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Abstract

A gain scheduling based on a one-parameter family of Lyapunov func-

tions is presented for the control of linear systems with a�ne con-

straints. The tuning of the parameter in the control law is assumed

to result from a trade-o� between the size of the state-space domain

where the constraints are satis�ed and the closed-loop performance.

A target controller is chosen for local performance in this family. The

proposed online scheduling is aimed at reaching the target controller

in the fastest possible way, while guaranteeing satisfaction of the con-

straints along closed-loop solutions.



1 Introduction

This paper addresses the feedback control design of linear systems

_x = Ax +Bu x 2 IR

n

; u 2 IR (1.1)

subject to p a�ne constraints

Lx +Mu � N (1.2)

with L 2 IR

p�n

; M 2 IR

p

; N 2 IR

p

.

Even though our primary concern will be the control of linear systems

under input magnitude constraints (as in [3, 4, 7]) or magnitude and rate

constraints ([2, 6]), the proposed method is, in principle, more general.

The realistic assumption that we adopt as a starting point is that the con-

straints (1.2) are not active locally, that is, any smooth stabilizing feedback

satis�es the constraints in a neighborhood of the origin x = 0.

Assumption 1 If A + BK is an Hurwitz matrix, then Lx +MKx � N is

satis�ed for all x in a neighborhood of the origin.

A stronger assumption adopted throughout the paper is that the con-

straints (1.2) can be satis�ed with linear controllers in large regions of the

state-space, at the expense of degraded performance. For instance, this is the

well-known situation encountered when low-gain designs are used to address

magnitude and rate limitations on the actuators.

Choosing an initial controller that ensures a su�ciently large region of

attraction and a �nal controller that ensures good local performance, our ob-

jective is to design a scheduling ensuring the best possible transition between

these two extreme controllers along the closed-loop solutions.

To this end, we will assume that our \initial" and \�nal" controllers

belong to a one-parameter family of linear controllers:

Ju = �K(�)x (1.3)

which, for each � 2 (0; 1] ensures the decrease of a quadratic Lyapunov

function

V (x; �) = x

T

P (�)x (1.4)

along the solutions of (1.1) in the absence of the constraints (1.2) (with K(�)

and P (�) > 0 continuously di�erentiable). The role of the parameter J in

(1.3) will be explained in Section 2. The construction of the one-parameter

family (1.3) and (1.4) is not addressed in general in this paper, but an e�cient
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procedure is proposed in [4] based on a parameterized Riccati inequality.

More speci�c choices will be discussed in the applications section.

As a convention, the value � = 1 will correspond to the target con-

troller that yields good local performance. However, we will be interested

in dealing with initial conditions x

0

that initially force a smaller value of

� in order to satisfy the constraints (1.2). Our gain-scheduling design will

show how to adapt the parameter � along the closed-loop solutions such

as to guarantee the fastest possible transition to the target controller while

satisfying the constraints and ensuring convergence to the origin. This ap-

proach was �rst proposed in [4] in the restricted framework of magnitude

constraints, with a Riccati-based family of Lyapunov functions (1.4) and

controllers u = �B

T

P (�)x. A di�erent family of controllers was recently

proposed in [1], aimed at the online invariance of condition B

T

P (�)x = 0.

The present paper generalizes the results of [4] and [1] in a uni�ed frame-

work. The generalization of magnitude input constraints to arbitrary a�ne

constraints (1.2) is not merely notational. It is exempli�ed in the present pa-

per by a new and successful design scheme for the control of linear systems

under both magnitude and rate limitations on the control variable.

The paper is organized as follows: Section 2 discusses two di�erent choices

of controllers for a �xed family of Lyapunov functions. Section 3 describes

the gain-scheduling algorithm itself. Section 4 addresses the particular case

of input magnitude constraints, summarizing the results of [4] and [1] in the

uni�ed framework of this paper. Section 5 addresses the control of linear

systems with input magnitude and rate constraints and di�erent solutions

are illustrated on the double integrator system.

2 Controller gain

The parameter J is introduced in (1.3) to distinguish between explicit con-

trol laws u = �K(�)x (J = 1) and implicit control laws speci�ed by the

invariance condition K(�)x = 0 (J = 0). The reason why this distinction is

rather important for the proposed gain-scheduling is now brie
y explained.

By assumption, any �xed controller (1.3) will satisfy the constraints (1.2)

in a neighborhood of the origin. A Lyapunov estimate of this region is given

by the minimum level set

�

V (�) where one of the constraints becomes active.

