
Dynamical systems that compute

time-optimal switchings

F. Grognard

y

, R. Sepulchre

z;y

, J. De Dona

z

y

Center for Systems Engineering and Applied Mechanics

Université catholique de Louvain,

Av. G. Lemaitre 4, B1348 Louvain-La-Neuve, Belgium.

z

Institut Monte�ore, B28

Université de Liège,

B4000 Liège Sart-Tilman, Belgium.

email: {grognard},{sepulchre},{dedona}@monte�ore.ulg.ac.be

Submitted to NOLCOS 2001

Abstract

It is well known that the minimum time bounded control of linear

systems is generically bang-bang and that the number of switchings

does not exceed the dimension of the system if the eigenvalues of the

system matrix are real. We propose a synthesis method for such

problems based on dynamical systems that 'compute' the optimal

sequence of switching times.

1 Introduction

This paper addresses the classical synthesis problem of time-optimal control

laws for a single-input linear system _z = Az + bv subject to the bounded

input constraint jvj � 1. We consider the situation of a controllable pair

(A; b) and assume that all the eigenvalues of A are real. In this case, it is

well-known from the maximum principle that the optimal control u(t) that

steers an initial state z(0) = z

0

to a �nal state z(T ) = z

f

in minimum time

is bang-bang, i.e. switches between the extreme values u = +1 and u = �1,

and that the number of switchings is at most n�1, where n is the dimension

of the system (Lee & Markus 1967). In other words, the computation of the

time-optimal control reduces to the computation of the optimal sequence of

switchings times t

0

= 0; t

1

; : : : ; t

n

= T , or equivalently, the optimal sequence

of time-intervals �x

1

= t

1

� t

0

; �x

2

= t

2

� t

1

; : : : ; �x

n

= t

n

� t

n�1

.
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In this paper, we construct continuous time-systems _x = f(x) which

`produce' the optimal sequence �x = (�x

1

; : : : ; �x

n

)

T

, in the sense that they

possess a unique equilibrium at x = �x and that this equilibrium is asymptot-

ically stable. The systems are positive, i.e. they are only de�ned in the open

positive orthant O

+

= fxjx

i

> 0; i = 1; � � � ; ng only and the dynamics leave

this open set invariant. Our main result shows that, under proper time-scale

decomposition, the convergence of solutions to the desired equilibrium x = �x

can be enforced in a rather transparent way, through a sequence of nested

invariant manifolds. This manifold structure connects the convergence prop-

erties of the algorithm to the geometry of the time-optimal control problem

and supports the excellent convergent properties that are observed in simu-

lations, even when the time scales are no longer enforced.

Discrete-time versions of the algorithms investigated in this paper include

two algorithms previously proposed in (Yastrebo� 1969a)-(Yastrebo� 1969b)

and, more recently, in (De Doná 2000). No convergence analysis is proposed

in those references but simulations suggest strong (and in fact global) con-

vergence properties. The continuous-time algorithm is more amenable to a

time-scale decomposition analysis but the geometry displayed in the present

paper is roughly retained in discrete-time versions as well.

It is important to notice that the algorithms discussed in the present

paper are based on a particular heuristics, to be explained in Section 2. In

that respect, they di�er from the realm of gradient-based iterative methods

for the synthesis of time-optimal controllers, that date back almost to the

starting point of the time-optimal control problem itself (Bellman et al. 1956,

Desoer 1959). These gradient methods typically iterate on the adjoint initial

or �nal state together with the time of response (see for instance (Neustadt

1960, Ho 1962, Fadden & Gilbert 1964, Gilbert 1964)). It is known that these

methods are, in general, sensitive to the starting condition (initial guess) and

have poor convergence properties. This is in contrast with the convergence

properties displayed in the present paper.

A `modern' motivation for studying iterative methods for the synthesis

of optimal control laws is in their potential implementation in a receding-

horizon fashion, so as to make corrections to the control policy when the plant

is a�ected by inaccuracies or by external disturbances. With the current

computing power and with the maturity reached by the theory of receding-

horizon control (Mayne et al. 2000), there is a renewed interest in e�cient

algorithms for the synthesis of optimal control laws.

