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Abstract

Plugging is well known to be a major cause of instability in industrial cement mills. A

simple nonlinear model able to simulate the plugging phenomenon is presented. It is shown

how a nonlinear robust controller can be designed in order to fully prevent the mill from

plugging.

1 Introduction

This paper is concerned with the feedback stabilization of industrial cement mills. A schematic

lay-out of a typical cement milling circuit is shown in Fig.1. The plant is made up of the

interconnection of a ball mill and a separator. The ball mill is fed with raw material (cement

clinker). After grinding, the milled material is introduced in the separator where the finished

product (i.e the particles that are small enough) is separated from the oversize particles (also

called tailings) which are recycled to the ball mill.

Traditionally, the application of feedback control to cement mills is limited to monovariable

classical PI regulation of the circulating load (the tailings flow rate) with either the feed flow

rate or the separator speed as control action. Recently, linear multivariable control techniques

have been introduced to improve the performances of the milling circuit (see e.g.[1], [2] and the

references therein). However linear controllers based on a linear approximation of the process,

are stable and effective only in a limited range around the nominal operating point. On some

occasions, it is observed on real plants that intermittent disturbances (like for instance changes

in the hardness of the raw material) may drive the mill to a region where the controller cannot

stabilize the plant. This is well known by the operators as the so-called plugging phenomenon

of ball mills.

In order to cope with this problem, a simple nonlinear model of the milling circuit has been

presented in [4]. This model specifically includes the material hold-up (amount of material inside

the mill) as a state variable. It is able to reproduce the plugging phenomenon in a realistic way.

∗This paper presents research results of the Belgiam Program on Interuniversity Attraction Poles, initiated by

the Belgiam State, Prime Minister’s Office for Science, Technology and Culture.
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Figure 1: Schematic view of a milling circuit

In [4], an output feedback nonlinear predictive controller for this model is investigated. It

appears that this controller has a larger stability region than the linear controller of [1] but can

nevertheless not fully avoid mill plugging. The reason is that this controller does not use the

material holdup which is essential to keep a global control of the process as also quoted in [5].

The contribution of the present paper is then to describe a state feedback nonlinear controller

which includes a feedback of the material holdup such that the system has a single equilibrium

semi-globally stable (and therefore globally attracting) in the domain of physical existence of the

process. The controller is therefore able to completely prevent the mill from plugging. Moreover

this controller is robust because it requires very little a priori knowledge of the plant (only the

shapes of the grinding and separation functions need to be known).

2 Mathematical modelling

The following notations are introduced (see Fig.1). The mill is fed with cement clinker at a

feeding rate u [tons/h]. The separator is driven by its rotational speed v [rpm]. The tailings

are recycled at a rate yr [t/h] to the mill while the finished product exits the plant at a rate yf

[t/h]. The plant is described by a simple dynamical model with three state variables :

Tf ẏf = −yf + (1− α(v))ϕ(z, d) (1)

Trẏr = −yr + α(v)ϕ(z, d) (2)

ż = −ϕ(z, d) + yr + u (3)

where Tf , Tr [h] are time constants, z [t] is the amount of material in the mill (also called the

mill load), d represents the clinker hardness, α(v) is the separation function and ϕ(z, d) is the

ball mill outflow rate.

The grinding function ϕ(z, d) is shown in Fig.2 for different values of d. It is a non monotonic

function of the mill load z. When z is too high, the grinding efficiency decreases and leads to

the obstruction of the mill (plugging). A low value of z is also undesirable because it causes a

fast wear of the balls.
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Figure 2: Grinding function
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Figure 3: Separation function

The separation function α(v), shown in Fig.3, is a monotonically increasing function of the

rotational speed v of the separator, constrained between 0 and 1 with 0 ≤ v ≤ vmax and

α(vmax) < 1.

Of paramount importance is the fact that with this modelling of the grinding and separation

functions, the system (1)-(2)-(3) is positive (see e.g. [3]) in accordance with the physical reality :

if yf (0) ≥ 0, yr(0) ≥ 0, z(0) ≥ 0, u(t) ≥ 0

and 0 ≤ v(t) ≤ vmax for all t ≥ 0

then yf (t) ≥ 0, yr(t) ≥ 0 and z(t) ≥ 0 for all t ≥ 0.

