
sent by the adversary.

We now revisit Examples 5.3 and 5.4.

Example 5.6. Recall the processes
A = in(c, x). if x = 0 then out(c, 1)
B = in(c, x). if x = 0 then out(c, 0)

defined in Example 5.3. To show that these processes are not observa-
tionally equivalent we provided a context that distinguishes them. We
provide an alternate way to prove this result using labelled bisimula-
tion.

We proceed by contradiction. Suppose that A ≈` B. We have
that A

in(c,0)−−−−→→ νx.out(c,x)−−−−−−−→ A′ where A′ = {1/x}. Then, because
A ≈` B there must exist B′ such that B in(c,0)−−−−→→∗ νx.out(c,x)−−−−−−−→→∗ B′
and A′ ≈` B′. In the given example the process B′, such that
B

in(c,0−−−→→∗ νx.out(c,x)−−−−−−−→→∗ B′ is uniquely defined (up to ≡) as {0/x}.
However, A′ 6∼ B′, violating condition 1 of Definition 5.2, hence con-
tradicting that A ≈` B.

Example 5.7. In Example 5.4 we defined processes
A = in(c, x). νn. out(c, h(n))
B = in(c, x). νn. out(c, h(〈x, n〉))

5.3. Formal semantics 47

which we claimed to be observationally equivalent. We now define the
relation R on closed extended processes as

R = (A,B) ∪ {(A′, B′) | A′ ≡ νn. out(c, h(n)),
B′ ≡ νn. out(c, h(〈t, n〉)),
t ground}

∪ {(A′, B′) | A′ ≡ νn. {h(n)/x}
B′ ≡ νn. {h(〈t,n〉)/x}
t ground, x ∈ X}

Provided that for any ground term t we have that

νn. {h(n)/x} ∼ νn. {h(〈t,n〉)/x}

it is easy to verify that R satisfies the 3 conditions of Definition 5.2.
Hence, as A R B we have that A ≈` B. We see that labelled bisimu-
lation can be used to reduce the proof of observational equivalence to
a proof of a (generally infinite) family of static equivalences—in this
example the static equivalence must hold for all ground terms t.

48 A cryptographic process calculus

5.4 Exercises

Exercise 13 (**). Consider the previously introduced process P 6
nspk

which models the Needham-Schroeder public key protocol.

• Give the labelled transition sequence that witnesses Lowe’s man
in the middle attack.

• Provide the attacker context that allows to witness this attack
using only internal reduction.

Exercise 14 (***). The following message exchange describes the Woo
Lam mutual authentication protocol which allows to establish a fresh
symmetric key using a trusted server S.

1. A → B : A,Na

2. B → A : B,Nb

3. A → B : {A,B,Na, Nb}Kas

4. B → S : {A,B,Na, Nb}Kas , {A,B,Na, Nb}Kbs

5. S → B : {B,Na, Nb,Kab}Kas , {A,Na, Nb,Kab}Kbs

6. B → A : {B,Na, Nb,Kab}Kas , {Na, Nb}Kab

7. A → B : {Nb}Kab

For any agent C we assume Kcs to be a symmetric key whose value is
initially known only by agent C and the server S.

• Provide a reasonable and general model of this protocol in the
applied pi calculus.

• Show that the protocol admits an attack: the intruder I makes
B believe that he is executing the protocol with A (while A did
not send any message).
Hints:

– The attack requires to interleave 2 sessions of the B role
(and none for A and the server).

– Some ciphertexts may be replaced by random values.
– We suppose that A cannot distinguish the session key Kab

from a nonce.

5.4. Exercises 49

• Show that your model of the protocol includes this attack by
providing a labelled reduction sequence as a witness.

6
Security properties

In this section we discuss how several, important security properties can
be modelled. Before defining the security properties we introduce the
notion of events. Events are used to annotate processes and are useful
to define properties about the executions. Then we discuss reachability
properties: (a weak version of) confidentiality, or secrecy, and different
flavors of authentication. Next we show how equivalence properties
may be used to express a variety of security properties, including strong
notions of secrecy, privacy preserving properties, as well as more general
properties expressed as indistinguishability from an ideal system.

6.1 Events

We first enrich the process calculus with events. Events are simply
annotations to make statements about which part of the protocol has
been reached. For this we add an event construct to the grammar of
plain processes:

event e(t).P

where e is taken from the set of events, a set of unary function symbols,
distinct from the term algebra signature. t is a term used to provide

50

6.2. Secrecy 51

parameters to the event. We could easily consider events of arbitrary
arity, but for notational simplicity we consider only unary ones in the
definitions. Multiple parameters can be encoded using pairs in the equa-
tional theory. Similarly an event of arity 0 can be simply given a con-
stant for t. In what follows, by abuse of notation, we may use events
with an arbitrary number of parameters, relying on this encoding.

As events are merely annotations they should not interfere with the
process execution. We therefore simply extend the internal reduction
by the rule

Event event e(t). P → P

We also define what it means for an event to occur.

Definition 6.1. A reduction sequence R = A0
(α1)−−→ A1 . . .

(αn)−−−→ An
satisfies the event e(t) at step i if and only if Ai−1 ≡ C[event e(t).P]
and Ai ≡ C[P] for some C[_], P .

We say that R satisfies the event e(t), if there exists i such that R
satisfies the event e(t) at step i.

6.2 Secrecy

In many approaches for symbolic protocol analysis secrecy is expressed
as a reachability property: the adversary may not reach a state where he
knows a secret s, i.e., where the secret s is deducible from the current
adversary knowledge. This form of secrecy is sometimes called weak
secrecy. We discuss later in this chapter stronger flavors of secrecy
expressed as particular equivalence properties.

A first remark is that given a process P , the secrecy of term t is
actually not well defined, as illustrated by the following example.

Example 6.1. Consider the process P = P1 ‖ P2 ‖ P3 where

P1 = νn.out(c, n)
P2 = νn.out(c, h(n))
P3 = out(c, h(n))

The question of whether n is secret in P is not well defined. Actually,
formally, n may only refer to n used in P3. However, we may wish to

52 Security properties

express that the n used in P1 is secret (which is not the case) and
similarly for P2. However, n is bound in P1 and in P2 and may be
α-converted at will.

To avoid the problem of being unable to address bound names we
add amonitor process that raises an event in case the secret is deducible
by the adversary.

Definition 6.2. Let A be a closed extended process such that the event
ded does not occur in A and s ∈ n(A). Let As = νs.(A ‖ (in(c, x) if x =
s then event ded(s)). We say that s is (weakly) secret in A if and only
if for all reduction sequence R = As

(α1)−−→ A1 . . .
(αn)−−−→ An we have that

R does not satisfy ded(s).

Note that for simplicity we restrict this definition to the secrecy of
nonces that are restricted at the top level, i.e. the “νs” is placed in front
of the process. This definition can be generalized to compound terms as
long as all bound names appearing in the term are restricted at the top
level. When restrictions appear under replication a general definition
is more complicated but in many particular cases the corresponding
monitor process is straightforward to add.

We may sometimes abuse language and talk about the secrecy of a
restricted name to mean the secrecy of free name in the process where
the restriction of this name has been removed. We will only do so when
this is not ambiguous, i.e. the name is bound once and does not appear
freely.

Example 6.2. Consider again the Needham Schroeder public key pro-
tocol and its modelling by the process P 6

nspk on p. 38. One may want
to check whether the nonces na and nb are secret or not. To avoid re-
ferring to a nonce under a replication we may note that by unrolling
some replications we have that

P 6
nspk ≡ νsk.(in(c, xpk).P ′A(sk, xpk) ‖

!in(c, xpk).PA(sk, xpk) ‖ !PB(sk) ‖ out(c, pk(sk))) ‖
P 6

nspk

where P ′A(sk, xpk) is obtained from PA(sk, xpk) α-converting na to n′a.
We may regard P ′A(sk, xpk) as a test session, which has been chosen

6.2. Secrecy 53

without loss of generality, as it was obtained through structural equiv-
alence.

We denote by A the process obtained from the above process by
removing the restriction on n′a. We will also suppose that B is a similar
construction, but defining a test session for the responder, which allows
us to reason about the secrecy of n′b.

One might expect that n′a is secret in A while n′b is not secret in B
due to the man-in-the-middle attack. However, as stated, both nonces
may be divulged to the attacker. Indeed if a starts a session with the
attacker, the nonce n′a is trivially leaked.

More formally, we have that the reduction sequence
An
′
a = νn′a. (A ‖ (in(c, x) if x = s then event ded(s))

in(c,pk(skc))−−−−−−−→
νx.out(c,x)−−−−−−−→ νn′a.νsk.(A′ ‖

(in(c, x) if x = s then event ded(s)) ‖
{aenc(〈pk(sk),na〉,pk(skc))/x})

in(c,snd(adec(x,skc)))−−−−−−−−−−−−−→
→ νn′a.νsk.(A′ ‖ event ded(s) ‖

{aenc(〈pk(sk),na〉,pk(skc))/x})
→ νn′a.νsk.(A′ ‖ {aenc(〈pk(sk),na〉,pk(skc))/x})

witnesses the attack on the secrecy of n′a.
This example shows that one has to be careful when stating the

security properties to be checked. One way to avoid the nonces to be
trivially leaked in this way is to enforce the test session between honest
participants and define
Pna

nspk =̂ νsk.(P ′A(sk, pk(sk)) ‖
!in(c, xpk).PA(sk, xpk) ‖ !PB(sk) ‖ out(c, pk(sk))) ‖

P 6
nspk

We can define similarly Pnb but we have to alter P ′B to additionally
include the test

if pk(sk) = fst(adec(y, skr)) then

just before the creation of n′b (νn′b). This results into a process P ′B that
only accepts sessions with the honest participants.

54 Security properties

Now we indeed have that Pna
nspk preserves the secrecy of n′a while

Pnb
nspk does not preserve the secrecy of n′b because of the man-in-the-

middle attack.

6.3 Authentication

Authentication is among the most important security properties. One
sometimes distinguishes between entity authentication and message au-
thentication. We mostly focus on the former. Roughly, the aim is that
an attacker is not able to impersonate an entity A when communicat-
ing with an entity B. The ISO/IEC-9798-1 standard defines the goal
of (entity) authentication as follows:

Entity authentication mechanisms allow the verification, of
an entity’s claimed identity, by another entity. The authen-
ticity of the entity can be ascertained only for the instance
of the authentication exchange.

This kind of natural language specification leaves however much
room for interpretation. The interested reader may refer to Gollmann’s
discussion [Gollmann, 1996] of different interpretations that may lead
to “attacks”, depending on which interpretation is chosen. We define
below several flavors of authentication, following Lowe’s hierarchy of
authentication properties [Lowe, 1997a].

6.3.1 Correspondence properties

Woo and Lam [1992] introduced the use of correspondence properties
to model authentication. Intuitively, a correspondence property states
that if an event e has happened then an event e′ must have happened
before. To model authentication the event e is typically a statement
of the form “B accepted a run of the protocol” and the event e′ is
a statement of the form “A started a run of the protocol”. Blanchet
[2009] formalized correspondence properties in the applied pi calculus
and proposes a method for automatically verifying these properties
in the ProVerif tool. We present here a slightly simplified version of

6.3. Authentication 55

this formalization which is sufficient to express the different notions of
authentication.

Correspondence properties are statements of the form

e(t) e′(t′)

Intuitively, such a property holds on a process A if in any execution of A
whenever an instance of the event e(t), say e(tσ), occurred, then the
corresponding instance of e′, i.e. e′(t′σ), occurred before. More formally
we define the satisfaction of a correspondence property as follows.

Definition 6.3. A closed extended process A satisfies the correspon-
dence property e(t) e′(t′) if and only if for all reduction R =
A

(α1)−−→ A1 . . .
(αn)−−−→ An we have that if R satisfies e(tσ) for some σ

with Dom(σ) = fv(t, t′) then R satisfies e′(t′σ).

One may note that in the definition we did not explicitly require
that e′ occurred before e. This is however an immediate consequence:
suppose that the definition holds and that there is a reduction where
e′(t′σ) only occurs after e(tσ); as the definition quantifies over all re-
ductions the smallest prefix of this reduction satisfying e(tσ) would
violate the definition.

We sometimes need to consider properties where every occurrence of
the event e needs to match a different occurrence of e′. This requirement
is formalized by the use of injective correspondence properties which
are of the form

e(t) inj e
′(t′)

and whose satisfaction is defined as follows.

Definition 6.4. A closed extended process A satisfies the injective cor-
respondence property e(t) inj e

′(t′) if and only if for all reduction
R = A

(α1)−−→ A1 . . .
(αn)−−−→ An, there exists a partial, injective function

φ : {1, . . . , n} 7→ {1, . . . , n} such that if R satisfies e(tσ) for some σ
with Dom(σ) = fv(t, t′) at step i then R satisfies e′(t′σ) at step φ(i).

Injective correspondence properties protect against replay attacks,
as exemplified in the next section.

56 Security properties

6.3.2 Authentication as correspondence properties

We review the different flavors of authentication identified in Lowe’s
authentication hierarchy [Lowe, 1997a] and show how they can be mod-
elled as correspondence properties. For each type of authentication we
first recall the natural language definition given by Lowe (up to some
minor rewording) and then illustrate how each of these definitions can
be formalized as a correspondence property on the Needham Schroeder
public key protocol.

Throughout this section we suppose that the processes PA and PB,
introduced before for modeling the initiator and responder roles of the
Needham Schroeder public key protocol are annotated using events
eabegin(tabegin), eaaccept(taaccept), ebbegin(tbbegin), and ebaccept(tbaccept) that are
placed as follows.

PA(ski, pkr) =̂ νna. out(c, aenc(〈pk(ski), na〉, pkr)).
event eabegin(tabegin)
in(c, x).
if fst(adec(x, ski)) = na then
let xnb = snd(adec(x, ski)) in
event eaaccept(taaccept)
out(c, aenc(xnb, pkr))

PB(skr) =̂ in(c, y).
let pki = fst(adec(y, skr)) in
let yna = snd(adec(y, skr)) in
νnb.event ebbegin(tbbegin)
out(c, aenc(〈yna, nb〉, pki))
in(c, z).
if adec(z, skr) = nb then
event ebaccept(tbaccept). Q

Note that the terms tabegin, t
b
begin, t

a
accept, t

b
accept are left unspecified for

the moment. They will be instantiated according to which flavor of
authentication we wish to express.

