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Deadlock detection in linear recursive programs”*

Elena Giachino and Cosimo Laneve

Dept. of Computer Science and Egineering, Universita di Bologna — INRIA FOCUS
{giachino,laneve}@cs.unibo.it

Abstract. Deadlock detection in recursive programs that admit dy-
namic resource creation is extremely complex and solutions either give
imprecise answers or do not scale.

We define an algorithm for detecting deadlocks of linear recursive pro-
grams of a basic model. The theory that underpins the algorithm is a
generalization of the theory of permutations of names to so-called muta-
tions, which transform tuples by introducing duplicates and fresh names.
Our algorithm realizes the back-end of deadlock analyzers for object-
oriented programming languages, once the association programs,/basic-
model-programs has been defined as front-end.

1 Introduction

Modern systems are designed to support a high degree of parallelism by en-
suring that as many system components as possible are operating concurrently.
Deadlock represents an insidious and recurring threat when such systems also
exhibit a high degree of resource and data sharing. In these systems, deadlocks
arise as a consequence of exclusive resource access and circular wait for accessing
resources. A standard example is when two processes are exclusively holding a
different resource and are requesting access to the resource held by the other. In
other words, the correct termination of each of the two process activities depends
on the termination of the other. Since there is a circular dependency, termination
is not possible.

The techniques for detecting deadlocks build graphs of dependencies (x,y)
between resources, meaning that the release of a resource referenced by x de-
pends on the release of the resource referenced by y. The absence of cycles in the
graphs entails deadlock freedom. The difficulties arise in the presence of infinite
(mutual) recursion: consider, for instance, systems that create an unbounded
number of processes such as server applications. In such systems, process inter-
action becomes complex and either hard to predict or hard to be detected during
testing and, even when possible, it can be difficult to reproduce deadlocks and
find their causes. In these cases, the existing deadlock detection tools, in order
to ensure termination, typically lean on finite models that are extracted from
the dependency graphs.

* Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized
Services.



The most powerful deadlock analyzer we are aware of is TYPICAL, a tool
developed for pi-calculus by Kobayashi [20, 18,16, 19]. This tool uses a clever
technique for deriving inter-channel dependency information and is able to deal
with several recursive behaviors and the creation of new channels without using
any pre-defined order of channel names. Nevertheless, since TYPICAL is based on
an inference system, there are recursive behaviors that escape its accuracy. For
instance, it returns false positives when recursion is mixed up with delegation. To
illustrate the issue we consider the following deadlock-free pi-calculus factorial
program

*factorial?(na,(r,s)).
if n=0 then r?m. s!m else new t in
(r?m. t'!'(m*n)) | factorial!(m-1,(t,s))

In this code, factorial returns the value (on the channel s) by delegating this
task to the recursive invocation, if any. In particular, the initial invocation of
factorial, which isr!1 | factorial! (m, (r,s)), performs a synchronization
between r!1 and the input r?m in the continuation of factorial?(n, (r,s)).
In turn, this may delegate the computation of the factorial to a subsequent
synchronization on a new channel t. TYPICAL signals a deadlock on the two
inputs r?m because it fails in connecting the output t! (m*n) with them.

The technique we develop in this paper allows us to demonstrate the deadlock
freedom of programs like the one above.

To ease program reasoning, our technique relies on an abstraction process
that extracts the dependency constraints in programs

— by dropping primitive data types and values;

— by highlighting dependencies between pi-calculus actions;

— by overapproximating statement behaviors, namely collecting the dependen-
cies and the invocations in the two branches of the conditional (the set union
operation is modeled by &).

This abstraction process is currently performed by a formal inference system that
does not target pi-calculus, but it is defined for a JAvA-like programming lan-
guage, called ABS [17], see Section 6. Here, pi-calculus has been considered for ex-
pository purposes. The ABS program corresponding to the pi-calculus factorial
may be downloaded from [15]; readers that are familiar with JAVA may find the
code in the Appendix A. As a consequence of the abstraction operation we get
the function

factorial(r,s) = (r,s)&(r, t)&factorial(t, s)

where (r, s) shows the dependency between the actions r?m and s!m and (r,)
the one between r?m and t! (m*n). The semantics of the abstract factorial is
defined operationally by unfolding the recursive invocations. In particular, the
unfolding of factorial(r,s) yields the sequence of abstract states (free names
in the definition of factorial are replaced by fresh names in the unfoldings)



factorial(r,s) — (r, s)&(r, t)&factorial(t, s)
—> (1, 8)&(r, t)&(t, 8)&(t, u)&factorial(u, s)
— (1, 8)&(r, ) &(t, 8)&(t, u) &(u, 5) &(u, v)
&factorlal(v, s)

—

We demonstrate that the abstract factorial (and, therefore, the foregoing
pi-calculus code) never manifests a circularity by using a model checking tech-
nique. This despite the fact that the model of factorial has infinite states.
In particular, we are able to decide the deadlock freedom by analyzing finitely
many states — precisely three — of factorial.

Our solution. We introduce a basic recursive model, called lam programs — lam
is an acronym for deadLock Analysis Model — that are collections of function
definitions and a main term to evaluate. For example,

( factorial(r,s) = (r,s)&(r, t)&factorial(t, s) ,factorial(r,s) )
defines factorial and the main term factorial(r,s). Because lam programs
feature recursion and dynamic name creation — e.g. the free name ¢ in the defi-

nition of factorial — the model is not finite state (see Section 3).
In this work we address the

Question 1. Is it decidable whether the computations of a lam program will ever
produce a circularity?

and the main contribution is the positive answer when programs are linear re-
cursive.

To begin the description of our solution, we notice that, if lam programs are
non-recursive then detecting circularities is as simple as unfolding the invocations
in the main term. In general, as in case of factorial, the unfolding may not
terminate. Nevertheless, the following two conditions may ease our answer:

(i) the functions in the program are linear recursive, that is (mutual) recursions
have at most one recursive invocation — such as factorial;

(ii) function invocations do not show duplicate arguments and function defini-
tions do not have free names.

When (i) and (ii) hold, as in the program

(f(l‘7 Y, Z) = (.23, y)&f(yv Zy .Z‘), f(u’ v, w)) )
recursive functions may be considered as permutations of names — technically
we define a notion of associated (per)mutation — and the corresponding the-
ory [8] guarantees that, by repeatedly applying a same permutation to a tuple of
names, at some point, one obtains the initial tuple. This point, which is known
as the order of the permutation, allows one to define the following algorithm for
Question 1:

1. compute the order of the permutation associated to the function in the lam
and
2. correspondingly unfold the term to evaluate.



For example, the permutation of £ has order 3. Therefore, it is possible to stop
the evaluation of £ after the third unfolding (at the state (u,v)& (v, w)&(w,u)
& f(u,v,w)) because every dependency pair produced afterwards will belong to
the relation (u, v)&(v, w)&(w, u).

When the constraint (ii) is dropped, as in factorial, the answer to Ques-
tion 1 is not simple anymore. However, the above analogy with permutations
has been a source of inspiration for us.

(8(zo, 21,22, 23, T4, T5, T6) = (T3, T1)&(T0, T8) & (T8, T7) &8 (%2, T0, T1, T5, Te, L7, Ts),
g(zo, T1, T2, T3, T4, T5, T6) )

g(wo, 21, 22, T3, 24, T5, T¢)

(23, 21)&(@0, x8) & (3, 27) & g(x2, o, 1, T5, Tg, T7, Ts)
(25, 20)&(z2, 10) & (210, T9) & g(x1, T2, To, T7, T, Tg, T10)
(w7, 22)&(x1, 212) &(T12, T11) & g(wo, 1, T2, 9, 10, T11, T12)
order :>
(w9, 1) &(0, T14)&(T14, 213) & g(x2, w0, 1, 211, T12, T13, T14)
(w11, 20)&(22, 216) & (716, T15) & g(z1, 2, 20, T13, 14, T15, T16)

Fig. 1. A lam program and its unfolding

Consider the main term factorial(r,s). Its evaluation will never display
factorial(r,s) twice, as well as any other invocation in the states, because
the first argument of the recursive invocation is free. Nevertheless, we notice
that, from the second state — namely (r, s)&(r,t)&factorial(t,s) — onwards,
the invocations of factorial are not identical, but may be identified by a map
that

— associates names created in the last evaluation step to past names,
— is the identity on other names.

The definition of this map, called flashback, requires that the transformation as-
sociated to a lam function, called mutation, also records the name creation.
In fact, the theory of mutations allows us to map factorial(¢,s) back to
factorial(r,s) by recording that ¢ has been created after r, e.g. r<t.

We generalize the result about permutation orders (Section 2):

by repeatedly applying a same mutation to a tuple of names, at some
point we obtain a tuple that is identical, up-to a flashback, to a tuple in
the past.

As for permutations, this point is the order of the mutation, which (we prove)
it is possible to compute in similar ways.



However, unfolding a function as many times as the order of the associated
mutation may not be sufficient for displaying circularities. This is unsurprising
because the arguments about mutations and flashbacks focus on function invo-
cations and do not account for dependencies. In the case of lams where (i) and
(ii) hold, these arguments were sufficient because permutations reproduce the
same dependencies of past invocations. In the case of mutations, this is not true
anymore as displayed by the function g in Figure 1. This function has order 3
and the first three unfoldings of g(xg,x1,x2, x3, x4, T5,x¢) are those above the
horizontal line. While there is a flashback from g(xg,x1,x2, 9, 10, 11, T12) tO
g(xo, 1, X2, X3, T4, T5, Tg), the pairs produced up-to the third unfolding

(23, 1) &(T0, 28) &(T8, ¥7) &(T5, T0) &(T2, T10) &(T10, T9)

&7, m2)&(1, ¥12) & (12, 711)
do not manifest any circularity. Yet, two additional unfoldings (displayed below
the horizontal line of Figure 1), show the circularity

(@0, x8) & (8, 27)&(27, 2)&(X2, Z10) & (T10, T9)
&(xg, x1)&(21, 12)&(x12, T11) & (211, Z0) -

L L

9,

order |::> i

flashback
circularity T %
saturated state
= 2X orderl::>

@

order I::>

circularity flashback
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= 2Xorder|:>

(b)

Fig. 2. Flashbacks of circularities

In Section 4 we prove that a sufficient condition for deciding whether a lam
program as in Figure 1 will ever produce a circularity is to unfold the function g
up-to two times the order of the associated mutation — this state will be called
saturated. If no circularity is manifested in the saturated state then the lam is
“circularity-free”. This supplement of evaluation is due to the existence of two
alternative ways for creating circularities. A first way is when the circularity is
given by the dependencies produced by the unfoldings from the order to the
saturated state. Then, our theory guarantees that the circularity is also present
in the unfolding of g till the order — see Figure 2.a. A second way is when the



dependencies of the circularity are produced by (1) the unfolding till the order
and by (2) the unfolding from the order till the saturated state — these are the
so-called crossover circularities — see Figure 2.b. Our theory allows us to map
dependencies of the evaluation (2) to those of the evaluation (1) and the flashback
may break the circularity — in this case, the evaluation till the saturated state
is necessary to collect enough informations. Other ways for creating circularities
are excluded. The intuition behind this fact is that the behavior of the function
(the dependencies) repeats itself following the same pattern every order-wise
unfolding. Thus it is not possible to reproduce a circularity that crosses more
than one order without having already a shorter one. The algorithm for detecting
circularities in linear recursive lam programs is detailed in Section 5, together
with a discussion about its computational cost.