Indeed, equations (1)-(2)-(3) show that whenever a component of the state becomes zero its

derivative is non-negative.
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3 Stability of equilibria

Assuming that the clinker hardness d is constant, the equilibria of the system ȳf , ȳr, z̄ are

parametrized by the constant inputs ū and v̄ :

ȳf = ū (4)

ȳr =
α(v̄)ū

1− α(v̄)
(5)

ϕ(z̄, d) =
ū

1− α(v̄)
(6)

In view of the shape of ϕ(z, d) as illustrated in Fig.4, there may be zero, one or two equilibria.

There are two distinct equilibria when the following inequality is satisfied :

ū < (1− α(v̄))ϕmax(d) (7)

where ϕmax(d) is the maximum value of the function ϕ(z, d) with respect to z. Linearizing the

model (1)-(2)-(3) at these equilibria, the eigenvalues satisfy :

λ1 = −T−1f (8)

λ2 + λ3 = −ϕz(z̄, d)− T
−1
r (9)

λ2λ3 = T−1r ϕz(z̄, d)(1 − α(v̄)) (10)

where ϕz denotes the partial derivative of ϕ with respect to z. From (9)-(10), we conclude

that the stability of the equilibria is determined by the sign of ϕz(z̄, d). The equilibrium is

exponentially stable if ϕz(z̄, d) > 0, whereas it is unstable if ϕz(z̄, d) < 0. In Fig.4, the stable

situation corresponds to equilibria to the left of the maximum of the curve, while unstable

equilibria are located to the right of the maximum. When ϕz(z̄, d) = 0, one of the eigenvalues

is zero and the stability of the equilibrium is determined by the centre manifold dynamics :

ż = −ϕ(z, d) + ū± ȳr (11)

The equilibrium z = z̄ of (11) is unstable since (z − z̄)ż > 0 for z 6= z̄.

4 The plugging phenomenon

The plugging phenomenon manifests itself under the form of a dramatic decrease of the produc-

tion and an irreversible accumulation of material in the mill due to intermittent disturbances of

the inflow rate and variations of clinker hardness. In the model (1)-(2)-(3) with constant inputs

ū and v̄, plugging is a global instability which occurs as soon as the state (yf , yr, z) enters the

set Ω defined by the following inequalities (see Fig. 5) :

yf ≥ 0, yr ≥ 0, z ≥ 0

(1− α(v̄))ϕ(z, d) < yf < ū

α(v̄)ϕ(z, d) < yr

ϕz(z, d) < 0
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Figure 4: Equilibria and their stability
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Figure 5: The plugging set Ω

Indeed, it is not difficult to observe that Ω is a positively invariant set and that in Ω :

Tf ẏf < 0

Trẏr < 0

ż > 0

Therefore we have that in Ω :

yf → 0, yr → 0, z →∞ as t→∞ (12)

Hence the level z of material in the mill is accumulated without limitation while the production

rate yf goes to zero.

5 Robust global stabilization

The control objective considered in this paper is to regulate the production rate yf and the mill

load z at desired set points y∗f and z
∗ by acting on the feed rate u and the separator speed v. The

controller must prevent the mill from plugging and achieve global stabilization. Moreover, the

controller must be robust against modelling uncertainties. More precisely our design only relies
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Figure 6: Block diagram of the controller

on the shape of the grinding function ϕ(z, d) and the separation function α(v) as illustrated in

Fig. 2 and 3. No quantitative analytical model of these functions is assumed to be known.

The control inflow rate u and the control separation speed v are physically constrained to be

positive and saturated. The control objective will be achieved with the following control law :

u = m(ψ) (13)

ψ = −yr + k1(z
∗ − z) + θ (14)

θ̇ = k2(z
∗ − z) + k2(m(ψ) − ψ) (15)

v = l(η) (16)

η̇ = k3(k2(yf − y
∗
f ) + k2(l(η) − η)) (17)

where m(ψ) = sat[0,umax](ψ) and l(η) = sat[0,vmax](η).