We now review several variants of authentication properties.

6.3. Authentication 57

Aliveness The weakest form of authentication is aliveness.

Definition 6.5 (Aliveness [Lowe, 1997a]). A protocol satisfies aliveness
if, whenever an honest agent A completes a run of the protocol, ap-
parently with another honest agent B, then B has previously run the
protocol.

To specify aliveness for the initiator we let taaccept = pkr and tbbegin =
pk(skr). The process P 5

nspk guarantees aliveness to the initiator if the
correspondence property

eaaccept(pk(skb)) ebbegin(pk(skb))

is satisfied. This correspondence property indeed expresses that
whenever the initiator successfully finishes his protocol with b

(eaaccept(pk(skb)) is satisfied) then b previously initiated a run of the
protocol (ebbegin(pk(skb)) is satisfied). This property is indeed satisfied
by P 6

nspk.
We note that the more general correspondence property

eaaccept(x) ebbegin(x)

would be trivially violated, as the attacker could act as the responder
and would not execute the event ebbegin, i.e., we can only expect au-
thentication to hold between honest agents. This is similar to the use
of test sessions when specifying secrecy.

As the Needham Schroeder protocol is designed to guarantee mu-
tual authentication we can also express that the protocol guarantees
aliveness to the responder by defining tbaccept = pki, taaccept = pk(ski)
and requiring

ebaccept(pk(ska)) eabegin(pk(ska))

to hold. Again this property is satisfied by P 5
nspk. The fact that the

property holds illustrates the weak nature of aliveness. It does not
capture the man in the middle attack: indeed aliveness simply requires a
to be alive, which is indeed the case in case of the man in the middle
attack.

58 Security properties

Weak agreement As we have seen aliveness fails to capture some
attacks. We therefore define the notion of agreement, stating that the
initiator and responder should agree on their identities.

Definition 6.6 (Weak agreement [Lowe, 1997a]). A protocol guarantees
weak agreement if, whenever an honest agent A completes a run of
the protocol, apparently with another honest agent B, then B has
previously been running the protocol, apparently with A.

Weak agreement for the initiator is expressed by including both
identities as parameters to the events: we define taaccept = 〈pk(ski), pkr〉
and tbbegin = 〈pki, pk(skr)〉 and require the property

eaaccept(〈pk(ska), pk(skb)〉) ebbegin(〈pk(ska), pk(skb)〉)

to hold.
Similarly, to express weak agreement for the responder we let

tbaccept = 〈pki, pk(skr)〉 and tabegin = 〈pk(ski), pkr〉 and require that

ebaccept(〈pk(ska), pk(skb)〉) eabegin(〈pk(ska), pk(skb)〉)

The process P 5
nspk satisfies weak agreement to the initiator, but not

to the responder: in the man in the middle attack the responder accepts
a run between a and b while the initiator started a run between a and
the attacker. We see that this notion of authentication successfully
captures this attack.

Non-injective agreement Sometimes, it is not sufficient to authenti-
cate the other user’s identity. We may also want to ensure that both
parties agree on some other messages, e.g. the nonces na and nb in
the Needham Schroeder public key protocol. Therefore we may want
to parametrize the definition by a set of data which the parties should
agree on.

Definition 6.7 (Non-injective agreement [Lowe, 1997a]). A protocol
guarantees non-injective agreement if, whenever an honest agent A
completes a run of the protocol, apparently with another honest agent
B on a set of data d then B has previously been running the protocol,
apparently with A with the same set of data d.

6.3. Authentication 59

Generally one expects the participants to agree on all atomic
data. This property is sometimes called full agreement, or just agree-
ment without specifying d. Agreement for the initiator could be ex-
pressed by defining taaccept = 〈pk(ski), 〈pkr, 〈na, xnb〉〉〉 and tbbegin =
〈pki, 〈pk(skr), 〈yna, nb〉〉 and requiring the property

eaaccept(〈pk(ska), 〈pk(skb), 〈x, y〉〉〉) ebbegin(〈(〈pk(ska), 〈pk(skb), 〈x, y〉〉〉)

to hold. Agreement for the responder is modelled in a similar way.

Injective agreement Non-injective agreement may still not be suffi-
ciently strong. Consider the following protocol for sharing a symmetric
key:

A→ B : sign(aenc(k, pk(B)), prv(A))

A generates a fresh key k, encrypts it with B’s public encryption key
and signs the encryption with his own private signing key.

This protocol should guarantee full (non-injective) agreement, i.e.,
both A and B agree on the identities and the key. However, an attacker
may replay A’s message and trick B into using a previously used key.
This key might however have been compromised since its first usage,
maybe because of a long brute force attack, or careless disposal of
previous key material. Therefore, one may want to ensure that such
replay attacks are not possible, which motivates the notion of injective
agreement.

Definition 6.8 (Injective agreement [Lowe, 1997a]). A protocol guaran-
tees injective agreement if, whenever an honest agent A completes a
run of the protocol, apparently with another honest agent B on a set
of data d then B has previously been running the protocol, apparently
with A with the same set of data d and each such run of A corresponds
to a unique run of B.

Injective agreement is modelled as non-injective agreement, but we
replace with inj. The above described protocol would obviously
violate this property as the attacker could replay A’s message resulting

60 Security properties

into several identical accept events for a single begin event. This kind
of replay attacks is avoided in the (Lowe-)Needham Schroeder public
key protocol by the nonce handshake, which guarantees freshness of
the messages.

6.4 Equivalence properties

6.4.1 Strong flavors of confidentiality

Expressing confidentiality properties in terms of deduction is often too
weak. Indeed a term is secret unless the complete term may be known
to the adversary. Consider for instance a function h that when applied
to a pair returns the first element of the pair, modelled by the equation
h(〈x, y〉) = x. Given h(t), the term t would be declared secret according
to our previous definition. If the hash would be applied to your credit
card number, modelled as the nested pairs of each of the digits, this
would certainly not be an acceptable notion of security, as the adversary
would learn all but one digit.

This is why Blanchet introduced the notion of strong se-
crecy [Blanchet, 2004], which is inspired by the definitions of semantic
security in cryptography. Strong secrecy requires that two executions
of the protocol are indistinguishable, even if the adversary may choose
the value of the secret in each of the two runs.

Definition 6.9 (strong secrecy). Let P be an extended process and
fv(P) = x. We say that x is strongly secret in P if and only if

in(c, x1). in(c, x2).P{x1/x} ≈ in(c, x1). in(c, x2).P{x2/x}

The fact that the adversary choses the secret value is expressed by
the input of two possible values as a preamble to the protocol.

Example 6.3. Consider the protocol A that simply outputs the public
key encryption of a secret.

A = νsk. out(c, aenc(x, pk(sk))) ‖ {pk(sk)/y}

The active substitution models that the public key is known to the
adversary. It is easy to see that x is not strongly secret in A, i.e.,

in(c, x1). in(c, x2).A{x1/x} 6≈ in(c, x1). in(c, x2).A{x2/x}

6.4. Equivalence properties 61

Indeed, it is sufficient for the attacker to provide two constants c1,
and c2 as input values and compare the output with aenc(c1, y), the
encryption of c1 with the public key. One may note that the process
νs.A{s/x} does preserve the weak secrecy of s.

This example also illustrates that our modeling of encryption is
too naive, as it does not reflect the randomness of (most) asymmetric
encryption schemes. While this abstract view of encryption is generally
sufficient for trace properties it is no longer the case when considering
indistinguishability properties. If we consider an updated model where
aenc is a ternary function with an explicit argument for the randomness
(and the expected, updated equational theory) we indeed have that

A = νsk. νr.out(c, aenc(x, r, pk(sk))) ‖ {pk(sk)/y}

A satisfies strong secrecy of x. This property can be easily checked
using a tool such as ProVerif.

Another flavor of secrecy of interest is real-or-random secrecy. In
a first phase, the adversary is allowed to interact with the protocol at
will. In a second phase the adversary is given either the real secret,
or a fresh randomly generated secret. If the adversary is unable to
distinguish these two scenarios, we say that the protocol satisfies real-
or-random secrecy.

Definition 6.10 (real-or-random secrecy). Given a closed extended pro-
cess A, such that s 6∈ bn(A) we say that νs.A satisfies real-or-random
secrecy of the name (of base type) s if and only if for all B and reduc-
tion sequence νs. A α1−→ νs. A1

α2−→ . . .
αn−−→ νs. An such that s 6∈ bn(Ai)

for 1 ≤ i ≤ n and no α-conversion in this reduction sequence involved
s we have that

νs.(φ(An) ‖ {s/x}) ∼ νs.(φ(An) ‖ νs′. {s′/x})

Note that we need to suppose that no α-conversion involved the
value s in the reductions in order to make sure we still refer to the right
name. One may note that real-or-random secrecy is strictly weaker than
strong secrecy.

62 Security properties

Proposition 6.1. Let A be an extended process, such that fv(A) = {x},
x is of base type and s 6∈ bn(A)∪n(A). If x is strongly secret in A then
νs.A{s/x} satisfies real-or-random secrecy of s. The converse is not true
in general.

The proof of this proposition relies on the following two lemmas.
The first lemma states that any transition under a restriction is also
valid without the restriction.

Lemma 6.1. Let s be a name of base type. If νs.A α−→ νs.B (where α
may be empty, denoting an internal reduction) and s 6∈ bn(A) ∪ bn(B)
and no α-conversion in this sequence involved s then A α−→ B.

Proof. The proof is done by induction on the proof tree of νs.A α−→
νs.B.

The second lemma is a result on static equivalence.

Lemma 6.2. For any frames ϕ,ϕ′ we have that if ϕ ∼ ϕ′{s′/s} then
νs.(ϕ | {s/x}) ∼ νs.ϕ | νs′.{s

′
/x}.

Proof. We have that

ϕ ∼ ϕ′{s′/s}
⇒ νs.ϕ ∼ νs.ϕ′{s′/s} by Lemma 4.4
⇔ νs.ϕ ∼ ϕ′{s′/s} as s does not occur in ϕ′{s′/s}
⇔ νs.ϕ ∼ ϕ as, by hyp., ϕ ∼ ϕ′{s′/s}
⇔ νs′.ϕ{s′/s} ∼ ϕ by α-conversion
⇒ νs.νs′.(ϕ{s′/s} | {s/x}) ∼ νs.(ϕ | {s/x})

by Lemma 4.4
⇔ νs′.ϕ{s′/s} | νs.{s/x} ∼ νs.(ϕ | {s/x})

as s does not occur in ϕ{s′/s}
⇔ νs.ϕ | νs′.{s′/x} ∼ νs.(ϕ | {s/x}) by α-conversion

We can now prove Proposition 6.1

Proof. We will prove the contraposition. Suppose that νs.A{s/x} does
not satisfy real-or-random secrecy of s: there exists A1, . . . , An such

6.4. Equivalence properties 63

that
νs.A{s/x}

α1−→ νs.A1 . . .
αn−−→ νs.An

and
νs.φ(An) | {s/x} 6∼ νs.φ(An) | νs′.{s′/x} (6.1)

Note that s may not occur in any label αi as s is a restricted name of
base type. We have that

in(c, x1). in(c, x2). A{x1/x}
in(c,s)−−−−→ in(c,s′)−−−−→ A{s/x}

and by Lemma 6.1 we also have that

A{s/x}
α1−→ A1 . . .

αn−−→ An

Moreover, for any A′ such that

in(c, x1). in(c, x2). A{x2/x}
in(c,s)−−−−→ in(c,s′)−−−−→
α1−→ · · · αn−−→ A′

we have that s does not occur in A′ as s does not occur in A nor
in any label αi and A inputs on x2 (therefore inputs s′ and not s).
Hence, φ(A′) = φ(A′){s′/s}. Applying Lemma 6.2 to the static in-
equivalence (6.1) with ϕ = φ(An) and ϕ′ = φ(A′) we have that
φ(An) 6∼ φ(A′){s′/s}. As φ(A′) = φ(A′){s′/s}, we conclude

in(c, x1). in(c, x2). A{x1/x}
6≈`

in(c, x1). in(c, x2). A{x2/x}

To see that the converse direction of the proposition does not hold
consider the following counter-example. Let c1 and c2 be two constants
and

A = in(c, y). if y = x then out(c, c1) else in(c, c2)

The process A does not preserve strong secrecy of x as the adversary
may force execution of the then branch on one side and the else branch
on the other side. However, the process A does preserve real-or-random
secrecy of x.

64 Security properties

Real-or-random secrecy is also useful to reason about password
based protocols. Password based protocols may be subject to offline
dictionary attacks. Offline dictionary attacks consist of two phases: in
the first phase an attacker interacts with a protocol and collects some
data; in the second phase the adversary tries all possible passwords in
a dictionary and uses the collected data to verify whether the current
entry is the correct one or not. When a protocol satisfies real-or-random
secrecy of a password, it resists against offline dictionary attacks. In-
deed the first phase of an offline dictionary attack is captured in Def-
inition 6.10 by universally quantifying over B. The second phase is
captured by the static equivalence

νs.(φ(B) ‖ {s/x}) ∼ νs.(φ(B) ‖ νs′. {s′/x})

Intuitively, the variable x can be interpreted as the dictionary entry
the adversary is currently checking and the equivalence can be read
as “trying the right entry in the dictionary is indistinguishable from
another entry”.

First definitions for offline dictionary attacks were proposed by
Lowe [2004] and Delaune and Jacquemard [2006]. Modeling offline dic-
tionary attacks using static equivalence was first proposed by Corin
et al. [2005]. Automated verification of real-or-random secrecy was
shown decidable by Baudet [2005] for a bounded number of sessions
and its verification is also supported by the ProVerif tool for an un-
bounded number of sessions [Blanchet, 2004].

6.4.2 Privacy properties

In the literature one may find many examples of privacy properties that
can be expressed in terms of process equivalences. These definitions
include anonymity (towards external parties) in authentication pro-
tocols [Abadi and Fournet, 2004], privacy of e-voting [Delaune et al.,
2009b] and e-auction protocols [Dong and Pang, 2011, Dreier et al.,
2013], unlinkability in RFID protocols [Arapinis et al., 2010, Brusò
et al., 2010], etc. We do not aim to give a general definition here, as
it would result into a vague and very abstract definition. Instead, we
provide a few examples.

