A Hybrid Bayesian Framework for Map Matching: Formulation Using Switching Kalman Filter

Cherif Smaili 1 Maan El Badaoui El Najjar 1 François Charpillet 2
1 STF - Systèmes Tolérants aux Fautes
CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
2 MAIA - Autonomous intelligent machine
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : This paper addresses an important issue for intelligent transportation system, namely the ability of vehicles to safely and reliably localize themselves within an a priori known road map network. For this purpose, we propose an approach based on hybrid dynamic bayesian networks enabling to implement in a unified framework two of the most successful families of probabilistic model commonly used for localization: linear Kalman filters and Hidden Markov Models. The combination of these two models enables to manage and manipulate multi-hypotheses and multi-modality of observations characterizing Map Matching problems and it improves integrity approach. Another contribution of the paper is a chained-form state space representation of vehicle evolution which permits to deal with non-linearity of the used odometry model. Experimental results, using data from encoders’ sensors, a DGPS receiver and an accurate digital roadmap, illustrate the performance of this approach, especially in ambiguous situations.
Type de document :
Article dans une revue
Journal of Intelligent and Robotic Systems, Springer Verlag (Germany), 2014, 74 (3-4), pp.18. 〈http://dx.doi.org/10.1007/s10846-013-9844-4〉. 〈10.1007/s10846-013-9844-4〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01091321
Contributeur : François Charpillet <>
Soumis le : vendredi 5 décembre 2014 - 10:35:07
Dernière modification le : mardi 3 juillet 2018 - 11:48:22

Identifiants

Citation

Cherif Smaili, Maan El Badaoui El Najjar, François Charpillet. A Hybrid Bayesian Framework for Map Matching: Formulation Using Switching Kalman Filter. Journal of Intelligent and Robotic Systems, Springer Verlag (Germany), 2014, 74 (3-4), pp.18. 〈http://dx.doi.org/10.1007/s10846-013-9844-4〉. 〈10.1007/s10846-013-9844-4〉. 〈hal-01091321〉

Partager

Métriques

Consultations de la notice

387