We have prototyped our algorithm [15]. In particular, the prototype (1) uses
a (standard but not straightforward) inference system that we developed for
deriving behavioral types with dependency informations out of ABS programs [13]
and (2) has an add-on translationg these behavioral types into lams. We have
been able to verify an industrial case study developed by SDL Fredhoppper —
more than 2600 lines of code — in 31 seconds. Details about our prototype and a
comparison with other deadlock analysis tools can be found in Section 6. There
is no space in this contribution to discuss the inference system: the interested
readers are referred to [13].

2 Generalizing permutations: mutations and flashbacks

Natural numbers are ranged over by a, b, i, j, m, n, ..., possibly indexed. Let V
be an infinite set of names, ranged over by x,y, z,- - -. We will use partial order
relations on names — relations that are reflexive, antisymmetric, and transitive —,
ranged over by V,V/ [, .... Let z € V if, for some y, either (z,y) € V or (y,x) € V.
Let also var(V) = {z | z € V}. For notational convenience, we write ¥ when we
refer to a list of names x1, ..., x,.

Let VP 2<Z, with T € V and Z ¢ V, be the least partial order containing the
set VU {(y,2) | x € T and (x,y) € V and 2z € Z}. That is, Z become mazimal
names in V@ T<Z. For example,

- {(.’L‘,JJ)} Dr<z = {(‘T’ z), ('757 z), (Z’ Z)}7

— if V= {(z,y), (@',y')} (the reflexive pairs are omitted) then V@ y<z is the
reflexive and transitive closure of {(z,y), (¢, y'), (y,2)};

—if V= {(z,y),(z,y')} (the reflexive pairs are omitted) then V@ z<z is the
reflexive and transitive closure of {(z,v), (z,v'), (y,2), (v, 2)}.

Let z <y eV be (x,y) e V.

Definition 1. A mutation of a tuple of names, denoted (a1, - ,a, ) where 1 <
ai, -+ ,ay, < 2 X n, transforms a pair <V, (1, ,xn)> into <V', (), ,x'n)>
as follows. Let {by,--- ,bp} = {a1, - ,an,}\{1,2,--- ,n} and let zp,,--- , 2, be k
pairwise different fresh names. [That is names not occurring either in xy,- - , Ty

orin V.] Then



—if 1 <a; <n then x} = x4,;
—if a; > n then z} = z,,;
/
-V =V®ux1, -, Tn<?iy, ", i

The mutation (a1, ,a,) of <V, (zq,--- 7asn)> s written <V, (1, ,xn)>

(a1, 0n) <\/’, (2, -~ ,xib)> and the label (ay, -+ ,ay ) is omitted when the mu-
tation is clear from the context. Given a mutation p = (a1,--- ,a,), we define

the application of u to an index i, 1 <i < n, as p(i) = a;.

Permutations are mutations (ay, - - - ,a, ) where the elements are pairwise dif-
ferent and belong to the set {1,2,--- ,n} (e.g. (2,3,5,4,1)). In this case the par-
tial order V never changes and therefore it is useless. Actually, our terminology
and statements below are inspired by the corresponding ones for permutations. A
mutation differs from a permutation because it can exhibit repeated elements, or
even new elements (identified by n + 1 < a; < 2 x n, for some ;). For example,
by successively applying the mutation (2,3,6,1,1) to <\/, (z1, 22,23, X4, a:5)>,
with V = {(z1,21), -+, (x5,25)} and T = 21,29, X3, T4, x5, Wwe obtain

Y, (21, 0,3, 24,25))  — (Vi (22, 23,91, 1, 21))
—  (Vy, (@3,y1, Y2, T2, T2))
—  (V3,(y1,y2, Y3, %3, 23) )
— (Va4 (Y2, Y3, Y4, Y1, 91) )

where Vi = V@ T<y; and, for i > 1, V;41 = V; @ y;<y;+1. In this example, 6
identifies a new name to be added at each application of the mutation. The new
name created at each step is a maximal one for the partial order.

We observe that, by definition, (2,3,6,1,1) and (2,3,7,1,1) define a same
transformation of names. That is, the choice of the natural between 6 and
10 is irrelevant in the definition of the mutation. Similarly for the mutations
(2,3,6,1,6) and (2,3,7,1,7).

Definition 2. Let (a1, - ,a,) ~ (a}, -+ ,al) if there exists a bijective func-

r'n

tion f from [n + 1..2 x n] to [n + 1..2 x n] such that:

1. 1 < a; < n implies a) = a;;
2. n+1<a; <2xn implies a; = f(a;).

We notice that (2,3,6,1,1) ~
However (2,3,6,1,6]) # (2,3,6,
transformations of names.

(2,3,7,1,1) and (2,3,6,1,6) ~ (2,3,7,1,7).
1,7); in fact these two mutations define different

Definition 3. Given a partial order V, a V-flashback is an injective renaming
p on names such that p(x) < x € V.

In the above sequence of mutations of (x1,x9, x3, x4, x5) there is a V4-flashback
from (y2,ys, Y4, y1,41) to (x2,23,y1,21,21). In the following, flashbacks will be

also applied to tuples: p(x1,--- , x,) def (p(x1),- -, plan)).



In case of mutations that are permutations, a flashback is the identity renam-
ing and the following statement is folklore. Let 1 be a mutation. We write pu™

for the application of 1 m times, namely <V, (z1,--- 7xn)> iR <\//, (y1,- - ,yn)>
abbreviates <\/7 (xla to axn)> B <\/17 (yl, to ayn)>

m times
Proposition 1. Let = (ay, - ,a,) and
<Va (xla T 7xn)> _ﬂ) <Vl, (xlla e 7x/n)>
#_) <V//7 (ylv e ,yn)>
_#) <Vm7 (yllv e )y’;L)>
If there is a V"-flashback p such that p(y1,- -+ ,yn) = (21, -+ ,2,) then there
is a V" -flashback from (yi,--- ,y,) to (af,--- ,xl).

Proof. Let p' be the relation y; — a7, for every 7. Then

1) p' is a mapping: y; = y; implies x; = 2. In fact, y; = y; means that either
(i) 1 < as,a; < nor (i) a;,a; > n. In subcase (i) Yo, = ya,, by definition of
mutation. Therefore p(y.,) = p(ya;) that in turn implies ., = x,,. From this
last equality we obtain x} = x; In subcase (ii), a; = a; and the implication
follows by the fact that (a1, - ,a,) is a mutation.

2) p is injective: x; = 2 implies y; = yj. If 2 € {x1, -+ ,z,} then 1 <
ai, a; < n. Therefore, by the definition of mutation, a:a = xa and, because p is
a flashback, y,, = ya4,. By this last equatlon y; = y;. If 2] ¢ {1, -+ ,x,} then
a; > n and a; = a;. Therefore y] = yJ by definition of mutatlon

3) p' is a flashback: «} # y; implies o} <y} € V. If 1 < a; < n then y} = y,,
and 2 = x,,. Therefore y,, # x,, and we conclude by the hypothesis about p
that p’(y,,) satisfies the constraint in the definition of flashback. If a; > n then
X1, &, < o € V. Since p(y;) = x;, by the hypothesis about p, z; < y; € V.
Therefore, by definition of mutation, z; < y; € V. We derive z} < y, € V” by
transitivity because V' < V" and y; < y; € V.

The following Theorem 1 generalizes the property that every permutation
has an order, which is the number of applications that return the initial tuple.
In the theory of permutations, the order is the least common multiple, in short
lem, of the lengths of the cycles of the permutation. This result is clearly false
for mutations because of the presence of duplications and of fresh names. The
generalization that holds in our setting uses flashbacks instead of identities. We
begin by extending the notion of cycle.

Definition 4 (Cycles and sinks). Let p = (a1, -+ ,a,) be a mutation and

let1<ag, - -, a, <n be pairwise different naturals. Then:

i. the term (a;, --- a,) is a cycle of p whenever u(a;;) = a;,,,, with 1 < j <
(-1, and p(a;,) = a4, (i-e., (a;y -+ ai,) is the ordinary permutation cycle);

ii. the term [a;, -+ @i, ,]a,, is a bound sink of u whenever a;, ¢ {a1, - ,an},
wlag,) = ai;,,, with 1 < j < €—1, and a;, belongs to a cycle;



iii. the term [ai, -+ ai,]a, with n < a < 2 x n, is a free sink of u whenever
ai, ¢ a1, ,an} and pla;,) = a;,, ., with 1 < j <{—1 and p(a;,) = a.

The length of a cycle is the number of elements in the cycle; the length of a sink
s the number of the elements in the square brackets.

For example the mutation (5,4,8,8,3,5,8,3,3) has cycle (3,8) and has bound
sinks [1,5]s, [6,5]s, [9]3, [2,4]s, and [7]s. The mutation (6,3,1,8,7,1,8) has
cycle (1,6), has bound sink [2,3]; and free sinks [4]s and [5,7]s.

Cycles and sinks are an alternative description of a mutation. For instance
(3,8) means that the mutation moves the element in position 8 to the element in
position 3 and the one in position 3 to the position 8; the free sink [5, 7]s means
that the element in position 7 goes to the position 5, whilst a fresh name goes
in position 7.

Theorem 1. Let u be a mutation, £ be the lem of the length of its cycles, £’ and
0" be the lengths of its longest bound sink and free sink, respectively. Let also

g max{{+{', ¢"}. Then there exists 0 < h < k such that <\/, (z1,--- ,xn)> RAEN

k—h
<\//’ (yl’ T ’y")> H‘) <\/”7 (Zl7 e ’Zn)> and p(zh e ,Zn) = (yl’ e ;yn); fOT
some V" -flashback p. The value k is called order of i and denoted by o,,.

Proof. Let u = (a1, ,a,) beamutation, andlet A = {1,2,...,n}\{a1, - ,an}.

If A = @, then p is a permutation; hence, by the theory of permutations, the
theorem is immediately proved taking p as the identity and h = 0.

If A # & then let a € A. By definition, a must be the first element of (i) a
bound sink or (ii) a free sink of . We write either a € Ag;) or a € Ay if a is
the first element of a bound or free sink, respectively.

In subcase (i), let £/, be the length of the bound sink with subscript o’ and

a
£y be the length of the cycle of a’. We observe that in <V, (z1,--- 7:En)> LN

£.r
U, (2], ah)y 55 (W, (2, -+ a)) we have ), = 2.
In subcase (ii), let £/ be the length of the free sink. We observe that in
o
Y, (@1, @)y 25 (U, (2, -+ ,2),)) we have 2, < 2, € U, by definition of
mutation.

Let £, ¢ and ¢” as defined in the theorem. Then, if £ + ¢/ > ¢" we have that

o 0
<V7 (mlf" 7xn>> M—) <V7(Zl/17"' 7yn)> L’ <v//,(2517"' ,Zn)> andp(zl7~-~ ;Zn)
= (y1," " ,Yn), Where p = [21 — Y1, -+ ,2n — Yn] is a V’-flashback. If ¢ +
¢ < ¢ then <\/7 (xl,.,. ’xn)> u:f <\/,(y1,"' ’yn)> LZ) <\/”7(Zl7”' ;Zn)>

and p(z1, - ,2n) = (Y1, ,Yn), Where p = [21 = Y1, -, 2n — Y] is a V-
flashback.