The online requirement V (x; �) �

�

V (�) will guarantee closed-loop conver-

gence to the origin, but it is the main source of conservatism in the adaptation

of �.
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In the case J = 1,

�

V (�) is computed as

�

V (�) = min

x2IR

n

x

T

P (�)x

s.t. 9i : (L

i

�M

i

K(�))x = N

i

(2.5)

In the implicit case J = 0, we assume the relative degree one condition

K(�)B 6= 0, so that, when � is �xed, the invariance condition K(�)x = 0 is

ensured by the control law u = �

K(�)Ax

K(�)B

.

�

V (�) is then computed as

�

V (�) = min

x2IR

n

x

T

P (�)x

s.t.

(

9i : (L

i

�M

i

K(�)A

K(�)B

)x = N

i

K(�)x = 0

(2.6)

Both in the explicit and implicit cases,

�

V (�) results from the minimization of

the quadratic function under a�ne constraints. Presumably, the additional

equality constraint in (2.6) will result in a larger value

�

V (�), thereby reducing

the conservatism of the Lyapunov estimate.

The speci�cation of the controller through the implicit relationK(�)x = 0

may of course pose a problem for the initialization of the control scheme. If

no �

0

exists such that K(�

0

)x

0

= 0, an initial phase of the control algorithm

is necessary to bring the solution in an admissible region of the state-space.

This part of the algorithm is somewhat decoupled from the gain-scheduling

problem addressed here and will not be further discussed in the present paper.

It is discussed in [1] in analogy with a sliding mode control approach where

K(�)x = 0 would be the sliding surface and a \reaching mode" is necessary

for initial conditions that do not belong to the sliding surface. In the sequel,

the gain-scheduling will be called \explicit" in the case J = 1 and \implicit"

in the case J = 0.

3 Gain-scheduling

Consider the feasibility region � determined by

� =

n

(x; �) 2 IR

n

� (0; 1]jx

T

P (�)x �

�

V (�)

o

By de�nition of

�

V (�) the �xed parameter controller Ju+K(�

0

)x = 0 yields

closed-loop convergence without constraint violation for any initial condition

x

0

such that (x

0

; �

0

) 2 �. Our gain-scheduling algorithm will determine

an adaptation rule

_

� � 0 and the accompanying control law such as to

maximize

_

� along the closed-loop solutions and satisfy the constraints (1.2),

while ensuring the closed-loop invariance of �. Invariance of � will imply
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that the adaptation can be stopped at any time, the convergence of x(t) to

the origin being then guaranteed by the preceding argument.

In the explicit case u = �K(�)x, invariance of the feasible region �

guarantees that the constraints are satis�ed along the closed-loop solutions

because the de�nition of

�

V (�) implies that Lx�MK(�)x � N when (x; �) 2

�.

Invariance of � and satisfaction of the constraints is then guaranteed by

the feedback rule:

�(x(t)) = maxf� 2 (0; 1] : V (x; �) �

�

V (�)g (3.7)

or through the adaptation rule

max

_

� s.t.

d

dt

(V (x; �)�

�

V (�))

+

� 0 if V (x; �) =

�

V (�)

(3.8)

The feedback rule (3.7) was proposed by Megretski [4] in the particular case

of the input magnitude constraints while (3.8) will be used for comparison

with the implicit gain-scheduling developed below.

Rewriting the di�erential constraint in (3.8) as

@V

@x

_x+

 

@V

@�

�

 

@

�

V

@�

!

+

!

_

� � 0

we see that, for an initial condition (x

0

; �

0

) satisfying V (x

0

; �

0

) =

�

V (�

0

), the

adaptation rule is uniquely determined as

_

� = �

 

@V

@�

�

 

@

�

V

@�

!

+

!

�1

@V

@x

_x (3.9)

under the monotonicity assumption

@V (x; �)

@�

�

 

@

�

V (�)

@�

!

+

> 0 (3.10)

Assumption (3.10) guarantees a continuous evolution of �(t), in which case

the feedback rule (3.7) is just the integral form of the adaptation rule (3.8)

and expresses that the closed-loop solution (x(t); �(t)) will stay on the bound-

ary of � until the target �

f

= 1 is reached.

It is worthwhile noting that, even in the absence of the monotonicity

condition (3.10), both the feedback rule (3.7) and the adaptation rule (3.8)

guarantee a monotonic evolution of �(t). This is because

_

� = 0 is a feasible

solution of (3.8) at any point of �.
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The feedback rule (3.7) is no longer valid in the case of an implicit

gain-scheduling J = 0. The control law enforcing the invariance condition

K(�)x = 0 is given by

u =

1

K(�)B

 

�K(�)Ax�

@K

@�

x

_

�

!