6.4. Equivalence properties 65

Private authentication The notion of private authentication was in-
troduced by Abadi and Fournet [2004]. The idea is that A may try to
authenticate to B. B only accepts authentication requests from a given
set of users, and refuses the authentication request if A is not a member
of this set. In addition to authentication this protocol should protect
the anonymity of the users trying to connect and must hide whether
the authentication request succeeded or not, i.e. hide whether a given
identity is in the set or not.

We present here a simplified protocol proposed by Cheval [2012].
We define the following processes:

A(ska, pkb) = νna. out(c, aenc(〈na, pk(ska)〉, pkb)). in(c, x)

B(skb, pka) = νnb. in(c, y). let z = adec(y, skb) in
if fst(z) = pk(ska)

then out(c, aenc(〈fst(z), 〈nb, pk(skb)〉〉, pka))
else out(c, aenc(nb, pka))

The process A(a, b) models the initiator with identity a who wishes
to authenticate to b. For this he sends a fresh nonce na and his pub-
lic key pk(a) encrypted with b’s public key to b. The process B(b, a)
models the responder b willing to get authentication requests from a.
If the request contains a’s public key b responds with the message
aenc(〈fst(z), 〈nb, pk(skb)〉〉, pk(ska)). Otherwise b sends a decoy message
aenc(nb, pk(ska)). This decoy message should be indistinguishable from
a valid message to any party except a. In particular, an attacker send-
ing an initial message with a’s public key should be unable to know
whether a request from a is accepted by b or not. We can formally state
this property as follows:

νska, ska′ , skb. (ϕ ‖ A(ska, pk(skb)) ‖ B(skb, pk(ska)))
≈

νska, ska′ , skb. (ϕ ‖ A(ska′ , pk(skb)) ‖ B(skb, pk(ska′)))

where ϕ = {pk(ska)/xa,
pk(ska′) /xa′ ,

pk(skb) /xb} ensures that public keys
are known to the adversary. The equivalence states that the attacker
cannot distinguish the case where a is allowed to authenticate from the
case where a′ is. One may note that the attacker may spoof requests

66 Security properties

from honest parties, as they only require the knowledge of the public
keys. For a complete modelling, one should however also consider semi-
dishonest sessions where B is willing to answer requests from a dishon-
est agent. Interestingly, privacy is lost if the attacker checks message
length. Indeed, aenc(〈na, 〈nb, pk(skb)〉〉, pk(ska)) is likely to be longer
than aenc(nb, pk(ska)). This attack cannot be detected in a standard
symbolic model. It is necessary to enhanced the model with length. We
refer the reader to [Cheval et al., 2013] for a model and a corrrespond-
ing decision procedure for an adversary that compares the length of
messages.

Privacy in e-voting protocols In electronic voting, anonymity or vote
privacy is a fundamental property. Formally defining vote privacy may
however be tricky. Simply changing the identity of a voter would indeed
result into distinguishable processes, as in many protocols the identity
of the participating voters is revealed, typically to ensure that only
eligible voters did vote. Changing the vote also results in two distin-
guishable processes as the election result is eventually published and
the differing vote may yield an observable difference in the result.

One may also make the following observations about vote privacy.
In order to achieve privacy in an election one needs to consider at
least 2 honest voters. Otherwise, if all dishonest voters collude, it is
generally easy for them to deduce the vote of the honest voters. Simi-
larly, one needs to keep in mind that some information is inevitably be
leaked through the election outcome: for instance the extreme case of
an unanimous vote leaks how each of the voters did vote.

The definition proposed in [Kremer and Ryan, 2005] therefore pro-
poses to consider a voting protocol with two distinguished voters who
swap their vote:

S[V {a/id,v1 /v} ‖ V {b/id,v2 /v}] ≈ S[V {a/id,v2 /v} ‖ V {b/id,v1 /v}]

Here V represents the voter process, and id and v are the variables
referring to the identity and the vote. The context S represents the
remaining parts of the system, such as the election administrators or
other dishonest voters. The definition effectively expresses that it is not
possible for an adversary to link a particular voter to a particular vote.

6.4. Equivalence properties 67

Unlinkability in RFID protocols Yet another kind of privacy property
is unlinkability: it is not possible to link several sessions, i.e., infer
that the sessions involve a same user. This property is of particular
importance in RFID tags to avoid that a person could be traced. Some
implementations of the European electronic passport are vulnerable to
an attack that allows tracing a person [Chothia and Smirnov, 2010].
Unlinkability in this context can again be expressed as an observational
equivalence.

Suppose that the protocol P uses a secret key k which is specific to
each tag and the only difference between tags. Then unlinkability can
be expressed as

!νk. !P ≈ νk. !P

The left-hand side process allows several tags, each of which may
execute several sessions. On the right-hand side there is only one tag
that may execute several sessions. If these processes are observationally
equivalent an attacker cannot distinguish the case where the same tag
executes the protocol several times from the case where the protocol
may be executed by different tags.

6.4.3 Ideal systems

In software engineering one often starts from a specification and refines
it into a concrete implementation. A similar idea may be applied to se-
curity protocols. Abadi and Gordon [1999] propose to specify a security
protocol by an ideal system, i.e. a protocol which is trivially secure by
design and show that the concrete protocol is indistinguishable from
its specification. We illustrate this idea in the following example.

Example 6.4. We consider a simple protocol for message authentica-
tion P and a corresponding ideal system I.

P = νk.(νr.out(c, senc(m, k, r)) ‖
in(c, x). if valid(x, k) = > then let y = sdec(x, k).Q)

I = νk.(νr.out(c, senc(m, k, r)) ‖
in(c, x). if valid(x, k) = > then let y = sdec(x, k).Q{m/y})

68 Security properties

The protocol assumes that two entities share a key k and the sender
outputs the encryption of the message m with k. We suppose that en-
cryption is authentic, i.e., it is infeasible to construct a valid ciphertext
without knowing the encryption key. This is modelled by enriching the
equational theory for symmetric encryption with the equation

valid(senc(m, k, r), k) = >

When the recipient receives a valid ciphertext it executes a process Q
which may depend on the message. The ideal system I behaves as P ,
except that it “magically” passes the message m to Q, independently
of the received ciphertext.

Authenticity of the message may be expressed by the fact that for
any message m, and any process Q, P and I behave in the same way,
i.e.

∀m,Q. P ≈ I

Note that in this simple example the property only holds for a single
session, as such a simple protocol would allow for replay attacks, in case
we would replicate the processes.

One may notice in the above example that the ideal system has
been tailored towards the particular protocol. It may be more desir-
able to have one ideal protocol that can be implemented by several
concrete protocols, even if these protocols significantly differ in the
way the property is achieved. Simulation based security definitions,
which achieve this kind of independence between the property and the
specification, have been introduced by Canetti [2001] and Backes et al.
[2007] in computational models. These ideas have also been adapted
to symbolic models in [Delaune et al., 2009a, Böhl and Unruh, 2013].
We here only sketch the main idea of this approach: one requires the
existence of a context S, called a simulator, who is in charge of making
the ideal and the concrete protocol look the same, i.e.,

∃S. P ≈ S[I]

The context S is in charge of simulating network communications of
the protocol in order to make the processes observationally equivalent.

6.4. Equivalence properties 69

The simulator must be able to do so without access to any restricted
names of the ideal system I (this is syntactically enforced, as S cannot
be under the scope of any restriction in I). The rationale behind this
approach is that any attack process A on P can be combined with the
context S against the ideal system I. As I is correct by construction
such an attack cannot exist.

70 Security properties

6.5 Exercises

The following exercises require the use of the ProVerif tool available at

http://proverif.inria.fr

ProVerif’s input language is a variant of the applied pi calculus and
property specification is similar to the material discussed in this chap-
ter.

Exercise 15 (**). Model the Needham Schroeder public key protocol
in ProVerif and use ProVerif to verify the following properties, respec-
tively find attacks.

1. Verify that the protocol satisfies (weak) secrecy of nonce na, but
admits an attack on the (weak) secrecy of nonce nb. (Check that
the attack found corresponds to the man in the middle attack)

2. Verify that injective weak agreement is guaranteed to the initia-
tor, while non-injective, weak agreement is violated.

Exercise 16 (**). Correct the model of the previous exercise by ap-
plying Lowe’s fix (cf Chapter 2). Use ProVerif to verify the following
properties.

1. Verify that the protocol satisfies (weak) secrecy for both nonces
na and nb.

2. Verify that full injective agreement is guaranteed to both the
initiator and the responder.

3. Show that strong secrecy is not guaranteed for the nonce na (even
if the encryption is probabilistic). Look at ProVerif’s output and
explain the attack found.

4. Verify that real-or-random secrecy of nonce na is preserved.

http://proverif.inria.fr

6.5. Exercises 71

Exercise 17 (**). Consider the following protocol due to Kao and
Chow in 1995.

1. A→ S : A,B,Na

2. S → B : {A,B,Na,Kab}Kas, {A,B,Na,Kab}Kbs
3. B → A : {A,B,Na,Kab}Kas, {Na}Kab, Nb
4. A→ B : {Nb}Kab

The protocol involves three roles: the initiator A, the responder B
and a trusted server S. Na and Nb are fresh nonces generated by A and
B, respectively. Kas and Kbs are long term keys shared between A,
respectively B, and the server S. Kab is a fresh session key generated
by S.

As usual we suppose that the intruder may take the role of A or B
and has a shared key with the server S. Use ProVerif to verify that the
protocol guarantees

1. secrecy of Kab;

2. full injective agreement for both A and B.

We now suppose that an attacker may be able to compromise an
old session key Kab, i.e., the attacker may record, or interact with a
session and obtain the established session key.

Model key compromise of a previous session in ProVerif and show
that this leads to an attack, i.e., secrecy of an uncompromised key
may be violated. (Compromise of a key may be modelled by simply
outputting the compromised key to the adversary.)

7
Automated verification: bounded case

As illustrated in the previous chapters, the design of protocols is error-
prone and finding flaws is not an easy task. Therefore, the two last
decades have seen the development of decision techniques and cor-
responding tools to check automatically whether a protocol can be
attacked. Actually, even a simple property like secrecy is undecid-
able [Durgin et al., 1999]: no generic tool can check for secrecy without
requiring some restrictions on the attacker model. In particular, al-
lowing to spawn an unbounded number of protocol sessions leads to
undecidability. We provide a construction showing undecidability in
the next chapter, in §8.1.

Therefore many techniques focus on the case where the number of
sessions is bounded : assuming that the protocol is executed a limited
number of times, can we check whether the secrecy of some data s is pre-
served? Note that even if the number of sessions is bounded the system
to verify is still infinite (due to the infinite number of messages that an
attacker may construct and use when interacting with the protocol par-
ticipants). One of the first decidability results was proposed by Amadio
and Lugiez [2000], Amadio et al. [2002]. Rusinowitch and Turuani [2001,
2003] extend this result to a more general framework that includes in

72

7.1. From protocols to constraint systems 73

particular composed keys. They also provide a complexity result: se-
crecy is shown to be (co-)NP-complete. Another algorithm based on
constraint systems has been proposed by Millen and Shmatikov [2001]
and extended by Comon-Lundh and Shmatikov [2003] to the exclusive
or. The algorithm is rather elegant, and amenable to extensions. This
is the approach we have chosen to present in this chapter.

7.1 From protocols to constraint systems

Consider again the Needham-Schroeder public key protocol.

1. A→ B : aenc(〈a, na〉, pkb)
2. B → A : aenc(〈na, nb〉, pka)
3. A→ B : aenc(nb, pkb)

One session of the initiator instantiated by a willing to talk to b
can be informally represented by the following two rules.

→ aenc(〈pk(ska), na〉, pk(skb)) (7.1)
aenc(〈na, x〉, pk(ska))→ aenc(x, pk(skb)) (7.2)

The agent a first sends her identity (represented by her public key
pk(ska)), together with a fresh nonce na, encrypted by the public key
of b. Then upon receiving a message of the form aenc(〈na, x〉, pk(ska)),
the agent a replies by x encrypted by the public key of b. Similarly,
one session of the initiator instantiated by a willing to talk to c can be
informally represented by the following two rules.

→ aenc(〈pk(ska), n′a〉, pk(skc)) (7.3)
aenc(〈n′a, y〉, pk(ska))→ aenc(y, pk(skc)) (7.4)

Finally, one session of the responder, instantiated by b willing to
answer to a can be informally represented by a single rule.

aenc(〈pk(ska), z〉, pk(skb))→ aenc(〈z, nb〉, pk(ska)) (7.5)

These rules may be triggered in any order, provided 7.1 is played be-
fore 7.2 and 7.3 is played before 7.4. Consider for example the following
execution order: 7.3, 7.5, followed by 7.4. This is a possible interleaving

74 Automated verification: bounded case

of the sessions of the protocol. There is an attack if a third party can
learn nb, the nonce generated by b for a. To learn nb in this scenario,
the attacker should be able to:

• build a message of the form aenc(〈pk(ska), z〉, pk(skb)) out of
aenc(〈pk(ska), n′a〉, pk(skc)) and its initial knowledge S0. This re-
quirement can be represented as follows:

S0, aenc(〈pk(ska), n′a〉, pk(skc))
 aenc(〈pk(ska), z〉, pk(skb))

In return, he would learn aenc(〈z, nb〉, pk(ska)) for some instanti-
ation on z that satisfies the constraint above.

• build a message of the form aenc(〈n′a, y〉, pk(ska)) out of
aenc(〈z, nb〉, pk(ska)) and the previous messages

S0, aenc(〈pk(ska), n′a〉, pk(skc)), aenc(〈z, nb〉, pk(ska))

 aenc(〈n′a, y〉, pk(ska))

• deduce nb

S0, aenc(〈pk(ska), n′a〉, pk(skc)), aenc(〈z, nb〉, pk(ska)),
aenc(y, pk(skc))
 nb

The attacker can learn nb if there is an instantiation of the variables
x, y, and z that satisfies these three constraints. We formally define
constraints in the next section. Note that for simplicity, in the above
example, and in the remaining of the chapter we write S, t instead of
S ∪ {t}.

Remark 7.1. One may note that in this section we consider a formal
model where messages from the attacker are pattern matched against
the messages (with variables) expected by the protocol. This differs
form the approach taken in the applied pi calculus where inputs from
the attacker are bound to a variable, and the message is explicitly ver-
ified to correspond to the expected message using conditionals. Con-
straint system approaches that are following the later approach also
exist [Delaune and Jacquemard, 2004, Baudet, 2005].