The remainder of the paper is organized as follows. In Section 2 we

provide some background and the heuristics of the iterative methods dis-

cussed in this paper. In Section 3 we analyze the convergence properties

of a particular continuous-time version of the algorithm based on a time-

scale decomposition of the n-dimensional system into n scalar subsystems.

Concluding remarks are presented in Section 4.
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2 A heuristics for the iterative computation of op-

timal switching times

Consider the linear system

_z = Az + bv; (1)

where z 2 IR

n

is the state and v 2 IR is the input which is constrained to

jvj � 1. We assume that the system is normal, i.e., that the pair (A; b) is

controllable (see, e.g., Lee & Markus 1967). We further assume that the

eigenvalues of matrix A are real. The problem is to �nd the control function

v

0

(t) that steers the trajectory from a speci�ed initial state z(0) = z

0

to a

speci�ed �nal state here chosen to be the origin z(t

f

) = z

f

= 0 in mini-

mum time t

0

f

. We assume that z

0

is in the null-controllable set and not on a

switching surface of the time-optimal controller. From the maximum princi-

ple it can be concluded (Lee & Markus 1967) that the time-optimal control

is `bang-bang' (i.e., piecewise constant, with each component assuming only

the values �1 ) and it has exactly n�1 switchings; and, any `bang-bang' pol-

icy with at most n�1 switchings is optimal in the sense that whatever state

the plant reaches using such a control, it does so in optimal time. Further

references for these properties can be found in (Sontag 1998).

As a consequence of these properties, we can restrict our search for the

optimal control among the steering controls that are de�ned by a sequence

of n time intervals x

i

= t

i

� t

i�1

and the corresponding sequence of constant

control values u

i

. This class of piecewise constant controls (see Figure 1) is

thus characterized by two vectors, namely the vector of time intervals

x =

0

@

x

1

: : :

x

n

1

A

and the vector of control values

u =

0

@

u

1

: : :

u

n

1

A

From the solution of the linear system for t � t

0

= 0

z(t) = e

A(t)

�

z(0) +

Z

t

0

e

�A�

bv(�)d�

�

; (2)

we conclude that a control de�ned by the pair (x; u) will steer z

0

to z = 0 if

�(x)u = �z

0

(3)
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Figure 1: Control sequence.

where the i-th column of the matrix � is

�(:; i)(x) ,

Z

t

i

t

i�1

e

�A�

bd� =

Z

P

i

k=0

x

k

P

i�1

k=0

x

k

e

�A�

bd� (4)

The optimal vector �x is the unique solution of (3) when u = �u is the vector

of optimal control values, that is j�u

i

j = 1 and u

i

u

i+1

= �1 for i = 1; : : : ; n�

1. The equation �(x) �u = �z

0

is the nonlinear equation to be solved to

determine the optimal control. In contrast, (3) is linear in u and is easily

solved for a given x. Because the pair (A; b) is controllable, a unique solution

u(x) exists for any x in the open positive orthant. A natural class of iterative

methods thus consists in updating the time intervals vector x such as to

enforce convergence of the corresponding control vector u(x) to a bang-bang

sequence of magnitude ju

i

j = 1.

The heuristics considered in (Yastrebo� 1969a)�(Yastrebo� 1969b) and

more recently in (De Doná 2000) is a 'decentralized' adaptation of the vector

x: if ju

i

(x)j is larger than one, decrease the length of the corresponding

time interval x

i

; if ju

i

(x)j is smaller than one, increase the length of the

corresponding time interval x

i

.

In continuous-time, this heuristics yields the decentralized adaptation

_x

i

= f

i

(ju

i

(x)j � 1)x

i

; i = 1; : : : ; n (5)

where f

i

should be a (smooth) scalar function in the �rst and third quadrant

and only vanish at zero, and where x

i

is put in factor of f

i

in order to

guarantee the positive invariance of the open positive orthant. Under these

conditions the unique equilibrium of (5) in O

+

is �x, the vector of optimal

time intervals.