For example, p = (6,3,1,8,7,1,8), has a cycle (1,6), bound sink [2,3];
and free sinks [4]g and [5,7]s. Therefore £ = 2, ¢ = 2 and ¢ = 2. In this
case, the values k and h of Theorem 1 are 4 and 2, respectively. In fact, if we



apply the mutation p four times to the pair <\/, (21, %2, 23,24, T5, T, 1:7)>, where
V= {(x;,z;) |1 <i <7} we obtain

(Y, (w1, 2, 23, 24, T5, 76, 27) ) —> V1, (T4, T3, T1, Y1, T7, 1, Y1) )

— Vg, (x1, 21, T6, Y2, Y1, T6, Y2) )
— V3, (x6, 6, T1,Y3, Y2, T1,Y3) )
— (Vy, (@1, 21, %6, Ya, Y3, T6, Ya) )
where Vi, = V@ x1,x9, 3, T4, 25, T, x7<y1 and, for i = 1, V,11 =V, @ y;—1<y;.
We notice that there is a V4-flashback p from (21, 21, 6, Y4, Y3, 6, y4) (produced
by p) to (21,1, 26, Y2, Y1, T, y2) (produced by p?).

3 The language of lams

We use an infinite set of function names, ranged over £, £/, g, g',..., which
is disjoint from the set V of Section 2. A lam program is a tuple (£1(Z7) =
Ly, -, fo(2y) = Lg,L) where £,(Z;) = L; are function definitions and L is the
main lam. The syntax of L; and L is

L == 0 | (z,y) | £(@) | L& | L+L

Whenever parentheses are omitted, the operation “&” has precedence over
“ 4+ 7. We will shorten L& -+ &L, into &;e1..nL;- Moreover, we use T to range
over lams that do not contain function invocations.

Let var(L) be the set of names in L. In a function definition £(Z) =L, 7 are
the formal parameters and the occurrences of names x € ¥ in L are bound; the
names var(L)\Z are free.

In the syntax of L, the operations “&” and “ + ” are associative, commutative
with 0 being the identity. Additionally the following axioms hold (T does not
contain function invocations)

T&T=T T+T=T T&(L +L")=T&L + T&L"

and, in the rest of the paper, we will never distinguish equal lams. For instance,
£(u) + (z,y) and (z,y) + £(u) will be always identified. These axioms permit
to rewrite a lam without function invocations as a collection (operation =+ ) of
relations (elements of a relation are gathered by the operation &).

Proposition 2. For every T, there exist T1,--- , T, that are dependencies com-
posed with &, such that T =Ty + -+ + T,.

Remark 1. Lams are intended to be abstract models of programs that highlight
the resource dependencies in the reachable states. The lam Ty + --- + T, of
Proposition 2 models a program whose possibly infinite set of states {S1, 82, - -}
is such that the resource dependencies in S; are a subset of those in some T;,, with
1 < j; < n. With this meaning, generic lams Ly + --- + L,, are abstractions of
transition systems (a standard model of programming languages), where transi-
tions are ignored and states record the resource dependencies and the function
invocations.

10



Remark 2. The above axioms, such as T&(L' + L") = T&L' + T&L” are re-
stricted to terms T that do not contain function invocations. In fact, £(%)&((x, y)
+ (y,2)) # (£(@)&(z,y)) + (£(@)&(y, z)) because the two terms have a differ-
ent number of occurrences of invocations of f, and this is crucial for linear
recursion — see Definition 6.

In the paper, we always assume lam programs (fl(ﬁ) =Ly, -, f4(Tp) =
Ly, L) to be well-defined, namely (1) all function names occurring in L; and L are
defined; (2) the arity of function invocations matches that of the corresponding
function definition.

Operational semantics. Let a lam context, noted £] ], be a term derived by the
following syntax:

] == [1 | L[] | L+L[]
As usual £[L] is the lam where the hole of £[ | is replaced by L. The opera-
tional semantics of a program (£1(Z7) = L1, - -+, £,(Z¢) = Ly, Lg41) is a transition

system whose states are pairs <V, L> and the transition relation is the least one
satisfying the rule:

(RED)

£(Z) =L var(L\\T =2 @ are fresh
L[w/z)["/z] =1/
<\/7 2[f(ﬁ)]> — <V(—Bﬂ<ﬁ7 2[L’]>

By (RED), a lam L is evaluated by successively replacing function invocations
with the corresponding lam instances. Name creation is handled with a mecha-
nism similar to that of mutations. For example, if f(x) = (x,y)&f(y) and f(u)
occurs in the main lam, then £(u) is replaced by (u,v)&£(v), where v is a fresh
mazximal name in some partial order. The initial state of a program with main
lam L is (I, L), where [ o {(z,2) | x € var(L)}.

To illustrate the semantics of the language of lams we discuss three examples:

L. (f(x,y,z) = (x,y)&g(y,z) + (yaz)7 g(uvv) = (u,v) + (vvu)v f(m,y,z))

and | = {(z, ), (y,v), (2,2)}. Then

A, £(w,y,2)) —, xy&gy, z) + (y,2))

— (0, (2,9)&(y,2) + (2,9)&(z,9) + (y,2))

The lam in the final state does mot contain function invocations. This is

because the above program is not recursive. Additionally, the evaluation of
f(x,y,2) has not created names. This is because names in the bodies of
f(x,y, z) and g(u,v) are bound.
2. (f(z) = (z,y)&F'(y) , £'(z)) and Vo = {(20, 0)}. Then

(Yo, £'(20))

- <\/1, xo,xl)&f’(m1)>

— <\/2, (x07x1)&($1,x2)&f'(x2)>

—" Vg2, (20,21)8& - &(Tnt1, Tn12)&E (Tni2))
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where V,11 =V, @ z;<x;+1. In this case, the states grow in the number of
dependencies as the evaluation progresses. This growth is due to the presence
of a free name in the definition of £ that, as said, corresponds to generating

a fresh name at every recursive invocation.
3. (f7(z) = (z,2) + (z,2/)&E"(2'), £"(x0)) and Vo = {(z0,20)}. Then

Vo, £"(x0))
— 2\/17 (.’170,.%‘1) + (xo,xl)&f”(.’lﬁl)>

Vo, (zo, 1) + (20, 21)&(x1,22) + (mo,xl)&(thg)&f”(xg)>

—" (Vpgo, (wo,21) + -+ + (20, 21)& *+ &(Tns1, Tn2) &E" (Tnr2))
where V;,; are as before. In this case, the states grow in the number of
“ + ”-terms, which become larger and larger as the evaluation progresses.

—>

The semantics of the language of lams is nondeterministic because of the
choice of the invocation to evaluate. However, lams enjoy a diamond property
up-to bijective renaming of (fresh) names.

Proposition 3. Let ¢ be a bijective renaming and 1(V) = {(2(z),2(y)) | (x,y) €
V}. Let also {V, L) — V', L) and (s(V), L[Z(%)/§]> — (V" L"), where
T = wvar(V). Then

(1) either there exists a bijective renaming v’ such that

(V"L = GV, L) /30,
where ' = var(V'),
(i1) or there existL” and a bijective renaming ' such that {V', L'y — (V" L")

and V', L") — (/(V"), L’”[Z/(E)/g]>, where Z = var(V").

The informative operational semantics. In order to detect the circularity-freedom,
our technique computes a lam till every function therein has been adequately
unfolded (up-to twice the order of the associated mutation). This is formalized
by switching to an “informative” operational semantics where basic terms (de-
pendencies and function invocations) are labelled by so-called histories.

Let a history, ranged over by «,(,---, be a sequence of function names
£, £, -- £, . We write £ € o if £ occurs in a. We also write o™ for - -- . Let

n times

a < B if there is o’ such that e’ = 3. The symbol e denotes the empty history.
The informative operational semantics is a transition system whose states
are tuples <W, O, |]_> where PF is a set of function invocations with histories
and L, called informative lam, is a term as L, except that pairs and function
invocations are indexed by histories, i.e. *(x,y) and “f(«), respectively.
Let

*(x,y) if L = (z,9)

def “£(7) if L=1£(2)

addh(a, L) = '
addh(a, L )&addh(a,L”) if L =L1'&L"

addh(o, L") + addh(o, L") if L =1" + L”

12



For example addh(£1, (z4, 2)&E (T2, T3, T4, T5)) = (x4, 12)& £ (22, T3, T4, T5).
Let also "£[ ] be a lam context with histories (dependency pairs and function
invocations are labelled by histories, the definition is similar to £] ]).

The informative transition relation is the least one such that

(RED+)

£(Z) =L var (L )\ 3 w are fresh
L[#/3][7/3] =
VOF, D E(@)])  — (V@ u<w, °F u {“£(a)}, "Lladdh(af,L)])

When <V, F, [I_> — <V, bE’, U_/> by applying (RED+) to “£(%), we say
that the term “f (%) is evaluated in the reduction. The initial informative state
of a program with main lam L is <HL, &, addh(e, L)>

For example, the f1h-program

( f( ,y,z,u) (xwz)&l(uaywz) )

1(z,y,2) (2, y)&E(y, 2, w,u)

h(z,y, z,u) = (z,2)&h(z,y, z, W) &E (2, y, z,u) ,
h(wh I2,T3, .’E4) )
has an (informative) evaluation

<|]La 9, Eh(mla I2,T3, x4)>
— <HL7 h”'_, [L&hf(xl, T2,T3, :E4)>
—> <UL7 hﬂ'_l, L & ht (1‘1, {L‘3) & hf1($47 T, $3)>
—> <UL@.’L‘4<$5, hﬂ‘_g, |L/ & hfl(.’)&'47 .’1?2) & hﬂf(.’lﬁg, 3,24, .T5)>,
where
= h(.Tg” .’El)&hh(.%'h X9, X3, 1‘4)

L = [L&hf(xl,xg)

bE {Eh($1,$2,$37$4>}

OFy = OF U {P£(21, 72, 23, 74)}

hﬂ'_Q = hﬂ'_l ) {hfl(x4,x2,x3)}.

There is a strict correspondence between the non-informative and informative
semantics that is crucial for the correctness of our algorithm in Section 5. Let
[-] be an eraser map that takes an informative lam and removes the histories.
The formal definition is omitted because it is straightforward.

Proposition 4. 1. If<\/, b, [L> —> <V, b, [L’> then <\/, [[[L]]> —> <V, [I[L’]]>;
2. If (V,[L]y — {V', L") then there are "F, "F', L' such that [L'] = L' and
VO, L) — (V! OF L7,

Clircularities. Lams record sets of relations on names. The following function
b(-), called flattening, makes explicit these relations

2(0) =0,  b((z,y)) = (z,y),  b(E(T))=
b(LAL) =b(L)&H(L),  b(L+1') = b(L)—i—b(L’)

For example, if L = f(x,y, 2) + (v, y)&g(y, 2)&E(u, ¥, 2) + g(u, v)&(u,v) + (v, u)

then b(L) = (x,y) + (u,v) + (v,u). That is, there are three relations in L:
{(z,y)} and {(u,v)} and {(v, u)} By Proposition 2, b(L) returns, up-to the
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lam axioms, sequences of (pairwise different) &-compositions of dependencies.
The operation b(-) may be extended to informative lams L in the obvious way:
b(*(x,y)) = *(x,y) and b(*£(F)) = 0.

Definition 5. A lam L has a circularity if
b(L) = (z1, 22)&(x2, 3)& - &(Tm, x1)&T' + T”

for some x1, -+ ,xp,. A state <\/, L> has a circularity if L has a circularity.
Similarly for an informative lam L.

The final state of the fgh-program computation has a circularity; another func-
tion displaying a circularity is g in Section 1. None of the states in the examples
1, 2, 3 at the beginning of this section has a circularity.

4 Linear recursive lams and saturated states

This section develops the theory that underpins the algorithm of Section 5.
In order to lightening the section, the technical details have been moved in
Appendix B.