This is a very simple control law made up of two saturated PI controllers with anti wind-up and

a ”feedforward” of yr into the z-regulator which decouples the two loops (see Fig.6).

The closed loop system (1)-(2)-(3)-(13)-(14)-(15)-(16)-(17) is then rewritten as

Tf ẏf = −yf + (1− α(v))ϕ(z, d) (18)

Trẏr = −yr + α(v)ϕ(z, d) (19)

ż = −ϕ(z, d) + yr +m(ψ) (20)

θ̇ = k2(z
∗ − z) + k2(m(ψ) − ψ) (21)

η̇ = k3(k2(yf − y
∗
f ) + k2(l(η) − η)) (22)

ψ = −yr + k1(z
∗ − z) + θ (23)

v = l(η) (24)

6



In the next theorem, the stability properties of this closed loop system will be analyzed. Some

technical notations must be introduced. The clinker hardness d is assumed to belong to an

interval of admissible values [d1, d2]. For each value of d ∈ [d1, d2], the grinding function ϕ(z, d)

as depicted in Fig.2 is a twice differentiable Lipshitz function of z, with a Lipschitz constant

denoted k0(d). For each value of z ∈ IR
+, ϕ(z, d) is a decreasing function of d. The maximal

value of ϕ is denoted

ϕmax = maxz∈IR+ϕ(z, d1)

The separation function α(v) as represented in Fig.3 is also twice differentiable with :

α(0) = α′(0) = α′′(0) = α′(vmax) = α
′′(vmax) = 0 (25)

We then have the following stability result where it is shown that the closed loop system has

a unique equilibrium which is semi-globally stable in the domain of physical existence of the

process.

Theorem

If d ∈ [d1, d2], umax > ϕmax, k1 > max(1,maxd∈[d1,d2]k0(d)), k3 > 0

Then for any compact sets C(θ,η) ⊂ [−k1z
∗,→ [×IR and C(yf ,yr,z) ⊂ IR3+, there exists k

∗
2 > 0

such that for all 0 < k2 < k∗2 the single equilibrium of the closed loop system (18)-(24) is

asymptotically stable and its region of attraction contains C(yf ,yr,z) × C(θ,η).

Proof

The domain A = {(yf , yr, z, θ, η)|yf ≥ 0, yr ≥ 0, z ≥ 0, θ ≥ −k1z
∗, η ∈ IR} is invariant.

Indeed yr and yf are positive by nature, and z is positive by construction of the control law.

Moreover, if θ = −k1z
∗, then ψ is necessarily negative and the control is saturated at zero, which

implies that

θ̇ = k2((k1 − 1)z + yr + z
∗) > 0 (26)

We may therefore assume that θ is initialized such that θ ≥ −k1z
∗ and restrict our attention to

the behaviour of the system inside the subdomain A.

The special case without integral action is first considered because it is the reduced-order

model for a subsequent singular perturbation analysis.

Stability proof without integral action

Let us first consider the case without integral action (i.e. k2 = 0) and with the variables θ

and η fixed at arbitrary values θ̄ ≥ −k1z
∗ and η̄ ∈ IR. The closed loop system (18)-(19)-(20)-

(21)-(22)-(23)-(24)reduces to

Tf ẏf = −yf + (1− α(v))ϕ(z, d) (27)

Trẏr = −yr + α(v)ϕ(z, d) (28)

ż = −ϕ(z, d) + yr +m(ψ) (29)

ψ = −yr + k1(z
∗ − z) + θ̄ (30)

v = l(η̄) (31)

7



Any equilibrium (ȳf , ȳr, z̄) must satisfy :

0 = −ȳf + (1− α(l(η̄)))ϕ(z̄, d) (32)

0 = −ȳr + α(l(η̄))ϕ(z̄, d) (33)

0 = −ϕ(z̄, d) + ȳr +m(−ȳr + k1(z
∗ − z̄) + θ̄) (34)

Eliminating ȳr in (33) and (34), we obtain :

(α(l(η̄))− 1)ϕ(z̄, d) +m(−α(l(η̄))ϕ(z̄, d) + k1(z
∗ − z̄) + θ̄) = 0

This equation has no solution z̄ when (−α(l(η̄))ϕ(z̄, d) + k1(z
∗ − z̄) + θ̄) > 0 (because umax >