7.1. From protocols to constraint systems 75

7.1.1 Constraint systems

In the remaining of this chapter, we assume the inference system IDY
defined in Chapter 3. The associated deduction relation is denoted `.

Constraints are formally defined as follows.

Definition 7.1. A constraint is an expression of the form S
 u where
S is a non empty set of terms and u is a term.

A constraint system is a set of constraints C =
⋃n
i=1 Si
 ui such

that

1. Si ⊆ Si+1 for any 1 ≤ i ≤ n− 1;

2. If Si
 ui ∈ C and x ∈ var(Si) then

Sj = min{S′ | S′
 v ∈ C, x ∈ var(v)}

is well-defined and is such that j < i.

Condition 1 reflects the fact that the knowledge of the attacker
increases during the execution (an attacker never forgets). Condition 2
states that variables are introduced in the right of a constraint. When
modeling protocols, it will always be the case that variables used in
outputs (the left side of constraints) are bound by the input messages
(the right side of constraints).

Given some initial knowledge S0 (a set of terms), a secret data s,
and an execution interleaving

u1 → v1
...

uk → vk

the corresponding constraint system is:

S0
 u1

S0, v1
 u2
...

S0, v1, . . . , vk−1
 uk

S0, v1, . . . , vk−1, vk
 s

The last constraint encodes the security goal, i.e. the secrecy of s.

76 Automated verification: bounded case

Example 7.1. We define the constraint system CNS associated to the
interleaving of the rules 7.3, 7.5, 7.4 of the Needham-Schroeder protocol
as follows.

S0, aenc(〈pk(ska), n′a〉, pk(skc))
 aenc(〈pk(ska), z〉, pk(skb))
S1, aenc(〈z, nb〉, pk(ska))
 aenc(〈n′a, y〉, pk(ska))

S2, aenc(y, pk(skc))
 nb

where S1 = S0, aenc(〈pk(ska), n′a〉, pk(skc)) and S2 =
S1, aenc(〈z, nb〉, pk(ska)).

The set S0 representing the initial knowledge of the attacker has
been left unspecified so far. A possible initial knowledge is:

S0 = {pk(ska), pk(skb), skc}.

The attacker knows the public keys of the honest agents a, b and the
private keys of the dishonest agent c.

7.1.2 Solutions

A solution to a constraint system is an instantiation of the variables
that satisfy all the constraints. In particular, satisfaction of the last
constraint represents the violation of secrecy, while satisfaction of the
other constraints ensures the validity of the execution leading to the
secrecy violation.

Definition 7.2. A substitution σ is a solution to a constraint system
C if Sσ ` uσ for any constraint S
 u ∈ C.

The notation ⊥ represents a constrain system that has no solution.

Example 7.2. Consider the constraint system CNS defined in Exam-
ple 7.1. A solution to CNS is the substitution:

σ = {n′a/z, nb/y}.

It corresponds the Lowe’s man-in-the-middle attack presented in Chap-
ter 2 (Figure 2.1).

7.2. Constraint solving 77

7.2 Constraint solving

Searching for attacks against a protocol, for a bounded number of ses-
sions, reduces to searching for the existence of a solution of a constraint
system. Indeed, a constraint system describes all possible executions
once an interleaving has been fixed and there are finitely many inter-
leavings associated to a finite number of sessions.

We present an algorithm that not only detects whether a constraint
system admits a solution but actually computes a finite representation
of all possible solutions. This algorithm was developed by Millen and
Shmatikov [2001], Comon-Lundh and Shmatikov [2003].

7.2.1 Algorithm

Checking for the existence of a solution is easy when all the right mem-
bers of the constraints are variables.

S0
 x1

S0, v1
 x2
...

S0, v1, . . . , vk−1
 xk

Such a constraint system is said to be in solved form and obviously has
a solution. Indeed, the substitution σ such that x1σ = x2σ = xkσ = t0
for some t0 ∈ S0 is a solution.

Given an arbitrary constraint system, the constraint solving algo-
rithm simplifies the constraints until it gets a system in solved form or
a system that is unsatisfiable.

The rule Rred detects that a constraint T
 u is redundant. It
removes the constraint T
 u in case u is already deducible from the
set T increased by variables that appear on the right hand side of solved
constraints, that is, variables that must be deducible. The rules Runif1
and Runif2 guess a possible instantiation of the variables by unifying
two non variable subterms of a constraint. R′unif2 is a variant of Runif2
that does no prohibit the unification of variables in the special case
where one of the subterms to be unified is used as the secret key in

78 Automated verification: bounded case

Rred C ∪ {T
 u} C

If T ∪ {x | T ′
 x ∈ C, T ′ ⊆ T, T ′ 6= T} ` u

Runif1 C ∪ {T
 u} σ Cσ ∪ {Tσ
 uσ}
σ = mgu(t, u), t ∈ st(T), t, u are not variables

Runif2 C ∪ {T
 u} σ Cσ ∪ {Tσ
 uσ}
σ = mgu(t1, t2), t1, t2 ∈ st(T), t1, t2 are not variables

R′unif2 C ∪ {T
 u} σ Cσ ∪ {Tσ
 uσ}
σ = mgu(t1, t2), aenc(t3, pk(t1)), t2 ∈ st(T)

Rf C ∪ {T
 f(u, v)} C ∪ {T
 u, T
 v}
f ∈ {senc, aenc, pair}

Runsat C ∪ {T
 u} ⊥
If var(T) = var(u) = ∅ and T 6` u

Figure 7.1: Constraint solving algorithm

a public key encryption. Of course, unification with variables could be
also considered. The procedure will still be correct but less efficient.
The rule Rf guesses that the attacker has built f(u, v) out of u and v.
Finally, Runsat detects that the constraint system is unsatisfiable: there
is some ground constraint T
 u such that u is not deducible from T .
Since the constraint is ground, it will never be satisfiable.

For the sake of uniformity, we may write C ε C
′ instead of C C ′

where ε is the identity substitution.

Example 7.3. Consider again the constraint system CNS defined in
Example 7.1.

S0, aenc(〈pk(ska), n′a〉, pk(skc))
 aenc(〈pk(ska), z〉, pk(skb))
S1, aenc(〈z, nb〉, pk(ska))
 aenc(〈n′a, y〉, pk(ska))

S2, aenc(y, pk(skc))
 nb

7.2. Constraint solving 79

After two successive applications of rule Rf with f = aenc and f = pair,
we get that CNS 2 C1

NS where C1
NS is:

S0, aenc(〈pk(ska), n′a〉, pk(skc))
 pk(skb)
S0, aenc(〈pk(ska), n′a〉, pk(skc))
 pk(ska)
S0, aenc(〈pk(ska), n′a〉, pk(skc))
 z

S1, aenc(〈z, nb〉, pk(ska))
 aenc(〈n′a, y〉, pk(ska))
S2, aenc(y, pk(skc))
 nb

Since pk(ska), pk(skb) ∈ S0, the two first constraints can be eliminated
using the rule Rred, yielding C2

NS :

S0, aenc(〈pk(ska), n′a〉, pk(skc))
 z

S1, aenc(〈z, nb〉, pk(ska))
 aenc(〈n′a, y〉, pk(ska))
S2, aenc(y, pk(skc))
 nb

We may then apply Runif1 to unify aenc(〈z, nb〉, pk(ska)) and
aenc(〈n′a, y〉, pk(ska)) where σ = {na/z, nb/y}. The resulting constraint
system is:

S0, aenc(〈pk(ska), n′a〉, pk(skc))
 n′a

S1, aenc(〈n′a, nb〉, pk(ska))
 aenc(〈n′a, nb〉, pk(ska))
S2, aenc(nb, pk(skc))
 nb

Then the three constraints can be eliminated using the rule Rred, yield-
ing the empty (solved) system. Note that σ is precisely the solution we
have exhibited in Example 7.2.

7.2.2 Correctness

Given a constraint system, many simplification rules may apply, yield-
ing several possible “simplified” constraint systems. These constraint
systems should be further simplified until a solved form is reached or
a constraint system is unsatisfiable. The idea is that all paths should
be explored, as illustrated in Figure 7.2. As soon as a path leads to a
system in solved form then the initial system admits a solution. Con-
versely, if all paths lead to unsatisfiable systems then the initial system
is unsatisfiable.

80 Automated verification: bounded case

C =


S0
 u1

S0, v1
 u2
...

S0, v1, . . . vn
 un+1

C1 C2 C3

⊥ C4 Solved ⊥

Figure 7.2: Decision procedure.

Formally, this procedure is:

• Sound (Theorem 7.1): any solution found by the procedure is
indeed a solution of the constraint system.

• Complete (Theorem 7.2): whenever there is a solution of the con-
straint system, there is a path in the tree of possible simplifica-
tions that leads to a solution.

• Terminating (Theorem 7.3): there is no infinite branch.

The three theorems together actually provide a stronger result: the set
of solutions of the initial system can be retrieved by considering the
union of the set of solutions of the systems in solved form that appear
on the leaves.

Theorem 7.1 (soundness). Let C be a constraint system. If C σ C
′

then C ′ is a constraint system and for any solution θ of C ′, σθ is a
solution of C.

7.2. Constraint solving 81

The soundness of the procedure is easy to prove. The most tech-
nical point of the proof of Theorem 7.1 lies actually in the proof of
Condition 2 of the definition of a constraint system is still satisfied
by C ′.

Theorem 7.2 (completeness). Let C be a constraint system that is not
in solved form. If σ is a solution of C then there exists a system C ′ and
substitutions θ, τ such that C θ C

′ and σ = θτ .

Theorem 7.2 is of course the most technical result. Its proof can be
found in [Millen and Shmatikov, 2001, Comon-Lundh and Shmatikov,
2003, Comon-Lundh et al., 2010] for several variants of the term alge-
bra.

Theorem 7.3 (termination). There is no infinite sequence C1 σ1

C2 σ2 · · · .

The proof of termination is left as an exercise. This procedure ac-
tually does not immediately yield an NP-procedure. First, as for all
other (NP) procedures, it is necessary to use a DAG representation
of the terms. Otherwise, an attack in n steps may require to double
the size of the term at each step. Moreover, the length of a branch
of the decision procedure is not polynomially bounded as one could
expect. While it is rather easy to bound polynomially the DAG-size
of each constraint, a constraint may disappear due to application of
some rule and re-appear later in the same branch, yielding branches of
exponential length, as exemplified by Comon-Lundh et al. [2010]. To
obtain a polynomial bound, it is necessary to refine the procedure with
strategies, as developed by Comon-Lundh et al. [2010].

7.2.3 Extensions

An enjoyable property of this decision procedure is that no solution
is lost. Indeed, a consequence of Theorem 7.2 is that every solution
of the initial constraint system can be found in one of the leaves (in
solved form) that is reached when applying the procedure. This makes
this algorithm more amendable to extensions both in terms of secu-
rity properties and equational theories. For example, the procedure of

82 Automated verification: bounded case

Comon-Lundh et al. [2010] is used to decide a small logic of proper-
ties that encompasses, e.g., authentication and also decide whether an
attacker can create key cycles on honest keys. Cheval et al. [2011] ex-
tended the procedure to cope with equivalence properties, the active
counterpart of static equivalence (defined in Chapter 4). It has been
implemented yielding the APTE tool [Cheval, 2014]. This procedure
has then been used when the attacker is enhanced with the ability to
compare the length of messages [Cheval et al., 2013]. Regarding equa-
tional theories, [Bursuc et al., 2007] propose a procedure for constraint
systems with an associative and commutative function symbol (and no
other symbols). Delaune et al. [2012] decide the equivalence of con-
straint systems for several group theories.

7.2.4 Tools

The first tool to implement such a constraint solving algorithm was
presented by Millen and Shmatikov [2001] and further extended by
Corin and Etalle [2003], Corin et al. [2006]. The APTE tool [Cheval,
2014] was already mentioned above; it implements a decision procedure
based on constraint systems to check equivalence properties.

There are however several other efficient tools, based on differ-
ent techniques, that can check security properties of protocols for a
bounded number of sessions.

• Avispa [Armando et al., 2005] is a plateform that gathers several
tools for the analysis of protocols. It currently offers four tools
CL-Atse, OFMC, SAT-MC, and TA4SP.

• Scyther [Cremers, 2008] has the originality to allow security anal-
ysis for both a bounded and an unbounded number of sessions:
the tool first tries to provide a proof of security for an unbounded
number of sessions and falls back to the bounded mode in case it
fails.

7.3. Exercises 83

7.3 Exercises

Exercise 18 (**). Prove Theorem 7.3.
Hint: you may use a lexicographical order on (v, s) where v is the

number of variables and s the size of the constraint system, for a notion
of size to be defined.

Exercise 19 (**). Prove Theorem 7.2.

Exercise 20 (*). Consider the Wide-Mouthed-Frog.

A → S : {A,B,Kab}Kas

S → B : {A,B,Kab}Kbs

A sends to the server a key session Kab using a key Kas shared with the
server. A also indicates her identity and the identity B of the destina-
tion. The server S transmits the session key to B with his shared key
Kbs. The session key should remain secret between A and B (and S).

Consider a session where the initiator A wishes to talk to B together
with a session of the server that answers to A willing to talk to C, some
dishonest agent.

1. Show that there is no attack in this configuration, that is, show
that the following constraint system has no solution.

S0, {〈〈a, b〉, kab〉}kas
 {〈〈a, c〉, x〉}kas

S0, {〈〈a, b〉, kab〉}kas , {〈〈a, c〉, x〉}kcs
 kab

where S0 = {a, b, c, kcs}.

2. Consider now the following variant of the protocol.

A → S : A,B, {Kab}Kas

S → B : A,B, {Kab}Kbs

Adapt the constraint system and show that it admits a solution.
Exhibit a solution using the constraint solving algorithm.

Exercise 21 (*). We consider the following protocol.