We restrict our arguments to (mutually) recursive lam programs. In fact,
circularity analysis in non-recursive programs is trivial: it is sufficient to evalu-
ate all the invocations till the final state and verify the presence of circularities
therein. A further restriction allows us to simplify the arguments without loosing
in generality (cf. the definition of saturation): we assume that every function is
(mutually) recursive. We may reduce to this case by expanding function invoca-
tion of non-(mutually) recursive functions (and removing their definitions).

Linear recursive functions and mutations. Our decision algorithm relies on in-
terpreting recursive functions as mutations. This interpretation is not always
possible: the recursive functions that have an associated mutation are the linear
recursive ones, as defined below.

The technique for dealing with the general case is briefly discussed in Sec-
tion 8 and is detailed in Appendix C.

Definition 6. Let (fl(ﬁc\f) =Ly, ,f4(Tp) = Lg,L) be a lam program. A se-
quence £;,£;, -+ £;, is called a recursive history of £;, if (a) the function names
are pairwise different and (b) for every 0 < j < k, L;; contains one invocation
of £i,, 14, (the operation % is the remainder of the division).

The lam program is linear recursive if (a) every function name has a unique
recursive history and (b) if £;,£;, -+ £i, is a recursive history then, for every

0 <j <k, Li; contains exactly one invocation of £; ., -

For example, the program

(f1(,y) = (2, 9)&F1(y, 2)&F2(y) + f2(2) , f2(y) = (y,2)&F2(2) , L )
is linear recursive. On the contrary

(f(x) = (z,y)&e(x) , gx) = (z,y)&f(z) +gly), L)

14



is not linear recursive because g has two recursive histories, namely g and gf.

Linearity allows us to associate a unique mutation to every function name.
To compute this mutation, let H range over sequences of function invocations.
We use the following two rules:

var(L;)\&; =2 @ are fresh
fiaoEe £(3)=1L; Ll£; ()] = La[w/21[%/5,]
o = £(T) o b= HE(T)E5(7)
Let e = f(xy,- -+ ,@n) - £(a), -+, ]) be the final judgment of the proof tree
with leaf faf |= €, where fa is the recursive history of £. Let also z,- -+ , 2, \x1,
< Xy = 21, ,2k. Then the mutation of £, written ps = (ay, -+ ,a,) is
defined by
j lf JL‘; = l‘j
a; =
n+j if ) = z;

Let o¢, called order of the function £, be the order of us. For example, in the
flh-program, the recursive history of £ is £1 and, applying the algorithm above
to f1f = ¢, we get € = f(x,y, z,u)l(u,y, 2)£(y, z,u,v). The mutation of f is
(2,3,4,5) and o = 4. Analogously we can compute 0; = 3 and o, = 1.

Saturation. In the remaining part of the section we assume a fixed linear
recursive program (fl(ﬁc\{) =1Ly, -, f0(2) = Lg,L) and let of,,---,0¢, be the
orders of the corresponding functions.

Definition 7. A history « is

f-complete
if = °%, where B is the recursive history of £. We say that a is complete
when it is £-complete, for some £.

f-saturating
ifa = B1- P10, where B; < (a;)?, with a; complete, and o, £-complete.
We say that « is saturating when it is £-saturating, for some £.

In the flh-program, o = 4, 0; = 3, and o, = 1, and the recursive histories of
£, 1 and h are equal to f1, to 1f and to h, respectively. Then a = (£1)* is the
f-complete history and h?(£1)® and h(£1)® are f-saturating.

The following proposition is an important consequence of the theory of mu-
tations (Theorem 1) and the semantics of lams (and their axioms). In particular,
it states that, if a function invocation f£o(g) is unfolded up to the order of £
then (i) the last invocation £4(?) may be mapped back to a previous invocation
by a flashback and (ii) the same flashback also maps back dependencies created
by the unfolding of £¢(?).

Proposition 5. Let § = fof;---£, be £o-complete and let

(Y, OF, D 2o B (@] —>" (V' OF, D[P 8- PZa [t ()] -+ ]])
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where "F' = F U {*fo(1p), “0 £ (uy), - - -, “FoEn1f, (0,)} and £;(d;) = L, and
addh(afy---£;, L) = V¢, [fofif, 1 (u;31)] (unfolding of the functions in the
complete history of £9). Then there is a ®* -1, (uy) € "F" and a V'-flashback
p such that

1. fo(p(tnt1)) = £n(un) (hence £o = £1,);

2. let £o(Upt1) =L andb(L) =T1 + -+ + Ty and
b(OLo[P L[ - "L [*PEo(Unsi)] -+ ]]) = Ty + --- + OT,,. Then, for every
1 <1<k, there ezists 1 < j < k' such that hT;- = addh(afg - - fh_l,Ti)&hT;-’,
for some hT;-’.

The notion of f-saturating will be used to define a “saturated” state, i.e., a
state where the evaluation of programs may safely (as regards circularities) stop.

Definition 8. An informative lam <\/, oF, [I_> is saturated when, for every Y €[ |
and £() such that L = "£[*£(%)], a has a saturating prefiz.

It is easy to check that the following informative lam generated by the com-
putation of the flh-program is saturated:

(Vz, OF, 20 (1, 29, 75, 74) & &o<i<s™ M) (i1, Tiy3)
& &OéiSSh(fl)l (@it3, Tit1)
&h(ﬂ)sf(xg,1‘107$11,$12)>;
where V; 11 =V, ®x;44<x;45, and
"F = {*h(w1, 22, w3, 24), "h(T1, T2, 3, 24)}
ORI £ (41, @2, Tigs, Tiga) | 0 <0 < T
O MO0 Y (244, 0540, wigs) | 0 < i < T}
Every preliminary statement is in place for our key theorem that details

the mapping of circularities created by transitions of saturated states to past
circularities.

Theorem 2. Let <|]L7 a, addh(57L)> —* <V, bF, [L> and <W, bF, [L> be a sat-
urated state. If <V, b, [L> — <V, bE’, U_’> then

1. <V, bE, [L’> 18 saturated;
2. if I’ has a circularity then L has already a circularity.

Proof. (Sketch) Item 1. directly follows from Proposition 5. However, this propo-
sition is not sufficient to guarantee that circularities created in saturated states
are mapped back to past ones. In particular, the interesting case is the one of
crossover circularities, as discussed in Section 1. Therefore, let

(w1, x2), 0, M (@—1, TR), (@, Tha), o, Y (@0, 1)
be a circularity in L’ such that “» (xp, zp41), -, * (2, x1) were already present
in L. Proposition 5 guarantees the existence of a flashback p that maps ** (z1, z2)

& -+ &Y=t (xp_1,xp) to *(p(x1), p(x2)) & - - &= (p(xp—1), p(x1)). However, it
is possible that
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s (p(fﬂl), p(l’g))&' &t (P(Ih—l), p(xh))&ah (Ihv Ih+1)&' & (xn, Il)
is no more a circularity because, for example, p(zp) # x, (assume that p(z1) =
x1). Let us discuss this issue. The hypothesis of saturation guarantees that tran-

sitions produce histories a3, where a is complete. Additionally, aq,--- ,ap_1
must be equal because they have been created by <\/, b, I]_> — <\/’, b, I]_’>.
For simplicity, let 8 = f and o = fo'. Therefore, by Proposition 5, p maps

(1, )8 & O T (whot, 1) 10 T (plw1), plw2)) & -+ & (p((wn-1), plan)) and,
p(xp) # xp when xj, is created by the computation evaluating functions in o/

To overcome this problem, it is possible to demonstrate using a statement
similar to (but stronger than) Proposition 5 that p maps *"(xp,Tp41) & -+ -
8 (w,31) to ) (p(a1), p(wns1))& - &L (p(,), p(1)) where [a] ave “ker-
nels” of o; where every ¥ in o, with v a complete history and k > 2, is replaced
by ~. The proof terminates by demonstrating that the term

*(p(a1), pla2))& - - & (p((wn-1), p(xn))
alerd(p(an), p(ans1))& - &1 (p(an), p(21))

isin L (and it is a circularity).

5 The decision algorithm for detecting circularities in
linear recursive lams

The algorithm for deciding the circularity-freedom problem in linear recursive
lam programs takes as input a lam program (fl(f{) =Ly, -, fo(Ly) = Lg,L)
and performs the following steps:

STEP 1: find recursive histories. By parsing the lam program we create a graph
where nodes are function names and, for every invocation of g in the body of £,
there is an edge from f to g. Then a standard depth first search associates to
every node its recursive histories (the paths starting and ending at that node, if
any). The lam program is linear recursive if every node has at most one associated
recursive history.

STEP 2: computation of the orders. Given the recursive history a associated to
a function £, we compute the corresponding mutation by running a = £ (see
Section 4). A straightforward parse of the mutation returns the set of cycles and
sinks and, therefore, gives the order os.

STEP 3: evaluation process. The main lam is unfolded till the the saturated state.
That is, every function invocation £(Z) in the main lam is evaluated up-to twice
the order of the corresponding mutation. The function invocation of f in the
saturated state is erased and the process is repeated on every other function
invocation (which, therefore, does not belong to the recursive history of f), till
no function invocation is present in the state. At this stage we use the lam axioms
that yield a term Ty + --- + Ty,.

STEP 4: detection of circularities. Every T; in Ty + --- + T,, may be represented
as a graph where nodes are names and edges correspond to dependency pairs. To
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detect whether T; contains a circular dependency, we run Tarjan algorithm [31]
for connected components of graphs and we stop the algorithm when a circularity
is found.

Every preliminary notion is in place for stating our main result; we also make
few remarks about the correctness of the algorithm and its computational cost.

Theorem 3. The problem of the circularity-freedom of a lam program is decid-
able when the program is linear recursive.

The algorithm consists of the four steps described above. The critical step, as
far as correctness is concerned, is the third one, which follows by Theorem 2 and
by the diamond property in Proposition 3 (whatever other computation may be
completed in such a way the final state is equal up-to a bijection to a saturated
state).

As regards the computational complexity STEPS 1 and 2 are linear with
respect to the size of the lam program and STEP 4 is linear with respect to the
size of the term T; + --- + T,,. STEP 3 evaluates the program till the saturated
state. Let

Omaz be the largest order of a function;
Mmaz D€ the maximal number of function invocations in a body, apart the one
in the recursive history.

Without loss of generality, we assume that recursive histories have length 1 and
that the main lam consists of m,, 4, invocations of the same function. Then an
upper bound to the length of the evaluation till the saturated state is

(2 X Omaz X mmaz) + (2 X Omaz X mmam)2 + e+ (2 X Omaz X mmaz)z

Let kpqz be the maximal number of dependency pairs in a body. Then the size of
the saturated state is O(kmaz X (0maz X Mamaz)’), Which is also the computational
complexity of our algorithm.

6 Assessments

The algorithm defined in Section 5 has been prototyped [15]. As anticipated in
Section 1, our analysis has been applied to a concurrent object-oriented language
called ABS [17], which is a JAvA-like language with futures and an asynchronous
concurrency model (ASP [6] is another language in the same family).

The prototype is part of a bigger framework for the deadlock analysis of ABS
programs called DF4ABS (Deadlock Framework for ABS). It is a modular frame-
work which includes two different approaches for analysing lams: DF4ABS/model-
check (which is the one described in the current paper) and DF4ABS/fixpoint
(which is the one described in [13,14]).

The technique underpinning the DF4ABS/fixpoint tool derives the depen-
dency graph(s) of lam programs by means of a standard fixpoint analysis. To
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circumvent the issue of the infinite generation of new names, the fixpoint is com-
puted on models with a limited capacity of name creation. This introduces over-
approximations that in turn display false positives (for example, DF4ABS/fix-
point returns a false positive for the lam of factorial). In the present work,
this limitation of finite models is overcome (for linear recursive programs) by
recognizing patterns of recursive behaviors, so that it is possible to reduce the
analysis to a finite portion of computation without losing precision in the detec-
tion of deadlocks.

