DistillFlow: removing redundancy in scientific workflows

Jiuqiang Chen 1, 2, 3 Sarah Cohen-Boulakia 3, 2 Christine Froidevaux 2, 3 Carole Goble 4 Paolo Missier 4 Alan Williams 4
2 AMIB - Algorithms and Models for Integrative Biology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Scientific workflows management systems are increasingly used by scientists to specify complex data processing pipelines. Workflows are represented using a graph structure, where nodes represent tasks and links represent the dataflow. However, the complexity of workflow structures is increasing over time, reducing the rate of scientific workflows reuse. Here, we introduce DistillFlow, a tool based on effective methods for workflow design, with a focus on the Taverna model. DistillFlow is able to detect "anti-patterns" in the structure of workflows (idiomatic forms that lead to over-complicated design) and replace them with different patterns to reduce the workflow's overall structural complexity. Rewriting workflows in this way is beneficial both in terms of user experience and workflow maintenance.
Type de document :
Communication dans un congrès
SSDBM '14 Proceedings of the 26th International Conference on Scientific and Statistical Database Management, Jun 2014, Aalborg, Denmark. 〈http://dl.acm.org/citation.cfm?id=2618287〉. 〈10.1145/2618243.2618287〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01091033
Contributeur : Sarah Cohen-Boulakia <>
Soumis le : jeudi 4 décembre 2014 - 22:06:55
Dernière modification le : jeudi 10 mai 2018 - 02:06:04
Document(s) archivé(s) le : lundi 9 mars 2015 - 05:59:37

Fichier

distillflowdemo.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jiuqiang Chen, Sarah Cohen-Boulakia, Christine Froidevaux, Carole Goble, Paolo Missier, et al.. DistillFlow: removing redundancy in scientific workflows. SSDBM '14 Proceedings of the 26th International Conference on Scientific and Statistical Database Management, Jun 2014, Aalborg, Denmark. 〈http://dl.acm.org/citation.cfm?id=2618287〉. 〈10.1145/2618243.2618287〉. 〈hal-01091033〉

Partager

Métriques

Consultations de la notice

270

Téléchargements de fichiers

114