A → B : {A,Kab}apk(B)

B → A : {s}Kab

84 Automated verification: bounded case

1. Show that this protocol admits an attack.

2. Propose a constraint system that reflects the attack scenario.

3. Show, using the constraint solving algorithm that it has a solu-
tion.

Exercise 22 (**). We enhance the inference system IDY defined in
Chapter 3 by considering blind signatures (see Exercise 2 for more
intuition on blind signatures). Formally, we add the three following
inference rules.

x y

blind(x, y)
sign(blind(x, y), z) y

sign(x, z)
blind(x, y) y

x

Accordingly, we add the following simplification rule to the constraint
solving algorithm defined in Figure 7.1:

C ∪ {T
 blind(u, v)} C ∪ {T
 u, T
 v}

1. Show that this rule is correct (easy). More precisely, show that if
C ′C with this rule, then any solution θ of C ′, θ is a solution of
C.

2. Show that the resulting constraint solving algorithm is no longer
complete. That is, show that Theorem 7.2 is false in this context.

8
Automated verification: unbounded case

In the previous chapter we report on techniques for the analysis of
protocols when the number of sessions is bounded. This yields effi-
cient tools to find attacks. However, when no attack is found, it is
impossible to conclude whether the analyzed protocol is secure or not.
Indeed, there might exist an attack that requires a few additional ses-
sions. Moreover, in practice, tools can only analyse a small number of
sessions (typically 2 or 3) in a reasonable amount of time. Therefore,
if no attack is found then there is no proof that the protocol is se-
cure. To overcome this limitation, it is necessary to analyse protocols
for an unbounded number of session. However, even a simple property
like secrecy is undecidable when we do not bounded the number of ses-
sions [Durgin et al., 1999]. We provide a construction for undecidability
in §8.1.

Nevertheless, it is still possible to design verification tools in this
case. Obviously in this case termination is not guaranteed. There have
been two main approaches.

• One approach is to perform backward search, relying on causality
arguments. This backward search may not terminate, but user
interaction with the tool or additional lemmas allow to prune

85

86 Automated verification: unbounded case

some branches and enforce termination. Examples of such tools
are the NRL Protocol Analyzer [Meadows, 1996], and its reim-
plementation in Maude, Maude-NPA [Escobar et al., 2009], as
well as the Athena [Song, 1999], Scyther [Cremers, 2008] and
Tamarin [Schmidt et al., 2012] tools.

• The other approach is to use abstractions. Protocols may be en-
coded as (first order) Horn clauses [Weidenbach, 1999, Blanchet,
2001] or tree automata [Monniaux, 2003, Goubault-Larrecq, 2000,
Genet and Klay, 2000], over-approximating the intruder capabil-
ities. These tools may allow for false attacks and termination is
generally still not guaranteed. The ProVerif tool is the most ma-
ture tool using this approach: its optimizations and a dedicated
Horn clause resolution algorithm make the tool extremely effi-
cient and non-termination and false attacks (at least for weak
secrecy properties) rare on practical examples.

We focus on the modeling of protocols as Horn clauses, a modeling
first suggested by Weidenbach [1999], and the verification algorithm
proposed by Blanchet and implemented in ProVerif [Blanchet, 2001].
The ProVerif tool takes protocols written in a variant of the applied
pi calculus as input together with a security property to verify. The
protocol is then automatically translated into a set of first-order Horn
clauses and the properties are translated into derivability queries. The
verification algorithm is based on a dedicated Horn clause resolution
procedure. We describe in this chapter how protocols can be encoded as
Horn clauses (without providing in full details the automatic transla-
tion from the full applied pi calculus). Then we present the first verifica-
tion algorithm implemented in ProVerif to verify weak secrecy queries.
The current version of ProVerif adds many optimizations to this algo-
rithm and allows for verifying more advanced properties (injective and
non-injective correspondences and some equivalence based properties)
which we do not discuss here.

8.1. Undecidability 87

8.1 Undecidability

Checking for secrecy is (at least) as difficult as checking for a solution
to the Post Correspondence Problem (PCP). We show how to encode
PCP in protocols.

We first recall the Post Correspondence Problem. Let Σ be a finite
alphabet.

Input (ui, vi)1≤i≤k, k ∈ N, ui, vi ∈ Σ∗

Output Does there exist n ∈ N and i1, . . . , in ∈ N such that 1 ≤ ij ≤ k
and

ui1 · · ·uin = vi1 · · · vin ?

where N denotes the set of integers.
The Post Correspondence Problem is well known to be undecid-

able Davis and Weyuker [1983]. Given an input (ui, vi)1≤i≤k of PCP,
we build the following protocol P .

→ {|〈u1, v1〉|}sKab
, . . . , {|〈uk, vk〉|}sKab

{|〈〈x, y〉|}sKab
→ {|〈x · u1, y · v1〉|}sKab

, {|s|}s{|〈x·u1,x·u1〉|}s
Kab

, . . . ,

{|〈x · uk, y · vk〉|}sKab
, {|s|}s{|〈x·uk,x·uk〉|}s

Kab

where a1 · a2 · · · an denotes the term 〈a1, 〈a2, 〈· · · an〉 · · · 〉 for
a1, . . . , an ∈ Σ. The key Kab is a long-term key shared between a pair
of agents a and b. The protocol describes one role. The first message
simply outputs k encryptions of the pairs (ui, vi) that form the input
of the PCP instance. The second rule offers the possibility to concate-
nate: when receiving an encrypted pair, the protocol replies with k

encryptions, appending ui and vi “under the encryption”.
It is easy to see that if there is a solution

ui1 · · ·uin = vi1 · · · vin

to the entry (ui, vi)1≤i≤k, then the corresponding protocol P admits
an attack against the secrecy of s. Indeed the attacker can select the
message {|〈ui1 , vi1〉|}sKab

in the first message from A and forward it to

88 Automated verification: unbounded case

B. B then replies with

{|〈ui1 · u1, vi1 · v1〉|}sKab
, {|s|}s{|〈ui1 ·u1,ui1 ·u1〉|}s

Kab

, . . . ,

{|〈ui1 · uk, vi1 · vk〉|}sKab
, {|s|}s{|〈ui1 ·uk,ui1 ·uk〉|}s

Kab

The attacker selects {|〈ui1 · ui2 , vi1 · vi2〉|}sKab
and proceeds recursively,

building step by step the solution to the PCP problem. In the end, the
attacker gets

{|〈ui1 · ui2 · · ·uin , vi1 · vi2 · · · vin〉|}sKab
, {|s|}s{|〈ui1 ·ui2 ···uin ,ui1 ·ui2 ···uin 〉|}s

Kab

Since ui1 · · ·uin = vi1 · · · vin , the attacker easily deduces s.
The converse direction is more complex to prove and requires a

precise model of execution. However, an interesting point to note is
that this undecidability result is independent of the specificities of a
particular model.

It is also interesting to note that this construction does use nonces,
which means that secrecy is undecidable even for protocols that do
not make use of nonces (or only use a bounded number of nonces).
If additionally the size of messages is bounded, then secrecy is de-
cidable Durgin et al. [1999]. However, when message size is bounded,
secrecy is again undecidable as soon as protocols are allowed to use an
unbounded number of nonces Amadio and Charatonik [2002].

8.2 Analysis of protocols with Horn clauses

8.2.1 Horn clauses

A Horn clause is a clause with at most one positive literal. Following
the tradition in logic programming we write Horn clauses, also called
rules, as an implication

H1 ∧ . . . ∧Hn → C

where H1, . . . ,Hn are atomic formulas called the hypotheses and C

is an atomic formula called the conclusion. Moreover, we sometimes
consider the hypotheses as a set H = {H1, . . . ,Hn} and simply write

8.2. Analysis of protocols with Horn clauses 89

H → C. We only consider closed formulas and all variables are implic-
itly universally quantified.

Atomic formulas, also called facts, are built by applying a predicate
on terms. We consider a single, unary predicate, the attacker predicate,
denoted att(t). Intuitively, when att(t) is true, the attacker has learnt
the message modelled by the term t. The construction of the terms has
one peculiarity: names are parametrized by terms. As we see below this
is useful to model freshness. One may see names as a particular sort of
function symbol, and we use square brackets to avoid confusing them
with “normal” function symbols.

t ::= term
x, y, z variable in X
a[t1, . . . , tn] name in N
f(t1, . . . , tn) function application for f ∈ F

We present both the attacker capabilities and the protocol itself can
be modelled as Horn clauses.

8.2.2 Attacker capabilities

Starting from an inference system, it is straightforward to model the
attacker capabilities as Horn clauses. Recall the Dolev Yao inference
system IDY :

x y

〈x, y〉
〈x, y〉

x

〈x, y〉

y

x y

senc(x, y)
senc(x, y) y

x

x y

aenc(x, y)
aenc(x, pk(y)) y

x

This inference system is modelled by the following set of Horn clauses:

att(x) ∧ att(y) → att(〈x, y〉)
att(〈x, y〉) → att(x)
att(〈x, y〉) → att(y)

att(x) ∧ att(y) → att(senc(x, y))
att(senc(x, y)) ∧ att(y) → att(x)

att(x) ∧ att(y) → att(aenc(x, y))
att(aenc(x, pk(y))) ∧ att(y) → att(x)

90 Automated verification: unbounded case

It is easy to show that {t1, . . . , tn} ` t if only if att(t) is entailed by
{att(t1), . . . , att(tn)} ` t and the set of aformentionned Horn clauses
represented the attacker capabilities.

More generally an inference rule
t1 · · · tn

t
can be modelled by the

Horn clause
att(t1) ∧ · · · ∧ att(tn)→ att(t)

The initial knowledge of the attacker is also modelled using Horn
clauses. For each term t in his initial knowledge we simply add the
clause att(t). We suppose in particular that the attacker always knows
at least one name a[], and hence include the clause att(a[]).

8.2.3 Protocols as Horn clauses

We now illustrate on the Needham Schroeder public key protocol how a
protocol can itself be modelled by a set of Horn clauses. The Needham
Schroeder protocol can be represented by the three following clauses:

att(xpkr)→ att(aenc(〈pk(ska[]), na[xpkr]〉, xpkr))
att(aenc(〈xpki, xna〉, pk(skb[])))→ att(aenc(〈xna, nb[xna, xpki]〉, xpki))
att(xpkr) ∧ att(aenc(〈na[xpkr], xnb〉, xpki))→ att(aenc(xnb, xpkr))

The first message of the initiator is modelled by the first clause. The
hypothesis att(xpk) models that the attacker chooses the identity (in
our modeling the public key) of the responder. The conclusion models
the fact that when the initiator outputs the first protocol message then
the attacker learns this message. One may note that we parametrize
the nonce na with the variables that appear in the clause’s hypothesis.
The aim is to ensure some kind of freshness. Indeed when the attacker
executes the protocol with different agents, the nonce na will be dif-
ferent as it will be parametrized with different public keys. One may
already note that executing the protocol twice with the same responder
would result in using twice the same nonce.

The second clause models the reception of the responder of the first
message and his sending of the second message. One may note again
that the nonce is parametrized by two variables xna and xpki, i.e., all
variables that appear in hypothesis.

8.2. Analysis of protocols with Horn clauses 91

The last clause models the reception of the second message and
sending of the third message by the initiator. Here one may note the
repetition of the hypothesis att(xpkr) of the first clause in the last
clause. There are several reasons for doing this. First, it guarantees
that variables are bound correctly: as the hypotheses correspond to in-
puts, it is possible to reuse a variable bound in the first input in any
later output. Second, it gives some guarantees that the protocol can
actually reach this point, i.e. previous tests were satisfied. To better
understand this point consider the following example. Suppose that a
participant expects a secret s1 (not included in the attacker’s initial
knowledge) and outputs a constant c. Next the protocol waits for the
input of constant c and then outputs the secret nonce s2. Normally, as
s1 can never be sent by the adversary in the first place, this protocol
should never perform any output and s2 should remain secret. This
protocol can be modelled using the following Horn clauses

att(s1[])→ att(c)
att(s1[]) ∧ att(c)→ att(s2[])

It should be obvious that the repetition of the hypothesis att(s1[]) in
the second clause is needed to avoid a false attack. Otherwise, the secret
nonce could indeed be trivially learned by the attacker using only the
second clause.

8.2.4 Approximations

While describing the modeling of protocols in Horn clauses we have
already hinted towards sources of approximations.

The first source of approximations is the freshness of names. Even
though names are parametrized, this may not be sufficient to faithfully
represent new names. For instance when a protocol is executed several
times with exactly the same inputs, the parameters will be the same
and the generated nonces will be equal, while they actually should be
distinct.

Another source of approximation comes from the fact that clauses
may be “used” several times, and this in any order. This is best illus-

92 Automated verification: unbounded case

trated by an example. Consider the following protocol

P = νs, n1, n2, k.

out(c, 〈senc(n1, k), senc(n2, k)〉)
in(c, x). out(c, sdec(x, k))
in(c, x). if x = 〈n1, n2〉 then out(c, s)

It is easy to see that this protocol should preserve the secrecy of s,
as the protocol can at most reveal one out of the two nonces. A Horn
clause modeling of this protocol would be

att(〈senc(n1[], k[]), senc(n2[], k[])〉)
senc(x, k[])→ att(x)
senc(x, 〈n1[], n2[]〉)→ att(s[])

However the second rule may be used twice to learn both n1 and n2.
Then the attacker can use the pairing rule (in the attacker capabilities)
and the third protocol rule to learn the secret s. The fact that a rule
may be used any number of times is however important as this is the
key for modeling an unbounded number of sessions.

8.2.5 Secrecy and derivability queries

In this formalism verifying whether a term t is (weakly) secret amounts
to checking whether a fact att(t) is derivable from a set of horn clauses.

Before defining derivability we introduce the notion of subsumption.

Definition 8.1 (subsumption). We say that a clause H1 → C1 subsumes
the clause H2 → C2, written H1 → C1 w H2 → C2, if and only if there
exists a substitution σ such that C1σ = C2 and H1σ ⊂ H2.

Intuitively, a clause which subsumes another clause is more general
and requires fewer hypotheses.

Definition 8.2 (derivability). Given a set of Horn clauses R, a fact f is
derivable from R if there exists a finite tree such that

• each node is labelled by a fact,

• the root is labelled by f

8.2. Analysis of protocols with Horn clauses 93

• if a node is labelled by a fact f0 and its child nodes are labelled
by f1, . . . , fn then there exists R ∈ R such that {f1, . . . fn} →
f0 v R.

Example 8.1. We consider again the Needham Schroeder public key
protocol. The Horn clauses representation of this protocol, together
with the relevant attacker capabilities and initial intruder knowledge
are recalled in Figure 8.1.