The derivation of lams from ABS programs is defined by an inference sys-
tem [13,14]. The inference system extracts behavioral types from ABS programs
and feeds them to the analyzer. These types display the resource dependencies
and the method invocations while discarding irrelevant (for the deadlock analy-
sis) details. There are two relevant differences between inferred types and lams:
(i) methods’ arguments have a record structure and (ii) behavioral types have
the union operator (for modeling the if-then-else statement). To bridge this gap
and have some initial assessments, we perform a basic automatic transformation
of types into lams.

We tested our prototype on a number of medium-size programs written for
benchmarking purposes by ABS programmers and on an industrial case study
based on the Fredhopper Access Server (FAS) developed by SDL Fredhopp-
per [9]. This Access Server provides search and merchandising IT services to
e-Commerce companies. The (leftmost three columns of the) following table re-
ports the experiments: for every program we display the number of lines, whether
the analysis has reported a deadlock (D) or not (v'), the time in seconds required
for the analysis. Concerning time, we only report the time of the analysis (and
not the one taken by the inference) when they run on a QuadCore 2.4GHz and
Gentoo (Kernel 3.4.9):

program lines DF4ABS/model-check | DF4ABS/fixpoint DECO
result time result time result time
PingPong 61 v 0.311 v 0.046 v 1.30
MultiPingPong || 88 D 0.209 D 0.109 D 143
BoundedBuffer || 103 v 0.126 v 0.353 v 1.26
PeerToPeer 185 v' 0.320 v 6.070 v 1.63
[FAS Module  [[2645] v 3188 | v 3978 | v 438 ]

The rightmost column of the above table reports the results of another
tool that have also been developed for the deadlock analysis of ABS programs:
DECO [11]. The technique in [11] integrates a point-to analysis with an analy-
sis returning (an over-approximation of) program points that may be running
in parallel. As for other model checking techniques, the authors use a finite
amount of (abstract) object names to ensure termination of programs with ob-
ject creations underneath iteration or recursion. For example, DECO (as well as
DF4ABS/fixpoint) signals a deadlock in programs containing methods whose
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lam is ! m(z,y) = (y,2)&n(z,2) that our technique correctly recognizes as

deadlock-free.

As highlighted by the above table, the three tools return the same results as
regards deadlock analysis, but are different as regards performance. In particu-
lar DF4ABS/model-check and DF4ABS/fixpoint are comparable on small/mid-
size programs, DECO appears less performant (except for PeerToPeer, where
DF4ABS/fixpoint is quite slow because of the number of dependencies pro-
duced by the fixpoint algorithm). On the FAS module, DF4ABS/model-check
and DF4ABS/fixpoint are again comparable — their computational complexity
is exponential — DECO is more performant because its worst case complexity is cu-
bic in the dimension of the input. As we discuss above, this gain in performance
is payed by DECO in a loss of precision.

Our final remark is about the proportion between linear recursive functions
and nonlinear ones in programs. This is hard to assess and our answer is perhaps
not enough adequate. We have parsed the three case-studies developed in the
European project HATS [9]. The case studies are the FAS module, a Trading
System (TS) modeling a supermarket handling sales, and a Virtual Office of
the Future (VOF) where office workers are enabled to perform their office tasks
seamlessly independent of their current location. FAS has 2645 code-lines, TS
has 1238 code-lines, and VOF has 429 code-lines. In none of them we found a
nonlinear recursion, TS and VOF have respectively 2 and 3 linear recursions
(there are recursions in functions on data-type values that have nothing to do
with locks and control). This substantiates the usefulness of our technique in
these programs; the analysis of a wider range of programs is matter of future
work.

7 Related works

The solutions in the literature for deadlock detection in infinite state programs
either give imprecise answers or do not scale when, for instance, programs also
admit dynamic resource creation. Two basic techniques are used: type-checking
and model-checking.

Type-based deadlock analysis has been extensively studied both for process
calculi [19, 30, 32] and for object-oriented programs [3, 10, 1]. In Section 1 we have
thoroughly discussed our position with respect to Kobayashi’s works; therefore
we omit here any additional comment. In the other contributions about deadlock
analysis, a type system computes a partial order of the deadlocks in a program
and a subject reduction theorem proves that tasks follow this order. On the
contrary, our technique does not compute any ordering of deadlocks, thus being
more flexible: a computation may acquire two deadlocks in different order at
different stages, thus being correct in our case, but incorrect with the other
techniques. A further difference with the above works is that we use behavioral
types, which are terms in some simple process algebras [21]. The use of simple

! The code of a corresponding ABS program is available at the DF4ABS tool website [15],
c.f. UglyChain.abs.
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process algebras to guarantee the correctness (= deadlock freedom) of interacting
parties is not new. This is the case of the exchange patterns in SSDL [27], which
are based on CSP [4] and pi-calculus [23], of session types [12], or of the terms
in [26] and [7], which use CCS [22]. In these proposals, the deadlock freedom
follows by checking either a dual-type relation or a behavioral equivalence, which
amounts to model checking deadlock freedom on the types.

As regards model checking techniques, in [5] circular dependencies among
processes are detected as erroneous configurations, but dynamic creation of
names is not treated. An alternative model checking technique is proposed in [2]
for multi-threaded asynchronous communication languages with futures (as ABS).
This technique is based on vector systems and addresses infinite-state programs
that admit thread creation but not dynamic resource creation.

The problem of verifying deadlocks in infinite state models has been stud-
ied in other contributions. For example, [28] compare a number of unfolding
algorithms for Petri Nets with techniques for safely cutting potentially infinite
unfoldings. Also in this work, dynamic resource creation is not addressed. The
techniques conceived for dealing with dynamic name creations are the so-called
nominal techniques, such as nominal automata [29, 25] that recognize languages
over infinite alphabets and HD-automata [24], where names are explicit part
of the operational model. In contrast to our approach, the models underlying
these techniques are finite state. Additionally, the dependency relation between
names, which is crucial for deadlock detection, is not studied.

8 Conclusions and future work

We have defined an algorithm for the detection of deadlocks in infinite state pro-
grams, which is a decision procedure for linear recursive programs that feature
dynamic resource creation. This algorithm has been prototyped [15] and cur-
rently experimented on programs written in an object-oriented language with
futures [17]. The current prototype deals with nonlinear recursive programs by
using a source-to-source transformation into linear ones. This transformation
may introduce fake dependencies (which in turn may produce false positives in
terms of circularities). To briefly illustrate the technique, consider the program

(h(t) = (t,2)&(t,y)&h(z)&h(y) , h(u) ),

Our transformation returns the linear recursive one:

(R (t,¢') = (t,2)&(t, @) &(¥', 2)&(t', ') &0 (2, ') |

h(u) = b (u,u), h(u) )

To highlight the fake dependencies added by h®**, we notice that, after two
unfoldings, h*“* (u, u) gives

(1, )&, w) & (v, V') &(v, W) &(w, V') &(w, w') &0 ™ (v', w’)
while h(u) has a corresponding state (obtained after four steps)

(1, v) &(u, ) & (v, V") &(, v") &(w, w') &(w, w")

&h(v')&h(v")&h(w')&h(w") ,
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and this state has no dependency between names created by different invocations.
It is worth to remark that these additional dependencies cannot be completely
eliminated because of a cardinality argument. The evaluation of a function in-
vocation (%) in a linear recursive program may produce at most one invocation
of £, while an invocation of £(@) in a nonlinear recursive program may produce
two or more. In turn, these invocations of £ may create names (which are ex-
ponentially many in a nonlinear program). When this happens, the creations
of different invocations must be contracted to names created by one invocation
and explicit dependencies must be added to account for dependencies of each
invocation. [Our source-to-source transformation is sound: if the transformed
linear recursive program is circularity-free then the original nonlinear one is also
circularity-free. So, for example, since our analysis lets us determine that the
saturated state of h®“* is circularity-free, then we are able to infer the same
property for h.] We are exploring possible generalizations of our theory in Sec-
tion 4 to nonlinear recursive programs that replace the notion of mutation with
that of group of mutations. This research direction is currently at an early stage.

Another obvious research direction is to apply our technique to deadlocks
due to process synchronizations, as those in process calculi [23,19]. In this case,
one may take advantage of Kobayashi’s inference for deriving inter-channel de-
pendency informations and manage recursive behaviors by using our algorithm
(instead of the one in [20]).

There are several ways to develop the ideas here, both in terms of the lan-
guage features of lams and the analyses addressed. As regards the lam language,
[13] already contains an extension of lams with union types to deal with assign-
ments, data structures, and conditionals. However, the extension of the theory of
mutations and flashbacks to deal with these features is not trivial and may yield
a weakening of Theorem 2. Concerning the analyses, the theory of mutations
and flashbacks may be applied for verifying properties different than deadlocks,
such as state reachability or livelocks, possibly using different lam languages and
different notions of saturated state. Investigating the range of applications of our
theory and studying the related models (corresponding to lams) are two issues
that we intend to pursue.
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A Java code of the factorial function

There are several JAVA programs implementing factorial in Section 1. However
our goal is to convey some intuition about the differences between TYPICAL and
our technique, rather than to analyze the possible options. One option is the code

synchronized void fact(final int n,final int m,final Maths x)
throws InterruptedException {
if (n==0) x.retresult(m) ;
else {
final Maths y = new Maths() ;
Thread t = new Thread(new Runnable () {
public void run() {
try { y.fact(n-1,n*m,x) ;
} catch (InterruptedException e) { }

} LD
t.start ();
t.join() ;

}

Since factorial is synchronized, the corresponding thread acquires the lock
of its object — let it be this — before execution and releases the lock upon ter-
mination. We notice that factorial, in case n>0, delegates the computation of
factorial to a separate thread on a new object of Maths, called y. This means
that no other synchronized thread on this may be scheduled until the recursive
invocation on y terminates. Said formally, the runtime Java configuration con-
tains an object dependency (this,y). Repeating this argument for the recursive
invocation, we get configurations with chains of dependencies (this, y), (v, z), - - -,
which are finite by the well-foundedness of naturals.

B Proof of Theorem 2.

This section develops the technical details for proving Theorem 2.
Definition 9. A history « is

f-yielding
if a = ai“ﬁl ~-alm B, such that, for every i, a; is a recursive history, B; <
a;, and o = 'f; implies the program has the definition £;(%;) = £[£(u)],
for some uw. The kernel of «, denoted [¢], is o/flﬁl . ~o¢2"6n, where h; =

min(h;, 1).

By definition, if « is f-saturating then it is also f-yielding. In this case, the
kernel [a] has a suffix that is f-complete. In the flh-program, os = 4, 0, = 3,
and oy, = 1, and the recursive histories of £, 1 and h are equal to £1, to 1f and
to h, respectively. Then o = (£1)* is the f-complete history and o/ = h%f is
1-yielding, with [¢/] = hf.
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We notice that every history of an informative lam (obtained by evaluating
(I, @, addh(e,L))) is a yielding sequence. We also notice that, for every f, ¢ is
f-yielding. In fact, ¢ is the history of every function invocation in the initial lam,
which may concern every function name of the program. As regards the kernel,
in Lemma 1, we demonstrate that, if a = a’l“ﬂl ---aln B, is a f-yielding history
such that every h; > 2, then every term ®f (%) may be mapped by a flashback p
to a term [*£(p(%)); similarly for dependencies. This is the basic property that
allows us to map circularities to past circularities (see Theorem 2).