(3.11)

Because of the additional term

@K

@�

x

_

� in (3.11), the constraints are no longer

guaranteed to be satis�ed when (x; �) 2 �.

To ensure closed-loop invariance of � and satisfaction of the constraints,

the adaptation rule

_

�must now be determined as the solution of the pointwise

maximization

max

_

� s.t.

d

dt

(V (x; �)�

�

V (�)) � 0 if V (x; �) =

�

V (�)

Lx +

M

K(�)B

�

�K(�)Ax�

@K

@�

x

_

�

�

� N

_

� �

_

�

max

(3.12)

It must again be emphasized that the solution

_

� = 0 is feasible at any

point of �, which ensures that the solution of (3.12) is non negative. The

bound

_

�

max

(> 0) is arbitrary, but prevents jumps in the evolution of �(t)

and guarantees that the control (3.11) is well-de�ned.

Under normal circumstances, both the explicit and implicit gain schedul-

ings just described will allow the parameter � to converge in �nite time to the

target �

f

= 1, eventually leading to closed-loop convergence of the solution

x(t) with the �xed controller Ju+K(1)x = 0.

Alternatively, it may happen that � never reaches 1, but converges to

some

�

� � 1. The next theorem guarantees closed-loop convergence of x(t)

to the origin in all cases.

Theorem 1 Consider a family of Lyapunov functions

V (x; �) = x

T

P (�)x � 2 (0; 1] P (�) > 0

whose time derivative, with � �xed, along the solutions of the linear system

_x = Ax + Bu is rendered negative de�nite by the explicit control law u =

�K(�)x or through the invariance condition K(�)x = 0. Then, the feedback

rule (3.7) with

u = �K(�)x (3.13)

guarantees �nite-time convergence of �(t) to 1 and convergence of x(t) to the

origin for any solution with initial condition (x

0

; �

0

) satisfying V (x

0

; �

0

) �

�

V (�

0

). Likewise, the adaptation rule (3.12) with

u =

1

K(�)B

 

�K(�)Ax�

@K

@�

x

_

�

!

(3.14)
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guarantees convergence to the origin of x(t) for any initial condition (x

0

; �

0

)

satisfying V (x

0

; �

0

) �

�

V (�

0

) and K(�

0

)x

0

= 0.

Proof Closed-loop convergence of the solution x(t) with the �xed controller

Ju + K(1)x = 0 is guaranteed in both cases once the parameter reaches 1

and the adaptation is stopped.

Let us suppose that �(t) does not reach the target value �

f

= 1 in �nite

time. �(t) is then an increasing function with an upper bound; therefore,

there exists

�

� � 1 such that �(t) converges to

�

� � 1 as t ! 1. The

derivative of the Lyapunov function V (x; �) is:

_

V (x; �) = x

T

P (�)Ax+ x

T

A

T

P (�)x+ 2x

T

P (�)Bu+ x

T

dP (�)

d�

x

_

�

with u satisfying (3.13) or (3.14). In both cases, one has

_

V (x; �) = �x

T

R(�)x+ x

T

S(�)x

_

� (3.15)

with R(�) > 0. Continuity of S(�) on [�

0

;

�

�] implies that one can �nd � > 0

such that x

T

S(�)x � �V (x; �), which implies

_

V (x; �) � �

_

�V (x; �)

and

V (x(t); �(t)) � V (x

0

; �

0

)e

R

t

0

�

_

�(�)d�

One deduces the upperbound V (x(t); �(t)) � V (x

0

; �

0

)e

�(

�

���

0

)

for all t �

0, which guarantees boundedness of x(t) along the solutions. Let us now

suppose that x(t) does not converge to x = 0 as t ! 1. Integrating (3.15)

yields

V (x(t); �(t)) = �

Z

t

0

x(�)

T

R(�(�))x(�)d� +

Z

t

0

x(�)

T

S(�(�))x(�)

_

�(�)d�

Taking the limit for t ! 1, the �rst term diverges to �1 and the second

term is �nite (because x

T

S(�)x � �V (x

0

; �

0

)e

�(

�

���

0

)

and

R

+1

0

_

�(�)d� =

�

� � �

0

). This is in contradiction with the positiveness of V . We conclude

that x(t) converges to the origin, even when �(t) does not reach 1 in �nite

time.

In the explicit case u = �K(�)x, if �(t) does not reach 1 in �nite time,

the convergence of x(t) to the origin ensures that the solution x(t) enters the

set fxjV (x; 1) �

�

V (1)g in �nite time. Inside this set, the feedback rule (3.7)

ensures � = 1, which is a contradiction. Therefore �(t) reaches 1 in �nite

time in the explicit case.