To show that this protocol is insecure we give the tree witnessing
that an instance of att(nb[x]) is derivable in Figure 8.2. We annotate
each derivation step with the rules defined in Figure 8.1. One may
note that the derivation tree mimics the man-in-the middle attack.
The fact that the tree has been split in three subtrees is merely for
layout purposes.

8.2.6 The analysis procedure

The analysis procedure was originally defined by Blanchet [2001]. It
operates in two steps. The first step is a kind of forward search that
performs resolution on the set of Horn clauses, combining some of the
clauses into new, “optimized” clauses. The new clauses allow to perform
several derivation steps of the original set of rules as a single step.
The resulting set of clauses is guaranteed to preserve derivability with
respect to the original clauses.

The second step is a backward depth-first search on the “optimized”
set of clauses, whose aim it is to check whether a clause is derivable.

We now explain the two steps in more details. Our presentation of
the algorithm follows the one of Blanchet [2011], where the interested
reader may find additional details.

Resolution algorithm

We start by defining what is a resolution step. Resolution is a classical
technique for combining rules in order to derive a new rule.

Definition 8.3 (Resolution). Let R = H → C and R′ = H ′ → C ′ be
two clauses. If there exists F0 ∈ H ′ such that F0 and C are unifiable

94 Automated verification: unbounded case

Attacker capabilities:

att(x) ∧ att(y)→ att(〈x, y〉) (8.1)
att(〈x, y〉)→ att(x) (8.2)
att(〈x, y〉)→ att(y) (8.3)

att(x) ∧ att(y)→ att(aenc(x, y)) (8.4)
att(aenc(x, pk(y))) ∧ att(y)→ att(x) (8.5)

Initial knowledge:

att(skc[]) (8.6)
att(pk(ska[])) (8.7)
att(pk(skb[])) (8.8)
att(pk(skc[])) (8.9)

att(a[]) (8.10)

Protocol clauses:

att(xpkr)→ att(aenc(〈pk(ska[]), na[xpkr]〉, xpkr)) (8.11)
att(aenc(〈xpki, xna〉,

pk(skb[]))) → att(aenc(〈xna, nb[xna, xpki]〉, xpki)) (8.12)

att(xpkr) ∧ att(aenc(
〈na[xpkr], xnb〉, xpki))

→ att(aenc(xnb, xpkr)) (8.13)

Figure 8.1: Horn clauses modeling the Needham Schroeder public key protocol

and σ = mgu(F0, C) then the clause R ◦F0 R
′, defined as

(H ∪ (H ′ \ {F0}))σ → C ′σ

is the resolvent obtained by resolution of R′ with R using F0.

Example 8.2. Consider again the clauses in Figure 8.1. We have that

(8.6) ◦att(xpkr) (8.11) = att(aenc(〈pk(ska[]), na[pk(skc)]〉, pk(skc)))

and

(8.4) ◦att(aenc(〈xpki,xna〉,pk(skb[]))) (8.12)
= att(〈xpki, xna〉) ∧ att(pk(skb[]))→ att(aenc(〈xna, nb[xna, xpki]〉, xpki))

8.2. Analysis of protocols with Horn clauses 95

Π1 :=
(8.9)

pk(skc[])
(8.11)

att(aenc(〈pk(ska[]), na[pk(skc)]〉, pk(skc[])))

Π2 := Π1
(8.6)

att(skc[])
(8.5)

〈pk(ska[]), na[pk(skc)]〉

Π3 :=
Π2

(8.8)
att(pk(skb[]))

(8.4)
att(aenc(〈pk(ska[]), na[pk(skc)]〉, pk(skb[])))

(8.12)
att(aenc(〈na[pk(skc)], nb[na[pk(skc)], pk(ska[])]〉, pk(ska[])))

Π4 :=
Π3

(8.9)
pk(skc[])

att(aenc(nb[na[pk(skc)], pk(skc[]))
(8.6)

att(skc[])
(8.5)

att(nb[na[pk(skc)], pk(ska[])])

Figure 8.2: Derivation tree witnessing that an instance of att(nb[x]) is derivable

However, if resolution is applied to any possible rules, one quickly
runs into non termination issues.

Example 8.3. Consider the clause

R = att(senc(x, y)) ∧ att(y)→ att(x)

introduced previously in the attacker capabilities. Already this clause
on its own may be a source of non-termination. One may solve this
clause with itself. For clarity, consider two renamings of this clause

R1 = att(senc(x1, y1)) ∧ att(y1)→ att(x1)
R2 = att(senc(x2, y2)) ∧ att(y2)→ att(x2)

Then we have that R1 ◦att(senc(x2,y2)) R2 results into

R3 = att(senc(senc(x2, y2), y1)) ∧ att(y1) ∧ att(y2)→ att(x2)

96 Automated verification: unbounded case

Applying resolution iteratively R1 on the resolvent results into an infi-
nite sequence of new rules of the form

att(senc(senc(. . . senc(xn, yn), . . . , y2), y1))
∧att(y1) ∧ att(y2) ∧ . . . att(yn) → att(xn)

This example illustrates the need to guide the resolution algorithm,
which can be done by the means of a selection function.

Definition 8.4. A selection function sel is a function from a clause
H → C to a set of facts F , such that F ⊆ H.

Intuitively, when trying to perform resolution on a clause R we
only solve facts that are in sel(R). In particular, the selection function
should avoid facts of the form att(x) when x is a variable as these
facts unify with any other facts. Therefore Blanchet [2001] considers in
particular basic selection functions. A selection function sel0 is basic if
it respects the following criteria:

sel0(H → C) =
{
∅ if ∀F ∈ H. ∃x ∈ X . F = att(x)
{F} if F ∈ H ∧ ∀x ∈ X . F 6= att(x)

The saturation algorithm is presented in Figure 8.3. It uses the
function add(R,R) which computes the set of clauses resulting from
adding the clause R to the set of clauses R and eliminating any sub-
sumed clauses. The saturation algorithm itself proceeds in three steps.
First it eliminates any subsumed clauses in the initial set of clauses.
Second it performs resolution until reaching a fixpoint. Resolution is
however only performed between selected facts and clauses for which
no hypotheses are selected. Third, it returns the set of facts that have
no selected hypothesis.

To better understand the algorithm let us consider a few possible
selection functions.

• Let sel(H → C) = H. In that case the algorithm performs a
simple forward search. Indeed the algorithm uses a clause R with
no hypothesis (as they verify the condition sel(R) = ∅) to get
rid of an arbitrary hypothesis of another clause. At the end the
algorithm returns only clauses with no hypothesis.

8.2. Analysis of protocols with Horn clauses 97

add(R,R) =
{
R if ∃R′ ∈ R, R v R′
{R} ∪ {R′ ∈ R | R′ 6v R} otherwise

Saturate(R0)=

1. R := ∅

For each R ∈ R0 do R := add(R,R0)

2. Iterate until a fixed point is reached

For each R ∈ R such that sel(R) = ∅

For each R′ ∈ R such that F0 ∈ sel(R′) and R ◦F0 R
′ is defined

R := add(R ◦F0 R
′,R)

3. Return {(H → C) ∈ R | sel(H → C) = ∅}

Figure 8.3: First step: saturation.

• Taking the other extreme case we may define sel(R) = ∅. In
that case the algorithm does not modify the set of clauses except
removing subsumed clauses in the first step.

• Consider the case where the selection function is basic. As dis-
cussed above, we never select hypothesis of the form att(x) when
applying resolution. This choice avoids many cases of non termi-
nation due to the fact that att(x) unifies with any fact. Moreover,
at the end we only keep clauses with hypotheses of the form att(x)
(or clauses with no hypothesis at all). These hypotheses can al-
ways be satisfied (as at least att(a[]) is initially true). A rule
having a hypothesis of a different form has either been solved
during resolution (and we keep only the solved form), or it has a
hypothesis that is never satisfiable and hence can never occur in
a derivation tree.

Blanchet has shown that for any selection function saturation pre-
serves derivability. This is actually an adaptation of the fact that res-
olution with free selection is complete [de Nivelle, 1995].

98 Automated verification: unbounded case

deriv(R,R,R1) =



∅ if ∃R′ ∈ R, R v R′
{R} otherwise, if sel(R) = ∅⋃
{deriv(R′ ◦F0 R,R∪ {R},R1) | R′ ∈ R1,

F0 ∈ sel(R) and
R′ ◦F0 R is defined} otherwise

derivable(F,R1) = deriv(F → F, ∅,R1)

Figure 8.4: Second step: backward depth-first search.

Lemma 8.1 ([Blanchet, 2001]). Let F be a closed fact. F is derivable
from R if and only if F is derivable from saturate(R).

It is obvious that steps 1 and 2 of Saturate preserve derivability.
The technical points lies in showing that it is sufficient to consider only
clauses R such that sel(R) = ∅ (step 3).

Backward search

The second step of the procedure is a simply backward depth first
search on the set of Horn clauses obtained from the saturation proce-
dure. The procedure derivable(F,R1) is described in Figure 8.4.

The result of derivable(F,R1) is a set of clauses that provides a
finite representation of the instances of F that are derivable. More
precisely, for each clause R = H → C ∈ derivable(F,R1) we have
that R is derivable from R1, C is an instance of F and sel(R) = ∅.
Moreover, for any instance F ′ of F that is derivable from R1 there
exists H → C ∈ derivable(F,R1) and σ such that F ′ = Cσ and each
element of Hσ is derivable from R1.

The set derivable(F,R1) is computed with the help of the auxiliary
function deriv(R,R,R1). The first argument R = H → C is the current
goal: C is an instance of the fact F we initially wish to derive; H are the
facts needed to derive C. Initially R = F → F . The second argument
is the set of goals we already tried. The third argument is the set of
clauses R1 which stays invariant. The function is evaluated recursively.

The correctness of the backward search has been proven by Blanchet
through the following lemma.

8.2. Analysis of protocols with Horn clauses 99

Lemma 8.2 ([Blanchet, 2001]). Let F ′ be a ground instance of F . F ′
is derivable from R1 if and only if there exists a clause H → C ∈
derivable(F,R1) and a substitution σ such that F ′ = Cσ and any
F ′′ ∈ Hσ is derivable from R1.

We can now put the pieces together. If derivable(F, saturate(R)) =
∅ then we have that F is not derivable from R as a direct con-
sequence of the two above lemmas. Moreover, if the selection func-
tion is basic and F is ground, F is derivable from R if and only if
derivable(F, saturate(R)) 6= ∅. This follows from the two following ob-
servations: if F is ground for any H → C ∈ derivable(F, saturate(R))
we have that C = F , and as the selection function is basic all elements
of H are of the form att(x) for some variable x which can be derived
using, e.g. att(a[]).

100 Automated verification: unbounded case

8.3 Exercises

Exercise 23 (**). Show that secrecy remains undecidable even when
considering only protocols with atomic keys (that is, only constants are
used as keys).

Exercise 24 (*). Consider the set of clauses RI corresponding to the
rules symmetric encryption.

RI = {I(x) ∧ I(y)→ I({x}y), I({x}y) ∧ I(y)→ I(x)}

1. Show that I({a}k2) is derivable from C1 = RI ∪
{I(k1), I({k2}k1), I(a)} using the procedure seen is this chapter
with a basic selection function.

2. Show that I({a}k2) is not derivable from C2 = RI∪{I(k1), I(a)}.
You may use the procedure seen is this chapter with a basic se-
lection function.

9
Further readings and conclusion

The aim of our tutorial was to give an introduction to some selected
topics in the area of security protocol verification. Without aiming at
giving an exhaustive bibliography we conclude our tutorial with a few
pointers towards other approaches and some new directions.

Other approaches for protocol verification We have seen that bound-
ing the number of sessions is sufficient to make the problem of protocol
verification decidable (for several equational theories and properties).
If one is willing to additionally bound the length of messages the result-
ing system is finite and general purpose model checkers can be used to
analyze protocols. Even though this approach does not provide strong
security guarantees it has been successfully used to detect flaws in pro-
tocols, see for instance the work by Mitchell et al. [1997] using Murφ
and Lowe [1997b] using Casper and FDR.

Other approaches go in the opposite directions. Instead of simplify-
ing the model to ensure automation, they sacrifice automation in order
to keep the full adversary model. Paulson [1998] has for instance used
the Isabelle theorem prover to prove protocols correct. The tamarin
tool [Schmidt et al., 2012] is a more recent, and dedicated tool that al-

101

102 Further readings and conclusion

lows for interactive proof construction when the automatic mode fails.
It is also possible to use static analysis techniques, in particular type

systems. This line of work goes back to Abadi’s result on secrecy by
typing [Abadi, 1997]. The use of a type system is of course incomplete,
i.e., some secure protocols may not type check, but the type system
dictates a discipline on how a protocol should be programmed. These
ideas have been generalized in many directions and we refer the reader
to Foccardi and Maffei’s chapter on types for security protocols [Fo-
cardi and Maffei, 2011]. One may in particular mention the F7 type
checker [Bengtson et al., 2011] which allows to verify a large variety of
trace properties for protocols written in the F# functional language,
by using refinement types and outsourcing the verification conditions
to an SMT solver.

Extending the scope Most protocol verification tools allow the ver-
ification of trace properties, such as weak secrecy and some forms of
correspondance properties, but do not support the verification of equiv-
alence properties. An exception is the ProVerif tool which offers some,
albeit limited, support for equivalence properties [Blanchet et al., 2005].
This is due in particular to the fact that it verifies a more fine grained
property which is too strong in many examples, e.g. when verifying
unlinkability in e-Passports or privacy in voting protocols. Recently,
a few dedicated tools have been developed for verifying trace equiva-
lence for a bounded number of sessions [Tiu and Dawson, 2010, Cheval
et al., 2011, Chadha et al., 2012]. However, existing tools have either
limited support for equational theories or do not support non trivial
else branches. These tools are still at a prototype status and not as ma-
ture as the ones for trace properties. An interesting direction for future
work is to design interactive tools for proving equivalence properties
for an unbounded number of sessions.