Next we introduce an ordering relation over renamings, (in particular, flash-
backs) and the operation of renaming composition. The definitions are almost
standard:

— p < o if, for every z € dom(p), p(z) = p'(z).
— pop’ be defined as follows:

oo (£,

We notice that, if both

1. p and p’ are flashbacks and
2. for every x € dom(p), p'(x) =z

then p <* pop’ holds. In the following, lams b(L) and b(L), being + of terms
that are dependencies composed with &, will be written T; + --- + T,, and
bTy + ... + PT,,, for some m, respectively, where T; and YT; contain dependen-
cies (z,y) and *(z,y). Let also p(&ier(wi, yi)) = &ier(p(:), p(y:))-

With an abuse of notation, we will use the set operation “e” for L and YL. For
instance, we will write L’ € L when there is £[ | such that L = £[L’]. Similarly,
we will write Te Ty + .-+ + T,, when there is T; such that T € T;.

A consequence of the axiom T&(L' + L") = T&L' + T&L" is the following
property of the informative operational semantics.

Proposition 6. Let (V1,"F,"£¢[*£1(a1)]) be a state of an informative opera-
tional semantics. For every 1 < i < n, let £;(4;) = L, and addh(afy---£;,L,) be
e[ tit,  (u5q)]. Finally, let
b(h£1[~ .. hgn[afl...fnfn+1(m)] . ]) _ le + ..+ hTr
p(O L[y (Unr1)]) = T + -0 + 0T,
If ofrin (g y)&addh(a/,T) € Ty + --- + OT, then, for every 1 < j <1/,
"' &addh(c/, T) € 9Ty + -+ + T,

The next lemma allows us to map, through a flashback, terms in a saturated
state to terms that have been produced in the past. The correspondence is defined
by means of the (regular) structure of histories.

Lemma 1. Let Iy, @, addh(e,L)) —* {V, "F, L) and {V, °F, L) be saturated
and b(L) = 5Ty + --- + OT,,. Then
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1. 4f ﬂo‘"“ﬂ/f(ﬂ) e L, where Ba™t2p’ is f-yielding, then there are n + 1 V-

flashbacks 10;32,21,5/7 e 7/’237;?' such that:

an+1 ’ n+2) /~
(a) P £ (o5 (W) € OF
(b) &jeJaddh(BakJrlBj,T;) ey + -+ 4+ 9T, where, for every j, B; < «,

implies &jejaddh(ﬂakﬁj,pgfllﬁ), (T)) €Ty + -+ + "Tp;

(¢) Po" B £(@) € OF implies "7 £ (1) (@) € OF.
2. if oy, ,ap are f£1-yielding, ---, fx-yielding, respectively, then there are
flashbacks pay,- -+ 5 Pa, such that
(a) if “1£1(U) € L or *1£, (%) € "F then (11 (p,, (7)) € UF;
(b) Zf &KKkaddh(aj,Tj) € le + - + bTm then
&1<j<ka'ddh([o‘j]apaj (T)) € T+ -+ bTm;
(c) if an < g then pa, <™ pa,.
(In particular, if oy = Ba™*2p’, with ' < «, and ag = Ba™™3 then

pal ﬁfb IOOtz)'

Proof. (Sketch) As regards item 1, let « = 3’8" and let 8”8 = ff,---f,,
(therefore the length of a is m + 1). The evaluation (I, @, addh(e,L)) —*
<\/, b, I]_> may be decomposed as follows

(. @, addh(e, L)) —* (V' OF, L[ s (al)])
¥ <\/7 hﬂ.‘7 ﬂ_>

By definition of the operational semantics there is the alternative evaluation

(VO DgPen g ()]
v e e e e @l
Y O D[, [P g ()] ]

[notice that fa" 13/ £f; - - - £, = Ba™T2p']. Property (1.a) is an immediate con-
sequence of Proposition 5; let g(;;r;), be the flashback for the last state. The
property (1.b), when k = n, is also an immediate consequence of Propositions 5
and of 6. In the general case, we need to iterate the arguments on shorter his-
tories and the arguments are similar for (1.c). In order to conclude the proof
of item 1, we need an additional argument. By Proposition 3, there exists an

evaluation

<\////7 l‘)[’_—///7 hﬂ[hgl[bsl [ . hgm[ﬁa"‘“ﬁ/ffl'--fmf({;ﬁ)] . ]]]>
¥ <\/Ii’ b |]_ﬁ>

such that (V¥, "F#, L#) and {V, "F, L) are identified by a bijective renaming, let
it be 7. We define the ,0,(;;25), corresponding to the evaluation <[|L, @, addh(e, L)>
—*(V,9F, L) as p(ﬁni?, def ]og(ﬁn;r?, 0771, Similarly for the other p,(ﬁ,kzlﬁ),. The
properties of item 1 for <W, bF, [I_> follow by the corresponding ones for

T S i U R e JCU IR 1D
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We prove item 2. We observe that a term with history Bo(a/y)™ B1--- Bn_1
(al) B, in YF or in L may have no corresponding term (by a flashback) with
history Bo(af) 7181 (ab)2 -+ Ba_1 (/)" B,. This is because the evaluation
to the saturated state may have not expanded some invocations. It is however
true that terms with histories [Bo(c))" 31 - - - Bn_1(c,)" B3,] (kernels) are either
in YF or in L and the item 2 is demonstrated by proving that a flashback to
terms with histories that are kernels does exist.

Let ay = Bo(a))™ By -+ Br_1(cl) B, be a f-yielding sequence. We proceed
by induction on n. When n = 1 there are two cases: hy < 1 and hy > 2. In the
first case there is nothing to prove because [a] = a. When h; > 2, since « fits

. . 2 h 2

with the hypotheses of Item 1, there exist péo)ﬂ,DBN S ,péofl,pﬁl. Let 6,530)70/1,61 =
2 i+1 i+1 i

p(ﬂo),aa,ﬁl and 5/(320@'3,51 = pgo,a'i,ﬁl [z =z |ze dom(‘sgo),agﬁl)]- We also let

Par = 5/(3?))70/1,& o 051(3’;2'1,&
composition, if a; < ag then p,, <™ p,,. In this case, the items 2.a and 2.b
follow by item 1, Proposition 6 and the diamond property of Proposition 3.

We assume the statement holds for a generic n and we prove the case n +
L. Let a1 = BBn(al 1) "+ Brs1 and hypq > 0 (because [Bn(aliq) Bri1] =
Brnct, 1 Bn+1). We consider the map

and we observe that, by definition of renaming

def (2) I
pal - pﬁoaﬁnaa/nJFanJrlo O(Sﬁnvaln+1vﬂn+1
where 5? o fuorr 2 <0< hny are defined as above. As before, the items 2.a
n Q4 1:Pn
and 2.b follow by item 1 for 52 R and by Proposi-

Brsc 1Bt Bty 4 1:Bn+1

tion 6 and the diamond property of Proposition 3. Then we apply the inductive
hypothesis for pg. The property (2.c) a3 < as implies po, < p,, is an imme-
diate consequence of the definition.

Every preliminary statement is in place for our key theorem that details
the mapping of circularities created by transitions of saturated states to past
circularities. For readability sake, we restate the theorem.

Theorem 2. Let (I, @, addh(e,L)) —* (V,"F, L) and {V, "F, L) be a sat-
urated state. If <V, b, [L> — <V, bE’, U_’> then

1. (V' OF L) s saturated;
2. if I’ has a circularity then L has already a circularity.

Proof. The item 1. is an immediate consequence of Proposition 5. We prove 2.
Let

L= e

- f(u) =L

— L' ="¢laddh(af,L)];

—b(L) =b("L[*£(@)]) =Ty + -+ + OT,;
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-bHL) =Ty + - + T
- by =91+ - + th;
— (20, 1) & -+ & (T, x0) € "T] + -+ + OT) (it is a circularity).

Without loss of generality, we may reduce to the following case (the general case
is demonstrated by iterating the arguments below).
Let af = B(a’)™*23" and let

0 (0, 21)& -+ & (T, T0) = &o<jen @) P (2, 2541)
&a”'/+1(xn’+1awn’+2)
K+ &4 (mn’ 370)

with e < 5; < 8", where 58" = o/, and n’ < n (otherwise 2 is straightforward

because the circularity may be mapped to a previous circularity by p(;fjé),, see

Lemma 1(1.b), or it is already contained in L). This is the case of crossover
circularities, as discussed in Section 1.
By Lemma 1,
m gr +2 +2
B(a’)™ B Bo (p,(ﬁ’y,n&,ﬂ’)(xo)v p,(BT,r;,B’)(xl))&. ..

Oé/ m+1 g/ , m+2 m+2
& Bla) BB, (pé,ofﬁ’) (Tnr), pg,;ﬁl) (ﬁcnurl))

(1)

is in some 9T7. There are two cases.
Case 1: for every n’ +1 <i < n, a; < B(a’)™"13". Then, by Lemma 1(1), we

2 1 2 1
have p(ﬁﬁlojﬂ') (wg) = p(ﬂW;+B,) (zo) and p(ﬁ’f:ﬁ,) (Tpry1) = pgjjﬁ,)(a:nurl). Therefore,

by Lemma 1(2),

’, m+1 m+1
()& @1 (P53 (wrin), P53 (X 12)
o m+1 m+1
& - & (" 3 (@), pTHE) (o))

with suitable o/, ,--- ,q;,, is a circularity in bty + .+ bT;’. In particular,
whenever, for every n’ +1 <4 < n, a; = B(a/)"3'B; with e < B; < 8”83, the
flashback pém;ﬂl,) maps dependencies i (z;,2;11) to dependencies
nm—1 o/ 5 +1 +1
Ba )™ BB (pg?;ﬁ/) (z:), p(ﬂ?z,ﬁ’) (2i41))
if m > 0. It is the identity, if m = 0.
Case 2: there is ' + 1 < i < n such that a; £ B(a/)™23’. Let this i be

n’ + 1. For instance, 8 = 3;(a”)™ B7 and a1 = B (o)™ 187 ()™ ) with
m’ = 2 and m” > 2. In this case it is possible that there is no pair 7(y,y’),
with v > B1(« , to which map *»'+1(x,/,1, 2, 4+2) by means of a flashback.

ith 1(@”)™, to which O b f a flashback
To overcome this issue, we consider the flashbacks pq,, - - s Py Pagy sy and we
observe that

[ (pao (1'0)» Pag (xl))& & [ovn] (pan/ (xn’)a Pa,, (xn’+1))
& [a"”rl](Pa"/+1 (mn/+1)7 Poyiy (xn/+2))&. .. (2)
& [an](pan (Tn); o, (1))

verifies
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(a) for every 0 <1i <mn, Pa; (xi-kl) = Pait1 (mi-H) and Pay, (xO) = Pao ($0);
(b) the term (2) is a subterm of "T{ + ... + OT7.

As regards (a), the property derives by definition of the flashbacks p,, and pq,_,
in Lemma 1. As regards (b), it follows by Lemma 1(2.b) because *° (zg, 21)& « - &
(&, m1) €T + - + 0T,

C Nonlinear programs: technical aspects

When the lam program is not linear recursive, it is not possible to associate a
unique mutation to a function. In the general case, our technique for verifying
circularity-freedom consists of transforming a nonlinear recursive program into
a linear recursive one and then running the algorithm of the previous section. As
we will see, the transformation introduces inaccuracies, e.g. dependencies that
are not present in the nonlinear recursive program.

