
HAL Id: hal-01091173
https://inria.hal.science/hal-01091173

Submitted on 4 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Proposal for Non-Intrusive Namespaces in OCaml
Pierrick Couderc, Benjamin Canou, Pierre Chambart, Fabrice Le Fessant

To cite this version:
Pierrick Couderc, Benjamin Canou, Pierre Chambart, Fabrice Le Fessant. A Proposal for Non-
Intrusive Namespaces in OCaml. OCaml 2014, Sep 2014, Goteborg, Sweden. �hal-01091173�

https://inria.hal.science/hal-01091173
https://hal.archives-ouvertes.fr


A Proposal for Non-Intrusive Namespaces in OCaml

Pierrick Couderc

INRIA

pierrick.couderc@inria.fr

Benjamin Canou

OCamlPro

benjamin.canou@ocamlpro.com

Pierre Chambart

OCamlPro

pierre.chambart@ocamlpro.com

Fabrice Le Fessant

INRIA & OCamlPro

fabrice.le fessant@inria.fr

Abstract

We present a work-in-progress about adding
namespaces to OCaml. Inspired by other lan-
guages such as Scala or C++, our aim is to de-
sign and formalize a simple and non-intrusive
namespace mechanism without complexifying
the core language. Namespaces in our ap-
proach are a simple way to define libraries
while avoiding name clashes. They are also
meant to simplify the build process, clarify-
ing and reducing (to zero whenever possible)
the responsibility of external tools.

1 Introduction

Packages, or namespaces, are a standard fea-
ture in many languages. They allow to distin-
guish multiple names into distinct entities, al-
lowing especially names that could have over-
lapped otherwise. They are also a canonical
way to describe libraries inside the language,
without letting the build system deal with
such an issue. It makes the program easier
to understand by simply looking at the source
code (and not its building process).

OCaml’s modules can be seen as a names-
pace component, but without the expressive-
ness of Scala’s packages[3], or the ability for
the user to extend existing namespaces like in
C++[1]. Moreover, the current way in OCaml
to avoid modules’ name clash at usage is ei-
ther by prefixing them to get a name long

enough to make conflicts unlikely to occur,
or by packing, making them submodules of a
big one. The recent work on module aliases

to avoid module copy in packs strenghten the
need for a dedicated namespace mechanism in
the language.

In this talk, we are going to present our
work-in-progress on namespaces and the im-
plementation in OCaml.

2 Objectives

Namespaces are a mechanism to describe a
hierarchy of modules, a meaning to rearrange
modules into some kind of folders and avoid
name clashes. However, namespaces should
not subsume modules, and as a result, they
can only be used as a disambiguation con-
struction in the language and only contain
modules or subnamespaces.

Moreover, we don’t want to clutter too
much the core language with new features
and constructs, just providing a way for the
programmer to describe in the prelude of the
module its compilation environment. Names-
pace declaration should not be mandatory, es-
pecially for a simple program without a com-
plex architecture.

Another point we want to solve is hav-
ing “functorized” namespaces to solve the
functor-pack [2] feature. Since namespaces
are the solution for -pack, this issue should
also be resolved.

1



Finally, we think that namespaces are
tightly related to the build system. As a result
they should ease the use of external libraries
for the user and the compiler, making exter-
nal tools less vital for simple programs. In
our view, a good namespace mechanism would
have the ability to completely subsume the
use of tricky options of the compiler (-pack),
that makes dependencies computation harder
without the use of a complete build system.

To summarize:

• A better replacement for -pack;

• Avoid naming conflicts;

• Simplify building without using external
libraries;

• Solving the functor-pack to namespace
formalization.

3 Current Proposal

In our current proposal, we aim at fulfilling
the objectives previously described, by adding
some constructs that are only usable in the
prelude of modules (only compilation unit,
not submodules), making them non-intrusive
without making the source code more com-
plex to read and understand. The namespace
declarations builds the environment of follow-
ing code, by explicitely declaring where the
current module resides in the namespace hi-
erarchy, and then what should be imported
from it. It should be expressive enough to
restrain the verbosity that arises in other lan-
guages, and would be helped by the recently
introduced modules aliases.

We said namespaces should help the com-
pilation scheme to put aside the use of ex-
ternal tools as much as possible. For this,
what we propose is a canonical way to orga-
nize libraries in the file system, by mapping
namespaces as folders directly, with the pos-
sibility of flattening those by a configuration

file. Adding a standard path were installed li-
brary reside would help considerably the com-
piler to find and link the correct modules.

Finally, extensible namespaces allow any
user to declare its modules into an already
existing hierarchy. This allows any user to
provide extensions of existing library (like the
stdlib).

As an example, what we could achieve in-
side the language would be:

in namespace OCamlPro.Stdlib

with {Hashtbl as OCPHashtbl , String}

and {String as StdString , Hashtbl} of Inria.Stdlib

and {String as JSString} of JaneStreet.Core

and _ of Community.Batteries

open Hashtbl

open Enum

...

4 Conclusion

Namespaces are a tool in the language that
have the ability to organize compilation units,
leading to a more comprehensive library hier-
archy. Our proposal aims to formalize a mech-
anism to add such features into OCaml, with-
out cluttering the core language too much,
and making the sources easier to read. It
discharges the library provider to use long-
prefixed names to avoid clashes, and helps
the user and the compiler compute more effi-
ciently the environment and dependencies.

Our proposal also aims to harmonize how
libraries are installed in the file system and
how the compiler reasons about them. In the
actual configuration, using external tools is
almost unavoidable. Namespaces would sim-
plify the toolchain and let the compiler deal
with external libraries and namespaces.

Our goal is to present the work that has
been achieved toward adding namespaces into
OCaml, from the proposal to hopefully an im-
plementation.

2



References

[1] Working Draft, Standard for Program-

ming Language C++. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf.

[2] F. Le Fessant. Packing and functors.
http://www.ocamlpro.com/blog/2011/08/10/ocaml-
pack-functors.html.

[3] M. Odersky. The Scala Language

Specification, 2014. http://www.scala-
lang.org/docu/files/ScalaReference.pdf.

3


	Introduction
	Objectives
	Current Proposal
	Conclusion