In discrete-time, the same heuristics yields the decentralized adaptation

x

i

(k + 1) = x

i

(k) + f

i

(ju

i

(x(k))j � 1)x

i

(k); i = 1; : : : ; n (6)
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which is a Euler discretization of (5).

In (Yastrebo� 1969b), f

i

is chosen as

f

i

(ju

i

j � 1) = q ln ju

i

j if ju

i

(k)j � 1

�q ln (2� ju

i

j) if ju

i

(k)j < 1

(7)

where q > 0 is a constant parameter. In (De Doná 2000), f

i

is chosen as

f

i

(ju

i

j � 1) = ju

i

j

p

� 1, with 0 < p < 1 a constant parameter. Both algo-

rithms were derived independently but it is apparent that they are closely

related. Simulation studies in (De Doná 2000) show that both algorithms

perform similarly, provided that the respective tuning parameters p and q,

are properly chosen. Several examples are included in (Yastrebo� 1969a)�

(Yastrebo� 1969b), in which the algorithm is compared with other existing

methods (Smith 1961, Fadden & Gilbert 1964, Fadden 1965). Extensive sim-

ulations suggest that both the continuous-time algorithm (5) and its discrete-

time version (6) converge (globally) to the time-optimal solution and that

the convergence properties are not very sensitive to the details of the func-

tion f

i

, except for its slope at the origin (a higher slope seems to be favorable

to the convergence).

3 An algorithm analysis based on time scale sepa-

ration

The main result of the present paper is to show that the phase portrait of the

continuous-time algorithm (5) becomes rather transparent in the simpli�ed

situation where f

i

is linear, yielding the algorithm:

_x

i

= p

i

(ju

i

(x)j � 1)x

i

; i 2 f1; � � � ; ng; x

i

(0) > 0 (8)

With p

n

>> p

n�1

>> � � � >> p

1

> 0 positive constants, a time-scale sepa-

ration can be enforced between the di�erent x

i

dynamics, as illustrated by

Figure 3. In the fastest time-scale �

n

=

t

p

n

, the state x

n

converges to the

manifold M

n

de�ned by u

n

= �u

n

. In this manifold, the fastest time-scale is

�

n�1

=

t

p

n�1

, and the state x

n�1

converges to the manifoldM

n�1

de�ned by

u

n�1

= �u

n�1

and u

n

= �u

n

. Reducing the dynamics n times eventually leads

to the convergence of x

1

in the slowest time-scale �

1

=

t

p

1

to the manifold

M

1

de�ned by u = �u, which reduces to the unique equilibrium point x = �x,

as a consequence of the uniqueness of the optimal solution.

Due to space constraints, we will not provide all details of the claim. The

crucial result is to establish that the manifolds M

i

(i = n; � � � ; 1) de�ne a

sequence of nested manifolds of decreasing dimension i�1 in a neighborhood

of �x.

5



0

2

4

6

8

2

4

6

8

0

1

2

3

4

5

6

7

x
1

x
2

x 3

0

2

4

6

8

2

4

6

8

0

1

2

3

4

5

6

7

x
1

x
2

x 3

Figure 2: Simulations of (8) for the triple integrator

...

y

= u. The initial
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Theorem 3.1 Let u = u(x) de�ned by the steering equation �(x)u = �z

0

and x = �x the solution of �(x)u = �z

0

for u = �u. Then there exists an open

neighborhood 
 of �x such that the manifold M

l

de�ned by u

i

(x) = �u

i

, for

i 2 fl; � � � ; ng satisfy:

i dim(M

l

) = l � 1

ii f�xg =M

1

�M

2

� � � � � M

n�1

�M

n

� O

+

iii 8x 2 
, M

l

has the explicit representation

0

B

@

x

l

.

.

.

x

n

1

C

A

= F

l

(x

1

; � � � ; x

l�1

) (9)

De�ne the matrix E of the partial derivatives of juj

e

ij

=

@u

i

@x

j

sign(u

i

) for i; j 2 f1; � � � ; ng

and E

l

, with 1 � l � n, as the (n-l+1)�(n-l+1) block of E made of the

elements e

ij

for i; j; 2 fl; � � � ; ng. Then the proof of Theorem 3.1 follows

from the implicit function theorem provided that the matrix E

l

has full

rank at x = �x for l 2 f1; � � � ; ng. In fact, we can prove the following

stronger property, which will also be used to establish the attractivity of

each manifold.

