Learning Pruning Rules for Heuristic Search Planning

Michal Krajňanský 1 Jörg Hoffmann 1 Olivier Buffet 2 Alan Fern 3
2 MAIA - Autonomous intelligent machine
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : When it comes to learning control knowledge for plan-ning, most works focus on "how to do it" knowledge which is then used to make decisions regarding which actions should be applied in which state. We pursue the opposite approach of learning "how to not do it" knowledge, used to make decisions regarding which ac-tions should not be applied in which state. Our intuition is that "bad actions" are often easier to characterize than "good" ones. An ob-vious application, which has not been considered by the few prior works on learning bad actions, is to use such learned knowledge as action pruning rules in heuristic search planning. Fixing a canonical rule language and an off-the-shelf learning tool, we explore a novel method for generating training data, and implement rule evaluators in state-of-the-art planners. The experiments show that the learned rules can yield dramatic savings, even when the native pruning rules of these planners, i.e., preferred operators, are already switched on.
Type de document :
Communication dans un congrès
21st European Conference on Artificial Intelligence, Aug 2014, Prague, Czech Republic. 2014, Proceedings of the 21st European Conference on Artificial Intelligence. 〈http://www.ecai2014.org/〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01091190
Contributeur : Olivier Buffet <>
Soumis le : jeudi 4 décembre 2014 - 18:11:32
Dernière modification le : jeudi 11 janvier 2018 - 06:25:23
Document(s) archivé(s) le : lundi 9 mars 2015 - 06:00:39

Fichier

ecai14a.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01091190, version 1

Collections

Citation

Michal Krajňanský, Jörg Hoffmann, Olivier Buffet, Alan Fern. Learning Pruning Rules for Heuristic Search Planning. 21st European Conference on Artificial Intelligence, Aug 2014, Prague, Czech Republic. 2014, Proceedings of the 21st European Conference on Artificial Intelligence. 〈http://www.ecai2014.org/〉. 〈hal-01091190〉

Partager

Métriques

Consultations de la notice

248

Téléchargements de fichiers

145