2
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4 Input magnitude constraint

The construction of a one-parameter family of Lyapunov functions is classical

for linear systems _x = Ax +Bu subject to the input constraint

juj � u

max

Assuming null controllability of the pair (A;B), several authors have pro-

posed the quadratic family V (x; �) = x

T

P (�)x generated from the Riccati

equation

P (�)A+ A

T

P (�)� P (�)BB

T

P (�) = �Q(�); � 2 (0;1) (4.16)

with Q(�) > 0 and

dQ

d�

> 0 (see for instance [3, 7]).

The choice u = �B

T

P (�)x corresponds to an explicit speci�cation of the

control law (J = 1) and leads to the gain-scheduling algorithm proposed by

Megretski in [4]. The solution obtained in [4] is

�

V (�) =

u

2

max

B

T

P (�)B

and

�(x) = maxf� 2 (0; 1] : V (x; �) �

�

V (�)g

which indeed corresponds to the solution of (3.9) thanks to the monotonicity

condition

@P

@�

> 0 and

@

�

V

@�

< 0

The implicit speci�cation of the control law through the invariance con-

dition B

T

P (�)x = 0 (J = 0) leads to the gain-scheduling proposed in our

earlier work [1]. The maximal admissible level set for a given � > 0 is shown

to be

�

V (�) =

u

2

max

(B

T

P (�)B)

3

(B

T

P (�)AP (�)

�1

A

T

P (�)B)(B

T

P (�)B)� (B

T

P (�)AB)

2

For initial conditions that cannot satisfy B

T

P (�)x

0

= 0 for some �, a reach-

ing phase is �rst implemented by the control

u = �sign(B

T

P (�

0

)x)

with �

0

small and �xed, which forces the convergence of the solution in �nite

time to a region of the state space where the constraints B

T

P (�

0

)x = 0 and

V (x; �

0

) �

�

V (�

0

) are satis�ed.

Then the control u and the adaptation rule are directly obtained from

the pointwise optimization problem (3.12).

Comparisons of the two gain-scheduled algorithms on the double and

triple integrators suggest that the implicit gain-scheduling usually results in

faster convergence of the closed-loop solutions [1].
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5 Input magnitude and rate constraints

Adding the rate constraint

j _uj � _u

max

to the input constraint considered in the previous section, we need to con-

struct a one-parameter family of Lyapunov functions for the extended state-

space model

(

_x = Ax +Bu

_u = v

A simple choice, that relies on the construction in the previous section, for

the Lyapunov function is the \backstepping" augmentation [5]

V ((x; u); �) = x

T

P (�)x+ (u+B

T

P (�)x)

2

A family of controllers

Jv = �K(�)

 

x

u

!

must be constructed such that the time derivative

_

V = x

T

PAx+ x

T

A

T

Px+ 2x

T

PBu

+2

�

u+B

T

Px

� �

v +B

T

PAx+B

T

PBu

�

= �x

T

Qx� x

T

PBB

T

Px

+2

�

u+B

T

Px

� �

v +B

T

PAx+B

T

PBu+B

T

Px

�

is rendered negative. This is accomplished with the explicit controller (J = 1)

v = �K(�)

 

x

u

!

= �

�

B

T

PAx+B

T

PBu+B

T

Px+ k(u+B

T

Px)

�

k > 0 (5.17)

or through the implicit speci�cation (J = 0)

u+B

T

P (�)x = 0 (5.18)

which corresponds to K(�)

 

x

u

!

= 0 for the limit case k = +1. For the

explicit gain-scheduling based on (5.17), one obtains

�(x(t)) = maxf� 2 (0; 1] : V (x; �) �

�

V (�)g

9



where

�

V (�) = min

�

�

V

1

(�);

�

V

2

(�)

�

with

�

V

1

corresponding to the minimal level set inside which the magnitude

constraint is satis�ed, and

�

V

2

corresponding to the minimal level set inside

which the rate constraint is satis�ed:

�

V

1

(�) = min

x

V ((x; u

max

); �)

�

V

2

(�) = min

(x;u)

V ((x; u); �)

s.t. K(�)

 

x

u

!

= _u

max

The implicit gain-scheduling (5.18) requires no \reaching phase" if one

assumes that the initial control variable u can be freely initialized at the

value �B

T

P (�)x.