Theorem 3.2 For each l 2 f1; � � � ; ng, and for each x such that (u

l

; � � � ; u

n

) =

(�u

l

; � � � ; �u

n

), the matrix E

l

has full rank and

det(E

l

) = (�1)

n�l+1

jdet(E

l

)j

The proof of Theorem 3.2 relies on linear operations on lines and columns

of E

l

that leave the sign of the determinant unchanged but transforms the

matrix into a triangular matrix with negative elements on its diagonal.

Instrumental to these manipulations (see Appendix) are the following

two lemmas, the �rst of which uses the fact that all eigenvalues of A are

real, and the second of which rests on optimality principles.
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Lemma 3.1 For each l 2 f1; � � � ; ng, and for each x such that u

i

u

i+1

< 0

for i 2 fl; � � � ; n � 1g, each line of E

l

has its minimum element on the

diagonal. Inside a given line, the elements e

ik

increase with k while staying

negative for k � i, and they decrease with k decreasing k � i. In other words,

the elements of E

l

satisfy:

� e

ik

< 0 for k 2 fi; � � � ; ng;

� e

ik

< e

ik+1

for k 2 fi+ 1; � � � ; ng

� e

ik

> e

ik+1

for k 2 fl; � � � ; i� 1g

Proof Let i � l. In order to �nd e

ik

=

@u

i

@x

k

sign(u

i

), we di�erentiate (3)

with respect to x

k

, to obtain:

@�

@x

k

u+�

@u

@x

k

= 0 (10)

Using the expressions:

@�(:;j)

@x

k

= 0 if k > j

= e

�At

k

b if k = j

= �A�(:; j) if k < j

(10) becomes:

�

@u

@x

k

= �e

�At

k

bu

k

+

n

X

j=k+1

A�(:; j)u

j

(11)

Premultipliying both sides of (11) by �

�1

(i; :), we obtain:

@u

i

@x

k

= ��

�1

(i; :)e

�At

k

bu

k

+

n

X

j=k+1

�

�1

(i; :)A�(:; j)u

j

The scalar function:

f

i

(t) = �

�1

(i; :)

Z

t

0

e

�A�

bd�

satis�es

f

i

(0) = 0

f

i

(t

j

) =

P

j

m=1

�

�1

(i; :)�(:;m) = 0 for j < i

f

i

(t

j

) =

P

j

m=1

�

�1

(i; :)�(:;m) = 1 for j � i

It then follows that the derivative g

i

(t) = f

0

i

(t) = �

�1

(i; :)e

�At

b has at

least i � 1 zeros between t = 0 and t = t

i�1

, and n � i zeros between

8



t = t

i

and t = t

n

. Because the eigenvalues of A are real, the function

g

i

(t) = �

�1

(i; :)e

�At

b has at most n� 1 zeros (Lee & Markus 1967), which

means that there are no other zeros but the ones exhibited here. A �rst

consequence of this, is that g

i

(t) has no zero between t = t

i�1

and t = t

i

. A

second one is that g

i

(t

j

) 6= 0, and that g

i

(t

j

) alternate sign for j � i� 1 and

j � i, with g

i

(t

i�1

) and g

i

(t

i

) being both positive. These conclusions can be

summed up as:

g

i

(t

j

) = jg

i

(t

j

)j(�1)

j�i

if j � i

= jg

i

(t

j

)j(�1)

i�j�1

if j < i

By assumption, the signs of the controls u

j

alternate for j 2 fl; � � � ; ng,

which means that

u

j

= ju

j

jsign(u

i

)(�1)

j�i

for j 2 fl; � � � ; ng

Moreover

�

�1

(i; :)A�(:; j)u

j

= �

�1

(i; :)A

R

t

j

t

j�1

e

�A�

bd�u

j

= �(�

�1

(i; :)e

�At

j

b� �

�1

(i; :)e

�At

j�1

b)

= �(g

i

(t

j

)� g

i

(t

j�1

))u

j

which gives, if n � k � i � l:

@u

i

@x

k

= �g

i

(t

k

)u

k

+

P

n

j=k+1

�

�1

(i; :)A�(:; j)u

j

= �g

i

(t

k

)u

k

�

P

n

j=k+1

(g

i

(t

j

)� g

i

(t

j�1

))u

j

= �jg

i

(t

k

)j(�1)

k�i

ju

k

jsign(u

i

)(�1)

k�i

�

P

n

j=k+1

�

jg

i

(t

j

)j(�1)

j�i

� jg

i

(t

j�1

)j(�1)

j�i�1

�

ju

j

jsign(u

i

)(�1)

j�i

= �jg

i

(t

k

)u

k

jsign(u

i

)�

P

n

j=k+1

(jg

i

(t

j

)u

j

jsign(u

i

) + jg

i

(t

j�1

)u

j

jsign(u

i

))

It clearly appears that the sign of all the terms of this sum is opposite to the

sign of u

i

, which gives:

@u

i

@x

k

sign(u

i

) = e

ik

< 0 for n � k � i � l

Moreover, we can see that

@u

i

@x

k

=

@u

i

@x

k+1

� jg

i

(t

k

)u

k

jsign(u

i

)� jg

i

(t

k

)u

k+1

jsign(u

i

)

and, multiplying both sides by sign(u

i

):

e

ik

< e

ik+1

for n � k � i � l

When l � k � i� 1,

@u

i

@x

k

=

@u

i

@x

k+1

� g

i

(t

k

)u

k

+ g

i

(t

k

)u

k+1

=

@u

i

@x

k+1

� jg

i

(t

k

)j(�1)

i�k�1

ju

k

jsign(u

i

)(�1)

i�k

+jg

i

(t

k

)j(�1)

i�k�1

ju

k+1

jsign(u

i

)(�1)

i�k�1

=

@u

i

@x

k+1

+ jg

i

(t

k

)j(ju

k

j+ ju

k+1

j)sign(u

i

)

9



and, multiplying both sides by sign(u

i

):

e

ik

> e

ik+1

2

Lemma 3.2 For each l 2 f1; � � � ; ng, and for each x

0

such that (u

l

; � � � ; u

n

) =

(�u

l

; � � � ; �u

n

), there exists a positive vector �

l

� 0 such that

E

T

l

�

l

=

0

B

B

B

@

�1

�1

.

.

.

�1

1

C

C

C

A

(12)

Proof: The control law de�ned by the sequence of time intervals (x

0

n

; � � � ; x

0

l

)

and control values (�u

n

; � � � ; �u

l

) is the time-optimal solution of the reversed

time system

_z = �Az � bv jvj � 1

with initial condition z(0) = 0 and as target set the a�ne subspace

� = e

At

l�1

z

0

+ spanfe

At

l�1

�(:; 1); � � � ; e

At

l�1

�(:; l � 1)g

This follows from the application of the maximum principle (Pontryagin et

al. 1962).

Variations of (x

0

l

; � � � ; x

0

n

), with �xed (x

1

; � � � ; x

l�1

) give other solution

to the control of the unconstrained reversed time system from z = 0 to �.

By optimality of x

0

, a decrease of the total time

P

n

j=l

x

j

implies a constraint

violation for at least one of the u

k

(k � l).

As a consequence, any control variation @u

k

that satis�es sign(u

k

)@u

k

�

0 for k 2 fl; � � � ; ng will impose a time variation

P

n

j=l

x

j

� 0. This means

that M = 0 is the optimal solution of

M = min

P

n

j=q

@x

j

s:t: E

l

@x � 0

(13)

where we have used the relation @u = E

l

@x (with @u = (@u

l

; � � � ; @u

n

)

T

,

and @x = (@x

l

; � � � ; @x

n

)

T

). The dual formulation of (13) is

M = max 0

s:t: E

T

l

�

l

=

0

B

B

B

@

�1

�1

.

.

.