Other shortcomings of existing tools are the types of protocols they
can analyze. Some protocols require to maintain a global, mutable state,
i.e. a memory that can be read and modified by parallel threats. A
prominent example where modeling such a state is required are secu-
rity hardware modules which can be accessed by a security API, such

103

as the RSA PKCS#11 standard, IBM’s CCA or the trusted platform
module (TPM). These security tokens have been known to be vulner-
able to logical attacks for some time [Longley and Rigby, 1992, Bond
and Anderson, 2001] and formal analysis has shown to be a valuable
tool to identify attacks and find secure configurations [Delaune et al.,
2010b, Bortolozzo et al., 2010]. Apart from security APIs many other
protocols need to maintain databases: key servers need to store the
status of keys, in optimistic contract signing protocols a trusted party
maintains the status of a contract, RFID protocols maintain the sta-
tus of tags and more generally websites may need to store the current
status of transactions.

Many existing tools, in particular those that allow to verify proto-
cols for an unbounded number of sessions, do not handle well this kind
of state. Limitations of an encoding of memory cells are for instance dis-
cussed explicitly in the ProVerif manual [Blanchet et al., 2013, Section
6.3.3]:

“Due to the abstractions performed by ProVerif, such a cell is
treated in an approximate way: all values written in the cell are con-
sidered as a set, and when one reads the cell, ProVerif just guarantees
that the obtained value is one of the written values (not necessarily the
last one, and not necessarily one written before the read).”

Some works [Arapinis et al., 2011, Mödersheim, 2010, Delaune et al.,
2011] have nevertheless used ingenious encodings of mutable state in
Horn clauses, but these encodings have limitations. The most recent
advances on verification of such stateful protocols are based on the
tamarin prover [Schmidt et al., 2013, Kremer and Künnemann, 2014].
These works overcome existing limitations but require user interaction.

Another kind of protocols for which only very limited tool support
exists are group protocols, e.g. group key exchange protocols, where
participants need to process lists or other recursive data structures.
This kind of data structures also appears in web services that have to
process XML documents. Some of the first results on this topic were
obtained by Paulson [1997] who used the Isabelle theorem prover to
prove a recursive authentication protocol. In the case of a bounded
number of sessions Truderung [2005] showed decidability of secrecy

104 Further readings and conclusion

for recursive protocols and Chridi et al. [2009] adapted the constraint
solving approach to analyze protocols that manipulate unbounded lists.
Recently, the ProVerif tool was also adapted to be able to analyze pro-
tocols with unbounded lists, and this for an unbounded number of ses-
sions [Blanchet and Paiola, 2010]. Finally, the tamarin prover has also
been used to analyze group key agreement protocols providing support
for recursive structures, loops and equational theories for Diffie Hell-
man exponentiation and bilinear pairings [Kremer and Künnemann,
2014].

Towards more realistic models As for other areas of verification, se-
curity proofs discussed in this tutorial are carried out in an abstract,
mathematical model. In so-called Dolev-Yao models the cryptography
is indeed considered as “perfect”, i.e. an intruder may only manipu-
late terms according to some deduction rules or equations. Moreover,
nonces are unguessable. This contrasts with the computational mod-
els adopted in cryptography, see e.g. [Goldwasser and Micali, 1984],
where adversaries are arbitrary probabilistic polynomial time Turing
machines and security is expressed in terms of the probability of an ad-
versary to break a security property. In such models, proofs are done in
a way similar to proofs in complexity theory, by reducing the problem of
attacking the protocol to the problem of breaking the underlying cryp-
tographic primitives, e.g. encryption. While these models are arguably
more precise and provide better security guarantees, the proofs are
more complicated, generally done by hand and also more error-prone
(the models being much more complex, writing very detailed proofs
becomes quickly infeasible). In their seminal work, Abadi and Rog-
away [2002] show that it is sometimes possible to prove computational
soundness of Dolev-Yao models. Such soundness results guarantee that
a proof in a Dolev-Yao model can be translated into a proof in the com-
putational model, yielding strong guarantees while benefiting from tool
support in the more abstract model. We refer the interested reader to a
survey paper [Cortier et al., 2010] on this topic for an extensive descrip-
tion and bibliography. There have also been some attempts to formalize
and (partially) automate proofs directly in computational models. The

105

main successes in that directions are the CryptoVerif prover [Blanchet,
2006] and the easycrypt tool [Barthe et al., 2011], a dedicated, interac-
tive theorem prover.

Another challenge is to directly analyse the source code rather than
working with abstract models, be it symbolic, Dolev-Yao models or
computational ones. The CSure tool [Goubault-Larrecq and Parrennes,
2005] relies on dedicated abstract interpretation techniques to translate
security protocol written in C to a set of Horn clauses that can then
be analyzed. The ASPIER tool [Chaki and Datta, 2009] also allows to
analyze C programs, combining software model checking techniques (in
particular counter-example guided abstraction refinement) with sym-
bolic protocol verification. Some works also build on general purpose
program analysis tools to analyze protocols written in C [Dupressoir
et al., 2011] and JAVA [Küsters et al., 2012]. Type systems, such as
F7 [Bengtson et al., 2011] have also been used to analyze protocols writ-
ten in functional languages. Yet another approach is to generate the
protocol code from verified specifications, rather than try to directly
analyze existing code, see [Pironti and Sisto, 2010, Cadé and Blanchet,
2013].

Conclusion To conclude, the formal analysis of security protocols is
now a mature field that offers several powerful techniques to perform
security proofs or to find flaws. Many challenges remain yet to be solved
such as obtaining security proofs in more accurate models, verifying the
implementations, or tackling new families of protocols such as e-voting
or APIs for secure elements.

Acknowledgements

We would like to thank the reviewer for the careful reading and the
helpful suggestions of improvement. We also thank the editors for their
suggestion to write this tutorial and their patience and support until
it came to a final version.

This work has received support from the European Research
Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement n◦ 258865 and the ANR
project ProSe (decision ANR 2010-VERS-004).

106

References

M. Abadi. Secrecy by typing in security protocols. In Proc. 3rd International
Symposium on Theoretical Aspects of Computer Software (TACS’97), vol-
ume 1281 of Lecture Notes in Computer Science, pages 611–638. Springer,
1997.

M. Abadi and V. Cortier. Deciding knowledge in security protocols under
equational theories. In Proc. 31st International Colloquium on Automata,
Languages, and Programming (ICALP’04), volume 3142 of Lecture Notes
in Computer Science, pages 46–58. Springer, 2004.

M. Abadi and V. Cortier. Deciding knowledge in security protocols under
equational theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

M. Abadi and C. Fournet. Mobile values, new names, and secure commu-
nication. In Proc. 28th ACM Symposium on Principles of Programming
Languages (POPL’01), pages 104–115. ACM, 2001.

M. Abadi and C. Fournet. Private authentication. Theoretical Computer
Science, 322(3):427–476, 2004.

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, 1999.

M. Abadi and P. Rogaway. Reconciling two views of cryptography (the com-
putational soundness of formal encryption). Journal of Cryptology, 15(2):
103–127, 2002.

107

108 References

R. Amadio and W. Charatonik. On name generation and set-based analysis in
the Dolev-Yao model. In Proc. 13th International Conference on Concur-
rency Theory (CONCUR’02), Lecture Notes in Computer Science, pages
499–514. Springer, 2002.

R. Amadio and D. Lugiez. On the reachability problem in cryptographic
protocols. In Proc. 12th International Conference on Concurrency Theory
(CONCUR’00), volume 1877 of Lecture Notes in Computer Science, pages
380–394, 2000.

R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of
processes with cryptographic functions. Theoretical Computer Science, 290
(1):695–740, 2002.

S. Anantharaman, P. Narendran, and M. Rusinowitch. Intruders with caps. In
Proc. 18th International Conference on Term Rewriting and Applications
(RTA’07), volume 4533 of Lecture Notes in Computer Science, pages 20–35.
Springer, 2007.

M. Arapinis, T. Chothia, E. Ritter, and M. D. Ryan. Analysing unlinkability
and anonymity using the applied pi calculus. In Proc. 23rd Computer
Security Foundations Symposium (CSF’10), pages 107–121. IEEE Comp.
Soc. Press, 2010.

M. Arapinis, E. Ritter, and M. D. Ryan. Statverif: Verification of stateful
processes. In Proc. 24th IEEE Computer Security Foundations Symposium
(CSF’11), pages 33–47. IEEE Comp. Soc. Press, 2011.

A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuel-
lar, P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani,
S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani,
L. Viganò, and L. Vigneron. The AVISPA Tool for the automated valida-
tion of internet security protocols and applications. In K. Etessami and
S. Rajamani, editors, 17th International Conference on Computer Aided
Verification, CAV’2005, volume 3576 of Lecture Notes in Computer Sci-
ence, pages 281–285, Edinburgh, Scotland, 2005. Springer.

A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra Abad.
Formal analysis of saml 2.0 web browser single sign-on: Breaking the saml-
based single sign-on for google apps. In Proc. 6th ACM Workshop on Formal
Methods in Security Engineering (FMSE 2008), pages 1–10, 2008.

F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1998. ISBN 978-0-521-45520-6.

F. Baader and W. Snyder. Unification theory. In J. A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, pages 445–532.
Elsevier and MIT Press, 2001. ISBN 0-444-50813-9, 0-262-18223-8.

References 109

M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability
(RSIM) framework for asynchronous systems. Information and Compu-
tation, 205(12):1685–1720, 2007.

G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin. Computer-aided
security proofs for the working cryptographer. In Advances in Cryptology -
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages
71–90. Springer, 2011.

D. Basin, C. Cremers, and S. Meier. Provably repairing the ISO/IEC 9798
standard for entity authentication. In Proc. 1st Conference on Principles of
Security and Trust (POST’12), volume 7215 of Lecture Notes in Computer
Science, pages 129–148. Springer, 2012.

M. Baudet. Deciding security of protocols against off-line guessing attacks. In
Proc. 12th ACM Conference on Computer and Communications Security
(CCS’05), pages 16–25. ACM, November 2005.

M. Baudet, V. Cortier, and S. Delaune. YAPA: A generic tool for computing
intruder knowledge. ACM Transactions on Computational Logic, 14, 2013.

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Re-
finement types for secure implementations. ACM Trans. Program. Lang.
Syst., 33(2):8:1–8:45, 2011.

M. Berrima, N. Ben Rajeb, and V. Cortier. Deciding knowledge in security
protocols under some e-voting theories. Theoretical Informatics and Appli-
cations (RAIRO-ITA), 45:269–299, 2011.

B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules.
In Proc. of the 14th Computer Security Foundations Workshop (CSFW’01).
IEEE Comp. Soc. Press, 2001.

B. Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In
Proc. Symposium on Security and Privacy (SP’04), pages 86–100. IEEE
Comp. Soc. Press, 2004.

B. Blanchet. A computationally sound mechanized prover for security pro-
tocols. In Proc. IEEE Symposium on Security and Privacy (SP’06), pages
140–154. IEEE Comp. Soc. Press, 2006.

B. Blanchet. Automatic verification of correspondences for security protocols.
Journal of Computer Security, 17(4):363–434, 2009.

B. Blanchet. Formal Models and Techniques for Analyzing Security Protocols,
chapter Using Horn Clauses for Analyzing Security Protocols. Volume 5 of
Cortier and Kremer [2011], 2011.

110 References

B. Blanchet and M. Paiola. Automatic verification of protocols with lists
of unbounded length. In Proc. 17th ACM Conference on Computer and
Communications Security (CCS’10), pages 573–584. ACM, 2010.

B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of Selected
Equivalences for Security Protocols. In Proc. 20th Symposium on Logic
in Computer Science (LICS’05), pages 331–340. IEEE Comp. Soc. Press,
2005.

B. Blanchet, B. Smyth, and V. Cheval. ProVerif 1.88: Automatic Crypto-
graphic Protocol Verifier, User Manual and Tutorial, 2013.

F. Böhl and D. Unruh. Symbolic universal composability. In Proc. 26rd Com-
puter Security Foundations Symposium (CSF’13), pages 257–271, 2013.

M. Bond and R. Anderson. API level attacks on embedded systems. IEEE
Computer Magazine, pages 67–75, October 2001.

M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and fixing
PKCS#11 security tokens. In Proc. 17th ACM Conference on Computer
and Communications Security (CCS’10), pages 260–269. ACM, 2010.

M. Brusò, K. Chatzikokolakis, and J. den Hartog. Formal verification of
privacy for rfid systems. In Proc. 23rd Computer Security Foundations
Symposium (CSF’10), pages 75–88. IEEE Comp. Soc. Press, 2010.

S. Bursuc, H. Comon-Lundh, and S. Delaune. Associative-commutative de-
ducibility constraints. In Proc. 24th Annual Symposium on Theoretical
Aspects of Computer Science (STACS’07), volume 4393 of Lecture Notes in
Computer Science, pages 634–645. Springer, 2007.

D. Cadé and B. Blanchet. Proved generation of implementations from
computationally-secure protocol specifications. In Proc. 2nd Conference
on Principles of Security and Trust (POST’13), volume 7796 of Lecture
Notes in Computer Science, pages 63–82. Springer, 2013.

R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Proc. 42nd IEEE Symp. on Foundations of Computer
Science (FOCS’01), pages 136–145. IEEE Comp. Soc. Press, 2001.

R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence
properties of cryptographic protocols. In Programming Languages and Sys-
tems —Proc. 21th European Symposium on Programming (ESOP’12), vol-
ume 7211 of Lecture Notes in Computer Science, pages 108–127. Springer,
2012.

S. Chaki and A. Datta. Aspier: An automated framework for verifying security
protocol implementations. In Proc. 22nd Computer Security Foundations
Symposium (CSF’09), pages 172–185. IEEE Comp. Soc. Press, 2009.

References 111

V. Cheval. Automatic verification of cryptographic protocols: privacy-type
properties. Thèse de doctorat, Laboratoire Spécification et Vérification,
ENS Cachan, France, December 2012.

V. Cheval. Apte: an algorithm for proving trace equivalence. In Proc. 20th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’14), volume 8413 of Lecture Notes in
Computer Science, pages 587–592. Springer, 2014.

V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision:
Negative tests and non-determinism. In Proc. 18th ACM Conference on
Computer and Communications Security (CCS’11), pages 321–330. ACM,
2011.

V. Cheval, V. Cortier, and A. Plet. Lengths may break privacy – or how to
check for equivalences with length. In Proc. 25th International Conference
on Computer Aided Verification (CAV’13), volume 8043 of Lecture Notes
in Computer Science, pages 708–723. Springer, 2013.