For � > 0 �xed, invariance of the manifold u = �B

T

P (�)x then imposes

v = �B

T

P (�)Ax� B

T

P (�)Bu

= �B

T

P (�)(A� BB

T

P (�))x = G

T

(�)x

so that

�

V

1

and

�

V

2

are now replaced by

�

V

1

(�) = min

(x;u)

x

T

P (�)x+ (u+B

T

P (�)x)

2

s.t.

(

u+B

T

P (�)x = 0

u = u

max

which reduces to

�

V

1

(�) = min

x

x

T

P (�)x

s.t. B

T

P (�)x = u

max

and, similarly

�

V

2

(�) = min

x

x

T

P (�)x

s.t. G

T

(�)x = _u

max

whose solutions are

�

V

1

(�) =

u

2

max

B

T

P (�)B

and

�

V

2

(�) =

v

2

max

G

T

(�)P

�1

(�)G(�)

.

The control v and the adaptation rule

_

� are then obtained from the

pointwise optimization (3.12).

The application of these adaptation schemes are now illustrated on a

simple example.
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Example On Figure 2, we compare the e�ciency of di�erent algorithms

for the control of the double integrator with control rate and amplitude

constraints:

(

_x

1

= x

2

_x

2

= u juj � 1; j _uj � 1

with the extension _u = v. Solving the Riccati equation (4.16) with:

Q(�) =

 

�

4

0

0 �

2

!

results in the Lyapunov matrix:

P (�) =

 

p

3�

3

�

2

�

2

p

3�

!

and the family of low-gain controls is then:

u = �B

T

P (�)x = ��

2

x

1

�

p

3�x

2

� > 0

which is a typical low-gain control for second order systems. We arbitrarily

consider that the target behavior of the closed-loop system is for � = 1.

In this case, the explicit controller (with J = 1 and k = 1) is

v = �B

T

PAx� B

T

PBu� B

T

Px� (B

T

Px+ u)

= ��

2

(x

2

+ 2x

1

)�

p

3�(u+ 2x

2

)� u

and the implicit controller speci�cation (J = 0 and k = +1) yields

u+ �

2

x

1

+

p

3�x

2

= 0

�

V (�) is calculated and drawn on Figure 1 both for the explicit and the

implicit case. We see that, for all � between 0 and 1,

�

V is larger for the

implicit scheduling. This explains why we expect faster convergence with

the implicit gain-scheduling.

This expectation is con�rmed by the the simulations; three controllers

are compared:

(i) a �xed low-gain explicit controller (dotted line curves);

(ii) a gain scheduling based on the explicit controller (dash-dotted line curves);

(iii) a gain-scheduling based on the implicit controller (solid line curves).
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Figure 1: Evolution of

�

V (�) for the explicit (dash-dotted line) and the im-

plicit schedulings (solid line)

For the initial condition x

0

= (�10; 0), we choose u

0

= �B

T

P (�

0

)x

0

= 0:57

(with �

0

, the initial value of � for the implicit algorithm) which ensures that

the implicit scheduling is initialized on the manifold u + B

T

P (�)x = 0. As

expected, we see that the initial � is larger for the implicit gain-scheduling,

and that it increases faster. During the whole simulation,

�

V =

�

V

2

in the

explicit scheduling, which means that the rate constraint is the limiting value.

In the implicit scheduling,

�

V =

�

V

1

until � = 0:81, and

�

V =

�

V

2

afterwards,

that is u

max

is �rst the limiting value, and then _u

max

; this transition is

especially visible in the change of slope at � = 0:81 on Figure 1 and in the

�rst discontinuity in the v graph in Figure 2. The second discontinuity is due

to the interruption of the adaptation which eliminates the B

T

@P

@�

x

_

� term in

the expression of v. Figure 2 shows that the implicit scheduling allows for a

higher peak for x

2

, which accelerates the convergence of x

1

to the origin.

6 Conclusion

In this paper, we have presented a scheduling method that allows for the sat-

isfaction of both stability and performance speci�cations for the control of

linear systems subject to a�ne constraints. The Lyapunov-based scheduling
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Figure 2: Solution of the controlled double integrator with amplitude and rate

constraint on the control variable (u

max

= 1 and v

max

= 1). The application

of a low-gain control law without gain-scheduling (dotted line) is compared

to a control law with explicit (dash-dotted line) and implicit gain-scheduling

(solid line)
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provides online interpolation between an initial controller chosen from stabil-

ity speci�cations and a target controller, chosen for local performance. For

a given family of Lyapunov functions, two schedulings have been compared:

an explicit gain-scheduling based on the control law u = �K(�)x and an

implicit gain scheduling based on the invariance condition K(�)x = 0. The

algorithms have been illustrated in the case of input magnitude and rate

constraints.
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