�1

1

C

C

C

A

�

l

� 0

(14)
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which proves the existence of �

l

such that (12) holds. 2

We now return to the behavior of solutions of (8), assuming n di�erent

time scales �

i

= �

i

t =

t

p

i

. A singular perturbation argument ensures the

existence of n nested invariant manifold M

�

l

l

(l 2 f1; � � � ; ng), each M

�

l

l

being in a O�

l

neighborhood of the manifold M

l

.

Solutions in O

+

sequentially converge to M

�

n

n

, then to M

�

n�1

n�1

, up to the

convergence to the equilibrium �x =M

1

. For an initial condition x 2 M

�

l+1

l+1

,

the convergence to M

�

l

l

is dictated by the scalar equation

_x

l

= p

l

(ju

l

j � 1)x

l

which has an isolated equilibrium ~x determined by ju

l

j = 1. Attractivity of

this equilibrium is ensured if

d _x

l

dx

l

= p

l

x

l

dju

l

j

dx

l

< 0

An explicit calculation shows that

dju

l

j

dx

l

=

det(E

l

)

det(E

l+1

)

< 0

which is negative by Theorem 3.2.

4 Conclusions

In this paper we have presented a numerical algorithm for the computation of

the time-optimal control solution for linear systems with input constraints.

The algorithms considered in this paper include a continuous-time version

that is amenable to convergence analysis and two discrete-time analogs that

have been previously proposed in the literature without a proof of conver-

gence. The reported time-scale analysis of the continuous-time algorithm

constitutes the main contribution of this paper.

Appendix

Proof of Theorem 3.2 De�ning the vector �

l

given in Lemma 3.2 as

�

l

= (�

l

l

; � � � ; �

l

n

)

T

, we �rst show that �

l

l

> 0. By contradiction, if �

l

l

= 0,

we have:

n

X

j=l+1

�

l

j

e

jl

=

n

X

j=l+1

�

l

j

e

jl+1

= �1

which is not possible because �

l

j

� 0 and e

jl

> e

jl+1

for j 2 fl + 1; � � � ; ng

(see Lemma 3.1).
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Denote the lines of E

l

by E

l

(l; :); � � � ; E

l

(n; :). The sign of the determi-

nant of E

l

is unchanged when E

l

(l; :) is replaced by

P

n

j=l

�

l

j

E

l

(j; :) because

the determinant is multiplied by �

l

l

. The �rst line of E

l

is then replaced by

(�1; � � � ;�1).

We iterate this operation on the submatrices E

i

of E

l

(i>l): for instance,

we replace E

i

(i; :) by

P

n

j=i

�

i

j

E

i

(j; :) in order to have (�1; � � � ;�1) on the

�rst line. Applying the same transformation to E

l

(i; :) yields

n

X

j=i

�

i

j

E

l

(j; :) = (�;�; � � � ;�; f

i;i�1

;�1;�1; � � � ;�1)

We note that f

i;i�1

=

P

n

j=i

�

i

j

e

ji�1

>

P

n

j=i

�

i

j

e

ji

= �1, where the inequality

comes from Lemma 3.1. Ultimately E

l

is transformed into:

F

l

=

0

B

B

B

B

B

B

B

@

�1 �1 � � � �1 �1 �1

f

l+1;l

�1 � � � �1 �1 �1

� f

l+2;l+1

� � � �1 �1 �1

.

.

.

.

.

.

.

.

.

� � � � � f

n�1;n�2

�1 �1

e

n;l

e

n;l+1

� � � e

n;n�2

e

n;n�1

e

n;n

1

C

C

C

C

C

C

C

A

where

det(F

l

) = det(E

l

)

n

Y

j=l

�

j

j

Finally, replacing F

l

:;i

by F

l

:;i

�F

l

:;i�1

for i = n; � � � ; l+1, we do not change

the determinant and the matrix becomes:

G

l

=

0

B

B

B

B

B

B

B

@

�1 0 � � � 0 0 0

� �1� f

l+1;l

� � � 0 0 0

� � � � � 0 0 0

.

.

.

.

.

.

.

.

.

� � � � � � �1� f

n�1;n�2

0

� � � � � � � e

n;n

� e

n;n�1

1

C

C

C

C

C

C

C

A

whose diagonal elements are all negative. Hence the result is proven.

2
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