ϕmax) or < 0 (because this would require z̄ = 0, and the argument of m is θ̄ + k1z
∗ > 0 when

z̄ = 0, which is a contradiction). Hence solutions must lie in the region without saturation and

satisfy:

ϕ(z̄, d) + k1z̄ = k1z
∗ + θ̄ (35)

The left hand side is a monotonic increasing function of z̄ (because k1 > k0(d)) with value 0 at

z̄ = 0. The right hand side is strictly positive. Therefore this equation has a unique solution

z̄ > 0. The unique corresponding equilibrium values (ȳf , ȳr) follow from (32)-(33).

We have just shown that a unique equilibrium exists for any value of θ̄ > −k1z
∗ and η̄ ∈ IR,

thus obtaining a family of equilibria (ȳf (θ̄, η̄), ȳr(θ̄, η̄), z̄(θ̄)) parametrized by θ̄ and η̄.These

functions ȳf (θ̄, η̄), ȳr(θ̄, η̄) and z̄(θ̄) are C
2 because ϕ(z, d) and α(v) are C2 and because of (25).

We still have to show that the vector (ȳf (θ̄, η̄), ȳr(θ̄, η̄), z̄(θ̄)) is a GAS-LES equilibrium of

the system (27)-(28)-(29)-(30)-(31) for any fixed value of (θ̄, η̄).

The system (27)-(28)-(29)-(30)-(31) is the cascade of the system (28)-(29)-(30)-(31) with the

GES scalar subsystem :

Tf ẏf = −yf + (1− α(v))ϕ(z, d) (36)

We first show that the equilibrium of the subsystem (28)-(29)-(30)-(31) is GAS-LES for any

(θ̄, η̄). Let us select the constant c > 0 large enough such that

ψ = −yr − k1z + k1z
∗ + θ̄ < 0

for all (yr, z) in the set

S = {(yr, z) : yr ≥ 0, z ≥ 0, Tryr + z = c}

Since ż+ Trẏr < 0 when ψ < 0, the triangle T bounded by the coordinate axes and the straight

line S is invariant and globally attractive (see Fig. 7).

All the subsystem trajectories are bounded and reach T in finite time. The limit set of any

trajectory inside T is either the equilibrium (ȳr(θ̄, η̄), z̄(θ̄)) or a limit cycle enclosing the equi-

librium. The segment of straight line joining the points (0, z̄(θ̄)) and (ȳr(θ̄, η̄), z̄(θ̄)) is invariant.

Because any limit cycle should cross this segment, the only possible limit set is the equilibrium

which is thus GAS. From the Jacobian linearization of the system the equilibrium is also LES.
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Now the equilibrium of equation (18) is GES when (yr, z) = (ȳr(θ̄, η̄), z̄(θ̄)). It follows from

Theorem A.1 in [8] that the whole subsystem (18)-(19)-(20)-(23)-(24) is GAS-LES.

Stability proof with integral actions

We now come back to the case where k2 6= 0 and there is an integral action in the loop. We

will establish semiglobal stabilizability when θ and η are slowly varying. This can be achieved

by taking k2 = ǫ small enough. With the change of time scale: τ = ǫt, the system is rewritten

in a two-time scale form as follows:

θ̇ = z∗ − z +m(ψ)− ψ (37)

η̇ = k3(yf − y
∗
f ) + k3(l(η) − η) (38)

ǫTf ẏf = −yf + (1− α(v))ϕ(z, d) (39)

ǫTrẏr = −yr + α(l(η))ϕ(z, d) (40)

ǫż = −ϕ(z, d) + yr +m(ψ) (41)

ψ = −yr + k1(z
∗ − z) + θ (42)

The fast subsystem (39)-(40)-(41) is the system which has been analysed above, without integral

action. When ǫ = 0, the fast variables are at their equilibrium (ȳf (θ, η), ȳr(θ, η), z̄(θ)). The slow

subsystem (37)-(38) then reduces to :

η̇ = k3((1− α(l(η)))ϕ(z̄(θ), d)− y
∗
f + l(η)− η) (43)