Y. Chevalier and M. Rusinowitch. Compiling and securing cryptographic
protocols. Inf. Process. Lett., 110(3):116–122, 2010.

T. Chothia and V. Smirnov. A traceability attack against e-passports. In
Proc. 14th International Conference on Financial Cryptography and Data
Security (FC’10), volume 6052 of Lecture Notes in Computer Science, pages
20–34. Springer, 2010.

N. Chridi, M. Turuani, and M. Rusinowitch. Decidable analysis for a class of
cryptographic group protocols with unbounded lists. In Proc. 22nd Com-
puter Security Foundations Symposium (CSF’09), pages 277–289. IEEE
Comp. Soc. Press, 2009.

Ş. Ciobâcă, S. Delaune, and S. Kremer. Computing knowledge in security
protocols under convergent equational theories. Journal of Automated Rea-
soning, 48(2):219–262, 2012.

H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving
and insecurity decision in presence of Exclusive Or. In Proc. 18th Annual
IEEE Symposium on Logic in Computer Science (LICS ’03), pages 271–
280, Los Alamitos, CA, 2003. IEEE Computer Society.

H. Comon-Lundh, V. Cortier, and E. Zălinescu. Deciding security properties
for cryptographic protocols. Application to key cycles. ACM Transactions
on Computational Logic, 11(2), 2010.

112 References

R. Corin and S. Etalle. An improved constraint-based system for the ver-
ification of security protocols. In Proc. 9th International Static Analysis
Symposium (SAS’02), volume 2477 of Lecture Notes in Computer Science,
pages 326–341. Springer, 2003.

R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security
against off-line dictionary attacks. ENTCS, 121:47–63, 2005.

R. Corin, S. Etalle, and A. Saptawijaya. A logic for constraint-based secu-
rity protocol analysis. In Proc. IEEE Symposium on Security and Privacy
(SP’06), pages 155–168. IEEE Comp. Soc. Press, 2006.

V. Cortier and S. Delaune. Decidability and combination results for two no-
tions of knowledge in security protocols. Journal of Automated Reasoning,
48, 2012.

V. Cortier and S. Kremer, editors. Formal Models and Techniques for Ana-
lyzing Security Protocols, volume 5 of Cryptology and Information Security
Series. IOS Press, 2011.

V. Cortier, S. Kremer, and B. Warinschi. A survey of symbolic methods in
computational analysis of cryptographic systems. Journal of Automated
Reasoning, 46(3-4):225–259, 2010.

C. Cremers. The Scyther Tool: Verification, falsification, and analysis of secu-
rity protocols. In Proc. 20th International Conference on Computer Aided
Verification (CAV’08), volume 5123 of Lecture Notes in Computer Science,
pages 414–418. Springer, 2008.

M. D. Davis and E. J. Weyuker. Computability, complexity and languages,
chapter 7, pages 128–132. Computer Science and Applied Mathematics.
Academic Press, 1983.

H. de Nivelle. Ordering Refinements of Resolution. PhD thesis, Technische
Universiteit Delft, 1995.

S. Delaune and F. Jacquemard. A decision procedure for the verification
of security protocols with explicit destructors. In Proc. 11th ACM Confer-
ence on Computer and Communications Security (CCS’04), pages 278–287.
ACM, 2004.

S. Delaune and F. Jacquemard. Decision procedures for the security of proto-
cols with probabilistic encryption against offline dictionary attacks. Journal
of Automated Reasoning, 36(1-2):85–124, 2006.

References 113

S. Delaune, S. Kremer, and O. Pereira. Simulation based security in the
applied pi calculus. In Proc. 29th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’09), volume 4 of
Leibniz International Proceedings in Informatics, pages 169–180. Leibniz-
Zentrum für Informatik, 2009a.

S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 17(4):435–487,
2009b.

S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the applied
pi calculus. Journal of Computer Security, 18(2):317–377, 2010a.

S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11 and propri-
etary extensions. Journal of Computer Security, 18(6):1211–1245, 2010b.

S. Delaune, S. Kremer, M. D. Ryan, and G. Steel. Formal analysis of protocols
based on TPM state registers. In Proc. 24th IEEE Computer Security
Foundations Symposium (CSF’11), pages 66–82. IEEE Press, 2011.

S. Delaune, S. Kremer, and D. Pasaila. Security protocols, constraint systems,
and group theories. In Proc. 6th International Joint Conference on Auto-
mated Reasoning (IJCAR’12), volume 7364 of Lecture Notes in Artificial
Intelligence, pages 164–178. Springer, 2012.

W. Diffie and M. Helman. New directions in cryptography. IEEE Transactions
on Information Society, 22(6):644–654, 1976.

D. Dolev and A.C. Yao. On the security of public key protocols. In Proc. 22nd
Symposium on Foundations of Computer Science, pages 350–357. IEEE
Comp. Soc. Press, 1981.

H. Dong, N.and Jonker and J. Pang. Analysis of a receipt-free auction protocol
in the applied pi calculus. In Proc. International Workshop on Formal
Aspects in Security and Trust (FAST’10), volume 6561 of Lecture Notes in
Computer Science, pages 223–238. Springer, 2011.

J. Dreier, P. Lafourcade, and Y. Lakhnech. Formal verification of e-auction
protocols. In Proc. 2nd Conferences on Principles of Security and Trust
(POST’13), volume 7796 of Lecture Notes in Computer Science, pages 247–
266. Springer, 2013.

F. Dupressoir, A. D. Gordon, J. Jürjens, and D. A. Naumann. Guiding a
general-purpose c verifier to prove cryptographic protocols. In Proc. 24th
Computer Security Foundations Symposium (CSF’11), pages 3–17. IEEE
Comp. Soc. Press, 2011.

114 References

N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In Proc. Workshop on Formal Methods and Security
Protocols, 1999.

S. Escobar, C. Meadows, and J. Meseguer. Maude-npa: Cryptographic pro-
tocol analysis modulo equational properties. In Foundations of Security
Analysis and Design V, volume 5705 of Lecture Notes in Computer Sci-
ence, pages 1–50. Springer, 2009.

R. Focardi and M. Maffei. Formal Models and Techniques for Analyzing Se-
curity Protocols, chapter Types for Security Protocols. Volume 5 of Cortier
and Kremer [2011], 2011.

R. Focardi and F. Martinelli. A uniform approach for the definition of security
properties. In Proc. World Congress on Formal Methods (FM’99), Lecture
Notes in Computer Science, pages 794–813. Springer, 1999.

A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for
large scale elections. In Advances in Cryptology - AUSCRYPT’92, volume
718 of Lecture Notes in Computer Science, pages 244–251. Springer-Verlag,
1992.

Th. Genet and F. Klay. Rewriting for cryptographic protocol verifica-
tion. In Proc. 17th International Conference on Automated Deduction
(CADE’00), volume 1831 of Lecture Notes in Computer Science, pages 271–
290. Springer, 2000.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28, 1984.

D. Gollmann. What do we mean by entity authentication? In Proc. Sym-
posium on Security and Privacy (SP’96), pages 46–54. IEEE Comp. Soc.
Press, 1996.

J. Goubault-Larrecq. A method for automatic cryptographic protocol verifi-
cation (extended abstract). In Proc. Workshops of the 15th International
Parallel and Distributed Processing Symposium, volume 1800 of Lecture
Notes in Computer Science, pages 977–984. Springer, 2000.

J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on
real C code. In Proc. 6th International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI’05), volume 3385 of Lecture
Notes in Computer Science, pages 363–379. Springer, 2005.

ISO/IEC-9798-1. Information technology - Security techniques - Entity au-
thentication mechanisms; Part 1: General model. ISO/IEC 9798-1. Inter-
national Organization for Standardization, second edition edition, sep 1991.

References 115

F. Jacquemard, M.Rusinowitch, and L. Vigneron. Compiling and verifying
security protocols. In Proc. 7th International Conference on Logic for Pro-
gramming and Automated Reasoning (LPAR’00), volume 1955 of Lecture
Notes in Computer Science, pages 131–160. Springer, 2000.

S. Kremer and R. Künnemann. Automated analysis of security protocols with
global state. In Proceedings of the 35th IEEE Symposium on Security and
Privacy (SP’14), pages 163–178. IEEE Comp. Soc. Press, 2014.

S. Kremer and L. Mazaré. Adaptive soundness of static equivalence. In
Proc. 12th European Symposium on Research in Computer Security (ES-
ORICS’07), volume 4734 of Lecture Notes in Computer Science, pages 610–
625. Springer, 2007.

S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the
applied pi-calculus. In Programming Languages and Systems — Proc. 14th
European Symposium on Programming (ESOP’05), volume 3444 of Lecture
Notes in Computer Science, pages 186–200. Springer, 2005.

S. Kremer, A. Mercier, and R. Treinen. Reducing equational theories for
the decision of static equivalence. Journal of Automated Reasoning, 48(2):
197–217, 2012.

R. Küsters, T. Truderung, and J. Graf. A framework for the cryptographic
verification of java-like programs. In Proc. 25th Computer Security Founda-
tions Symposium (CSF’12), pages 198–212. IEEE Comp. Soc. Press, 2012.

D. Longley and S. Rigby. An automatic search for security flaws in key man-
agement schemes. Computers and Security, 11(1):75–89, March 1992.

G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Proc. 2nd International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’96), volume 1055 of
Lecture Notes in Computer Science, pages 147–166. Springer-Verlag, 1996.

G. Lowe. A hierarchy of authentication specifications. In Proc. 10th Computer
Security Foundations Workshop (CSFW’97), pages 31–44. IEEE Comp.
Soc. Press, 1997a.

G. Lowe. Casper: a compiler for the analysis of security protocols. In Proc.
10th Computer Security Foundations Workshop (CSFW’97), pages 18–30.
IEEE Comp. Soc. Press, 1997b.

G. Lowe. Analysing protocols subject to guessing attacks. Journal of Com-
puter Security, 12(1):83–98, 2004.

C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic
Programming, 26(2):113–131, 1996.

J. Millen. A necessarily parallel attack. In FMSP ’99, 1999.

116 References

J. Millen and G. Denker. Capsl and mucapsl. J. Telecommunications and
Information Technology, 4:16–27, 2002.

J. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In Proc. 8th ACM Conference on Computer and
Communications Security (CCS’01), 2001.

J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using Murϕ. In Proc. IEEE Symposium on Security and Privacy
(SP’97), pages 141–153, 1997.

S. Mödersheim. Abstraction by set-membership: verifying security protocols
and web services with databases. In Proc. 17th ACM Conference on Com-
puter and Communications Security (CCS’10), pages 351–360. ACM, 2010.

D. Monniaux. Abstracting cryptographic protocols with tree automata. Sci.
Comput. Program., 47(2-3):177–202, 2003.

R. M. Needham and M. D. Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12):993–999,
1978.

L. C. Paulson. Mechanized proofs for a recursive authentication protocol. In
Proc. 10th Computer Security Foundations Workshop (CSFW’97), pages
84–95. IEEE Comp. Soc. Press, 1997.

L. C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1/2):85–128, 1998.

Alfredo Pironti and Riccardo Sisto. Provably correct Java implementations of
Spi Calculus security protocols specifications. Computers & Security, 29:
302–314, 2010.

M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of
sessions is NP-complete. In Proc. 14th Computer Security Foundations
Workshop (CSFW’01), pages 174–190. IEEE Comp. Soc. Press, 2001.

M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number
of Sessions and Composed Keys is NP-complete. Theoretical Computer
Science, 299:451–475, 2003.

P.Y.A Ryan, S.A. Schneider, M. Goldsmith, G. Lowe, and A.W. Roscoe. Mod-
elling and Analysis of Security Protocols. Addison Wesley, 2000.

B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated analysis of Diffie-
Hellman protocols and advanced security properties. In Proc. 25th IEEE
Computer Security Foundations Symposium (CSF’12), pages 78–94. IEEE
Comp. Soc. Press, 2012.

References 117

B. Schmidt, S. Meier, C. Cremers, and D. Basin. The tamarin prover for the
symbolic analysis of security protocols. In Proc. 25th International Con-
ference on Computer Aided Verification (CAV’13), volume 8044 of Lecture
Notes in Computer Science, pages 696–701. Springer, 2013.

S. Schneider. Verifying authentication protocols with CSP. In Proc. 10th
Computer Security Foundations Workshop (CSFW’97). IEEE Comp. Soc.
Press, 1997.

D. Song. Athena, an automatic checker for security protocol analysis. In
Proc. 12th IEEE Computer Security Foundations Workshop (CSFW’99).
IEEE Comp. Soc. Press, 1999.

J. Thayer, J. Herzog, and J. Guttman. Strand spaces: proving security pro-
tocols correct. IEEE Journal of Computer Security, 7:191–230, 1999.

A. Tiu and J. Dawson. Automating open bisimulation checking for the
spi-calculus. In Proc. 23rd Computer Security Foundations Symposium
(CSF’10), pages 307–321. IEEE Comp. Soc. Press, 2010.

T. Truderung. Selecting theories and recursive protocols. In Proc. 16th In-
ternational Conference on Concurrency Theory (Concur’05), volume 3653
of Lecture Notes in Computer Science, pages 217–232. Springer, 2005.

Ch. Weidenbach. Towards an automatic analysis of security protocols in first-
order logic. In Proc. 16th International Conference on Automated Deduc-
tion (CADE’99), volume 1632 of Lecture Notes in Computer Science, pages
314–328. Springer, 1999.

T.Y.C. Woo and S.S. Lam. Authentication for distributed systems. In Proc.
Symposium on Security and Privacy (SP’92), pages 178–194. IEEE Comp.
Soc. Press, 1992.

	Introduction
	Running example
	The Needham Schroeder public key protocol
	Lowe's man in the middle attack

	Messages and deduction
	Terms
	Message deduction
	An algorithm to decide message deduction
	Exercises

	Equational theory and static equivalence
	Equational theories
	Static equivalence
	Exercises

	A cryptographic process calculus
	Syntax and informal semantics
	Modelling protocols as processes
	Formal semantics
	Exercises

	Security properties
	Events
	Secrecy
	Authentication
	Equivalence properties
	Exercises

	Automated verification: bounded case
	From protocols to constraint systems
	Constraint solving
	Exercises

	Automated verification: unbounded case
	Undecidability
	Analysis of protocols with Horn clauses
	Exercises

	Further readings and conclusion
	References