C.1 The pseudo-linear case

In nonlinear recursive programs, recursive histories are no more adequate to
capture the mutations defined by the functions. For example, in the nonlinear
recursive program (called f'g'-program)

(£ (z,y,2) = (2,9)88'(y,2), &'(2,y) = &'(z,2)&£(2,,9), L)

the recursive history of £’ is £'g’. The sequence £f'g’g’ is not a recursive history
because it contains multiple occurrences of the function g’. However, if one com-
putes the sequences of invocations f'(x,y, z) - - - £/(%), it is possible to derive the
two sequences £'(z,y, 2)g (v, 2)f' (¢, z, 2) and £'(x,y, 2)g’(y, 2) &' (y, w)E' (v, u, u)
that define two different mutations (4,3,3) and (6,5,5) (see the definition of
mutation of a function).

Definition 10. A program (fl(fn\{) =Ly, -, f4(2) = Lg,L) is pseudo-linear
recursive if, for every £;, the set of functions {f | closure(f) = closure(£;)}
contains at most one function with a number of recursive histories greater than
1.

The f'g-program above is pseudo-linear recursive, as well as the fibonacci
program in Section 1 and the following 1’-program
(1’(x,y,z) = (z,y)&Y(y, z,z) + (z,u)&1 (u,u,y), L) )
In these cases, functions have a unique recursive history but there are multiple
recursive invocations. On the contrary, the £”g”-program below
(£"(z,y) = (z,2)&F"(y,2) + &"(y,2) ,
g'(z,y) = (y,2)&E"(y, 2)&g" (2, 2) ,
f”(l‘l y 1‘2)
is not pseudo-linear recursive.
Pseudo-linearity has been introduced because of the easiness of transforming
them into linear recursive programs. The transformation consists of the three
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rechis(£;) = {fifra, £:80, - ,£iBn} {head(Bo),- -+ , head(Bn)}\fr # @
L; = £[£x(T)] var(Ly)\Zk = Z W are fresh

(o £a(@) =Ly L) B30 (o a(@) = SLal@/21[0/ 0], L)

rechis(£;) = {f;a} £, = head(a)
Li = L[fr(uo)] - [fr(tnr1)] £ ¢ L

var(Lg)\Tx = Z Wo, -+ ,Wnt1 are fresh
LlLp[Wo/Z|[Wo/z]] - - [Li[Wnt1 /3] [Un+1/3]] = L
(- £i(@) =Li,- L) B2y (- £i(@) =L, L)

L = 8[£:(@)] - - [f:(@n71)]  £:¢ &  @o, -, wnTT are fresh

[
LI = £ ([0 /], T [On 1/ 57,]) 8 &g 1Dz, (L) [ /7))

pl—1

(...fi(wi): PR ,L) =
(f’b(w’b) = f;'““(m’i?"' 7mi)7 f;'wz(wof" 7wn+1) =L, ,L)
n+2 times

Table 1. Pseudo-linear to linear transformation

steps specified in Table 1, which we discuss below. Let (f1 (1) =Ly, -+ ,£o(Tp) =
Ly, L) be a lam program, let rechis(£;) be the set of recursive histories of £;, and
let head(e) = € and head(fa) = £.

1—1
Transformation = 1: Removing multiple recursive histories. We repeatedly ap-

ply the rule defining }?1=>H11. Every instance of the rule selects a function f; with
a number of recursive histories greater than one — the hypotheses rechis(£;) =
{fifra,£;00, -+ ,£iBn} and {head(Bo), -, head(B,)}\fr # & — and expands
the invocation of f, with f; # f;. By definition of pseudo-linearity, the other
function names in rechis(£f;) have one recursive history. At each application of
the rule the sum of the lengths of the recursive histories of £; decreases. Therefore
we eventually unfold the (mutual) recursive invocations of £; till the recursive
history of f; is unique. For example, the program

(£(z) = (z,y)&e(7) , g(r) = (z,y)&E(x) + g(y) , L)
is transformed into

(f(z) = (z,y)&e(x) , g(z) = (z,y)&(z, z)&g(z) + gly) , L).

1—1
Transformation P=>2: Reducing the histories of pseudo-linear recursive func-
1—1
tions. By = 1, we are reduced to functions that have one recursive history. Yet,
this is not enough for a program to be linear recursive, such as the 1’-program
or the following h”1”-program
(b"(z,y) = (2,2)&1"(y,2) + 1"(y,2)
(z,y) = (y,z)&h"(y, z)&0" (2, x) ,
h”(xl R 332)
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(the reason is that the bodies of functions may have different invocations of a

same function). Rule p’1»:—>>12 expands the bodies of pseudo-linear recursive func-
tions till the histories of nonlinear recursive functions have length one. In this
rule (and in the following ), we use lam contexts with multiple holes, written
L[]---[]- We write £ ¢ £whenever there is no invocation of £ in £.

By the hypotheses of the rule, it applies to a function f; whose next element
in the recursive history is f; (by definition of the recursive history, f; # ;) and
whose body L; contains at least two invocations of fj. The rule transforms L; by
expanding every invocation of fj. For example, the functions h” and 1” in the
h”1”-program are transformed into

W(z,y) = (z,2)&1"(y, 2) + 1"(y, z) ,

1"(z,y) = (v, 2)&((y,2')&1"(2,2") + 1"(2,y))
&((z,2")&1" (z,2") + 1"(z, 2)).

1—1
The arguments about the termination of the transformation =, are straight-
forward.

. pl—1l 3 i . . ) pl—1l
TTCZTLSfO?"mCLtZOn =3 Removzng nonlinear recursive invocations. By 9 wWe

are reduced to pseudo-linear recursive programs where the nonlinearity is due to
recursive, but not mutually-recursive functions (such as fibonacci). The trans-

. pl—1 . . . . . .
formation =3 removes multiple recursive invocations of nonlinear recursive
programs. This transformation is the one that introduces inaccuracies, e.g. pairs
that are not present in the nonlinear recursive program.

In the rule of P|1=H>13 we use the auxiliary operator b (L) defined as follows:

bf(o) =0, bf((xvy)) = (xay)v
be (£()) = 0, be (g(2)) = g(Z), if (£ # g),
be(L&L) = be(L)&be (L), be(L + L') = be(L) + be(L)).

The rule of ;;1:»—;13 selects a function f; whose body contains multiple recursive
invocations and extracts all of them — the term bg, (L;). This term is put in parallel
with an auxiliary function invocation — the function £** — that collects the
arguments of each invocation f; (with names that have been properly renamed).
The resulting term, called L{"* is the body of the new function £{* that is
invoked by £f; in the transformed program. For example, the function fibonacci

fibonacci(r,s) = (r,s)&(t, s)&fibonacci(r,t)&fibonacci(t, s)

is transformed into
fibonacci(r,s) = fibonacci®™*(r, s, r,s),
fibonacci®™®(r, s, 1, s') = (r,8)&(r’, s')
&fibonacci®™®(r,t,t,s’)
where different invocations (fibonacci(r, s) and fibonacci(r’,s’)) in the origi-
nal program are contracted into one auxiliary function invocation (fibonacci®**

(r,s,7',5")). As a consequence of this step, the creations of names performed by
different invocations are contracted to names created by one invocation. This
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leads to merging dependencies, which, in turn, reduces the precision of the anal-
ysis. (As discussed in Section 1, a cardinality argument prevents the inaccuracies

1—1
introduced by = 3 from being totally eliminated.)
As far as the correctness of the transformations in Table 1 is concerned, we
begin by defining a correspondence between states of a pseudo-linear program

1—1
and those of a linear one. We focus on = 3 because the proofs of the correctness
of the other transformations are straightforward.

Definition 11. Let Ly be the linear program returned by the Transformation 3
of Table 1 applied to L1. A state <V1, L1> of L1 is linearized to a state <V2, L2>
of Lo, written <V1, L1> D1in <W2, L2>, if there exists a surjection o such that:

1. if(x,y) € Vq then (o(x),0(y)) € Va.

2. 4fb(Ly) =Ty + -+« + Ty and b(Ly) =T} + --- + T}, then for every 1 <
i < 'm, there exists 1 < j < n, such that o(T;) € T';

3. if £(Z1) € Ly then either (1) £(o(Z1)) in Ly or (2) there are £(Zz) - £(Ty)
in Ly and £ (g1, -+ ,Yn) in Lo such that, for every 1 < k' <k here exists
h’ with O'(ffk/) = ]’jh/ 5
In the following lemma we use the notation £[L1]---[Ly] defined in terms of

standard lam context by (- ((£[L1])[L2]) - - - )[Ln]-

Lemma 2. Let <\/1, L1> S1in <\/2, L2>. Then, <\/2, L2> — <V’2, ’2> implies
there exists <V1, L1> —* <\/’17 L’1> such that <W’ 1> D1in <W2, L. >

Proof. Base case. Initially L; = Lg because the main lam is not affected by the
transformation. Therefore the first step can only be an invocation of a standard
function belonging to both programs. We have two cases:

1. the function was linear already in the original program, thus it was not
modified by the transformation. In this case the two programs performs the
same reduction step and end up in the same state.

2. the function has been linearized by the transformation. In this case the invo-
cation at the linear side will reduce to an invocation of an auz-function and
it will not produce new pairs nor new names. The corresponding reduction
in <\/17L1> is a zero-step reduction. It is easy to verify that <V1,L1> D1in

(Vh,Lh).

Inductive case. We consider only the case in which the selected function is an
auz-function. The other case is as in the base case. Let

OV, 2P [E@)] - [£@0)])
@lin <Vén)7 Qén) [fauz (ﬂla Tty ﬁh):|>

Without loss of generality we can assume that 2(1") does not contain other invo-
cations to f and the “linearized to” relationship makes f(91)&- -+ &£(0x) corre-

spond to £***(Uy,- - ,Uy).Then we have
<\/ S(n) fau:c( 1, 777h)]> SN
VY @iy, e <, S5 Lo [B /][00 U/, 5]
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where, £%% (g1, -+ ,Jp) = Lgaw, var(Lses)\J1 - - Jp, = Z and @ are fresh names.
By construction,

Liow = f’““( [yl/y] . ,yz[ﬁ/?ﬂ)&&iel..k(bf(Lf)[@/g])

where £(§) = £¢[£(y})] - [£(y})] = L and £ ¢ £;.
The corresponding reduction steps of <\/§n), 25") [£(?1)] - [£(Dk)]) are the
following ones:

n ~ £, on
Ve @) [£@)] f(@) | £0)
M @<y @ @iy, &7 [Le[P/]] - [Le[P/5]])
and @; are the fresh names created by the invocation £(%;), 1 < i < k. We need
to show that:

V) @<ty @ - @ r<itp, £ [Le[P1/5]] - [Le[F/3]])
@lin
<W§n) @ 1713 e 7ah<@7 ’gén) [Lfaum]>

where

LI — f“ul‘( [m/ . ,g];c[ﬁ\é/g])&L““z and L% = &iel..k(bf(Lf)[ﬁi/g])[ﬁ/z]'
To this aim we observe that:

— for every 1 < k' < k there exists A’ such that o(Vy/) = Uy ; moreover @w =
o(wy) = -+ = o(wg). This satisfies condition I of Definition 11;

— if (a,b) € Lf[?/i/?j], with a,b € w;, v;, then (o(a),o (b)) € bf(Lf)[ai/g][ib/g],
being o defined as in the previous item, therefore o(a), o (b) € w, ;. Notice
that, due to the &je1..r composition in the body of £***  two pairs sequen-
tially composed in L may end up in parallel (through o). The converse never
happens. Therefore condition 2 of Definition 11 is satisfied.