θ̇ = z∗ − z̄(θ) +m(ψ)− ψ (44)

9



Because z can reach an equilibrium only when m(ψ) = ψ, equation (44) becomes:

θ̇ = z∗ − z̄(θ) =
ϕ(z̄(θ), d) − θ

k1
(45)

and the equilibrium θ = ϕ(z∗, d) of (45) is GES. Now, equation (43) with θ = ϕ(z∗, d) and

z = z̄(ϕ(z∗, d)) = z∗ (see equation (35)) is:

η̇ = k3((1 − α(l(η)))ϕ(z
∗ , d)− y∗f ) + k3(l(η) − η)

This equation has a unique equilibrium η∗ verifying (1 − α(l(η∗)))ϕ(z∗, d) = y∗f and 0 < η∗ <

vmax. It is easily seen that η̇ < 0 when η > η∗ and η̇ > 0 when η < η∗ and consequently that

the equilibrium η∗ is GAS-LES. It follows from Theorem A.1 in [8] that the equilibrium of the

slow subsystem (37)-(38) is GAS-LES.

The proof is completed by applying the singular perturbation analysis of Theorem 3.18 in

[6]. For any compact sets C(θ,η) ⊂ [−k1z
∗,→ [×IR and C(yf ,yr,z) ⊂ IR3+, there exists k

∗
2 > 0 such

that for all 0 < k2 < k∗2 the equilibrium of system (18)-(23) is asymptotically stable and its

region of attraction contains C(θ,η) × C(yf ,yr,z). QED

6 Simulation results

The effectiveness of the proposed control law has been assessed through simulations where the

model (1)-(3) represents the plant with analytical forms for the ϕ and α functions which satisfy

the shape assumptions given in Sections 2 and 5 :

ϕ(z, d) = 20z exp(−
dz

80
)

α(v) = 9(
v

vmax
)3 − 13.5(

v

vmax
)4 + 5.4(

v

vmax
)5

vmax = 200, αmax = 0.9

and the time constants Tf = 0.3 [h], Tr = 0.01 [h].

These functions have been tuned in order to match experimental step responses of an indus-

trial cement grinding circuit (see [4]).

The plugging phenomenon is first illustrated in Fig. 8. The mill is initially running at a

stable steady state z̄ = 78, ȳf = 140, ȳr = 448.4, ū = 140, v̄ = 141.5, d = 1 during the first

two hours. At time t = 2 hours, a small change of clincker hardness (d = 1.33) occurs. This

disturbance produces plugging in the mill, as it can be seen in the figure, with an exponential

unbounded accumulation of the mill load while the two other state variables tend to zero as

expected.

Various aspects of the closed loop behaviour are then illustrated in Fig. 9 with the design

parameters set to k1 = 10, k2 = 10, k3 = 0.2. During the first six hours, the mill is at the

equilibrium with y∗f = 120, z
∗ = 58 and d = 1. A step change is then introduced on the mill

load setpoint (z∗ = 78) at t = 5 hours. This is followed by a step change on the finished product

setpoint (y∗f = 140)at t = 10 hours and by a hardness change (d = 1.33) at t = 15 hours. Note

10
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Figure 8: The plugging phenomenon

that this hardness change is identical to that of Fig. 8 and would destabilize the mill in open

loop. Furthermore, the same hardness change would also produce a destabilization of the LQG

controller described in [1].

The following comments can be drawn from these figures.

1. The mill level is fairly well decoupled from finished product setpoint variations. This is

mainly due to the feedforward compensation present in eq. (14).

2. The rejection of the hardness change disturbance by the mill load controller is very fast,

which indeed prevents the mill from going into plugging. The effect of hardness changes

on the finished product takes a longer time to disappear but it is also less critical since it

does not destabilize the plant.

7 Conclusion

The goal of this paper was essentially to show that it is effectively possible to fully prevent

industrial mills from plugging by state feedback, provided it includes the material holdup. In

[5], the authors had also observed that this state variable is essential. Stability was therefore the

main issue of the paper. Obviously, many other issues are interesting and should be investigated

as for instance the limits of performance imposed by the stability requirement or the optimal

selection of set points for productivity
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Figure 9: Simulation of the closed loop system
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