— if g(@) € Ly we can reason as in the previous item. We notice that function
invocations g(%) that have no counterpart (through o) in Lg[Vi /3] may be
cointained in &ie1. k(bf(Lf)[ﬁi/y])[@/z] We do not have to mind about them
because the lemma guarantees the converse containment. N

— in Lf[Uz/y] we have k new invocations of £(b; 1) f(blyk), where b;; =
0f [V /3] [Wj/3]. Therefore in the pseudolinear lam we have k? invocations
of £, while in the corresponding linear lam we find just one invocation of
f““m(gr’l[m/g] [@W/3],-, yl[ﬁé/g] [@W/3]). We notice that the surjection o is
such that (4[5 /5][%/3] = o(br;) = - = o(br;), with 1 < j < k. This,
together with the previous item, satisfies condition & of Deﬁmtlon 11.

Lemma 3. Let <\/1, L1> D1in <\/2, L2> and <W1, L1> —* <W'1, L’1> Then there
are {Vq, L}y —* (V{, L) and (Va, Ly ) —* (V4, L) such that {V{, L] D1ia

(V3 Ly)
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Proof. A straightforward induction on the length of <\/1, L1> —* <\/’1, L’1> In
the inductive step, we need to expand the recursive invocations “at a same level”
in order to mimic the behavior of functions f*%*,

Theorem 4. Let L1 be a pseudo-linear program and Lo be the result of the
transformations in Table 1. If a saturated state of Lo has no circularity then no
state of L1 has a circularity.

Proof. The transformations ;:1;)11 and Igg perform expansions and do not
introduce inaccuracies. By Lemma 2, for every <W2, L2> reached by evaluating
Lo, there is <V1, L1> that is reached by evaluating £; such that <\/1, L1> iin
<\/2, L2>. This guarantees that every circularity in <\/1, L1> is also present in
<\/2, L2>. We conclude by Lemma 3 and Theorem 2.

We observe that, our analysis returns that the fibonacci program is circula-
rity-free.

C.2 The general case

In non-pseudo-linear recursive programs, more than one mutual recursive func-

tion may have several recursive histories. The transformation 2P i Table 2
takes a non-pseudo-linear recursive program and returns a program where the
“non-pseudo-linearity” is simpler. Repeatedly applying the transformation, at
the end, one obtains a pseudo-linear recursive program.

More precisely, let (fl(le) =1Ly, ,£(Ty) = LZ,L) be a non-pseudo-linear
recursive program. Therefore, there are at least two functions with more than
one recursive history. One of this function is f;, which is the one that is be-

npl—pl
ing explored by the rule =="". Let also £; be another function such that

closure(£f;) = closure(£;) (this £; must exists otherwise the program would be
already pseudo-linear recursive). These constraints are those listed in the first
line of the premises of the rule. The idea of this transformation is to defer the
invocations of the functions in {head (o £;),- - - , head(on11£;)}\£;, i.e., the func-
tions different from f; that can be invoked within £;’s body, to the body of the
function £;. The meaning of the second and third lines of the premises of the rule
is to identify the pj different invocations of these m functions (k = m). Notice
that every ai,---,ap41 could be empty, meaning that £; is directly called. At
this point, what we need to do is (1) to store the arguments of each invocation of
f;,, - ,f;, into those of an invocation of £; — actually, a suitable tuple of them,
thus the arity of £; is augmented correspondingly — and (2) to perform suitable
expansions in the body of f;. In order to augment the arguments of the invo-
cations of f; that occur in the other parts of the program, we use the auxiliary

rule =22 that extends every invocation of f; with n additional arguments that
are always fresh names. The fourth line of the premises calculates the number
n of additional arguments, based on the number of arguments of the functions
that are going to be moved into £;’s body. The last step, described in the last
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f¢g o Z1, "+, zm are n-tuple of fresh names

S[E@D)] - (1)) £ L[£(a1, 2)] - [£ (T, )]

rechis(f;) = {ff;00,fj01, -+ ,fjan41} fefian f(rechis(£)) > 1
{fiy,: %0y, } = {head(a1f;), - , head(api1£5)}\E;
Lj=£[fp1(“1)]"'[fpk(“k)] {fplv"'afpk}={fi1f"‘vfim} fila"'7fim¢£
f.’n s ~ ~
n = f(uy - - - ug) (Lp B L), )helb i+ 1) Ly = &'[ts; (u1)] - - - [0, (WR)]
L) = C'[£; (21, U1, 25, 20)] - [£a(zf, o 2, ak)]
~ ~ ~ ~ npl—pl
£1(87) = L1, £i(F0) = Li, -, £5(F7) =Ly, -+ ,£0(F1) = Loy Logr) =
£1(27) = LY, - £(F0, 20, -, 2k) = Lj&(&qet. kEpy (27))s -+, £5(%5) = LY, -+, £2(F2) = LY, LYy q)

Table 2. Non-pseudo-linear to pseudo-linear transformation

line of the premises of the rule, is to replace the invocations of the functions
f;,,---,£;, with invocations of £;. Notice that, in each invocation, the position
of the actual arguments is different. In the body of f;, after the transformation,
the invocations of those functions will be performed passing the right arguments.
For example, the £”g”-program

( £"(z,y) = (z,2)&L"(y,2) + &"(y,2) ,
g'(x,y) = (y,2)&t"(y, 2)&g" (2, 2) ,
f//(ilﬁl, {EQ)
is rewritten into
( f”(x, y) = (.’E, Z)&g//(l'/, y,7 Y, Z) + g”(y’ z, Zl, Z//) ’
g”(xa Y, u, 7)) = (y7 x)&f//(:% z)&g”(z, €, xl7 y/)&f”(uv ’U) >
(21, 22)

The invocation £”(y, z) is moved into the body of g”. The function g” has
an augmented arity, so that its first two arguments refer to the arguments of
the invocations of g” in the original program, and the last two arguments refer
to the invocation of £”. Looking at the body of g”, the unchanged part (with
the augmented arity of g”) covers the first two arguments; whilst the last two
arguments are only used for a new invocation of £”.

1—pl
The correctness of == is demonstrated in a similar way to the proof of

1—1
the correctness of = 3. We begin by defining a correspondence between states
of a non-pseudo-linear program and those of a pseudo-linear one.

Definition 12. Let Lo be the pseudo-linear program returned by the transfor-
mation of Table 2 applied to L1. A state <\/1, L1> of L1 is pseudo-linearized to
a state <\/2, L2> of Lo, written <\/1, L1> Sp1 <\/2, L2>, if there exists a surjection
o such that:

1. if(z,y) € V1 then (o(x),0(y)) € Va.
2.49fb(L1) =Ty + -+ + Ty, and b(Ly) =T} + --- + T}, then for every 1 <
i <m, there exists 1 < j < n, such that o(T;) € T};
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3. if £(%) € Ly then either (1) £(o(Z)) in Ly or (2) there is £(g1 -+ Yx) in Lo

such that, for some 1 <i <k, o(%) = y;;
We use the same notational convention for contexts as in Lemma 2.

Lemma 4. Let <\/1, L1> p1 <V2, L2>. Then, <W1, L1> — <\/’1, L’1> implies
there exists (Va, Ly )y —F (V4, L) such that {V}, L} ) Dp1 (V5, L)

Proof. Base case. Ly is the main lam of the nonlinear program, and Ly its pseu-
dolinear transformation.

Ly = £4[£1(U1)] - - [£m(Tr)],

where £1 does not contain any other function invocations, and m < k, meaning
that some of the f;, 1 < i < m, can be invoked more than once on different
parameters.

After the transformation, Ly contains the same pairs as L; and the same
function invocations, but with possibly more arguments:

Ly = £4[£1 (U1, 21)] - [£n (U, 21) -

Notice that some of the Z;, 1 < j < k, may be empty if the corresponding
function has not been expanded during the transformation. Moreover V; and
V5 contains only the identity relations on the arguments, so we have Vi € Vs.
Therefore, all conditions of definition 12 are trivially verified.

Inductive case. We have

Ly = £1[£1(U1)] - [£ (Ur)],

where £1 does not contain any other function invocations, and m < k, meaning
that some of the f;, 1 < i < m, can be invoked more than once on different
parameters.

We have

Ly = o[£ (U1, 21)] - [£n (U, 2k) -
where £9 may contain other function invocations, but by inductive hypothesis
we know that Definition 12 is verified. In particular condition 3 guarantees that

at least the invocations of fq,...,f,,, with suitable arguments, are in L.
Now, let us consider the reduction

<V17 L1> I <V/1, LI1>

Without loss of generality, we can assume the reduction step performed an in-
vocation of function £ (7).
We have different cases:

1. the function’s lam L¢, has not been modified by the transformation. In this
case the result follows trivially.
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2. the function’s lam L¢, has been affected only in that some function invoca-
tions in it have an updated arity. Meaning that it was only trasformed by

rg:’ln for some g and [, as a side effect of other function expansions. It follows
that b(Lg,) = b(LE, ), where L is the body of f; after the transoformation
has been applied. This satisfies condition 2 of Definition 12. Those function
invocations that have not been modified satisfy trivially the condition 8 of
Definition 12. Regarding the other function invocations we have, by con-
struction, that if g(Z) € L, then g(,y) € Lf,, where 7 are fresh names. This
satisfies condition & of Definition 12, as well. As for condition I, we have

, ~ ~
1= Vl @(Ul < ’LUl)7
where W are fresh names created in L¢,, and
Ly ~ ~ ~ ~ ~
2 = 2@(“17Z1 < wWi,Y1," " ays)v

where 1, -+, ys are the fresh names augmenting the function arities within
L . We choose the same fresh names @; and condition 1 is satisfied.
3. the function’s lam L¢, has been subject of the expansion of a function. Let

Le, = L¢,[g1(01)] - - [gn ()],

where £¢, contains only pairs, then, assuming without loss of generality that
g1 was expanded:

L;1 = Qfl[gl(%1,5i7...,gi)] [gl(q’jn72’{7”.72’7'_”)]’

where 7 is obtained by subtracting from the number of invocations n the
number of occurrences of invocations of g; in Lf .

Now, the psedulinear program has to perform the r invocations of g; that
were not present in the original program, since they have been replaced r in-
vocations of go - - - gy, in order to reveal the actual invocations gs - - - g5 that
has been delegated to g; body. By construction, the arguments of the invo-
cations where preserved by the transformation, so that if go(Z) is produced
by reduction of the nonlinear program, then the pseudolinear program will
produce go(Z,y), with § fresh and possibily empty. This satisfy condition 3
of Definition 12.

However the body of g; may have been transformed in a similar way by
expanding another method, let us say go. Then all the invocations of gy in
g1’s body that corresponds to the previously delegated function invocations
g2 - - - gr have to be invoked as well. This procedure has to be iterated until
all the corresponding invocations are encountered. Each step of reduction
will produce spurious pairs and function invocations, but all of these will be
on different new names.

Lemma 5. Let <\/1, L1> Dp1 <V2, L2> and <V1, L1> —* <V1, L’1> Then there
are <\/’1, L’1> —* <\/’1’, L’1’> and <\/2, L2> —* <\/’2, L’2> such that <\/’1’, L’1’> Dp1

V5, L)
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Proof. A straightforward induction on the length of <\/1, L1> —* <\/’17 L’1>

Every preliminary result is in place for the correctness of the transformation
npl—pl
= .

Theorem 5. Let L1 be a non-pseudo-linear program and Lo be the result of the
transformations in Table 2. If Lo is circularity-free then Ly is circularity-free.

Proof. By Lemma 4, for every <W1, L1> reached by evaluating £, there is
<\/27 L2> that is reached by evaluating Lo such that <V1, L1> Sp1 <V2, L2>.
This guarantees that every circularity in <W1, L1> is also present in <V2, L2>.
We conclude by Lemma 5.
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