U. Berger, A computational interpretation of open induction, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004., pp.326-334, 2004.
DOI : 10.1109/LICS.2004.1319627

U. Berger, W. Buchholz, and H. Schwichtenberg, Refined program extraction from classical proofs, Annals of Pure and Applied Logic, vol.114, issue.1-3, pp.3-25, 2002.
DOI : 10.1016/S0168-0072(01)00073-2

U. Berger and P. Oliva, Modified bar recursion and classical dependent choice, pp.89-107, 2005.
DOI : 10.1017/9781316755860.004

U. Berger and P. Oliva, Modified bar recursion, Mathematical Structures in Computer Science, vol.16, issue.02, pp.163-183, 2006.
DOI : 10.1017/S0960129506005093

U. Berger and H. Schwichtenberg, An inverse of the evaluation functional for typed lambda -calculus, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science, pp.203-211, 1991.
DOI : 10.1109/LICS.1991.151645

O. Danvy, Type-directed partial evaluation, POPL, pp.242-257, 1996.

O. Danvy and A. Filinski, Abstracting control, Proceedings of the 1990 ACM conference on LISP and functional programming , LFP '90, pp.151-160, 1990.
DOI : 10.1145/91556.91622

D. M. Gabbay, Applications of trees to intermediate logics, The Journal of Symbolic Logic, vol.37, issue.01, pp.135-138, 1972.
DOI : 10.2307/2272556

K. Gödel, Collected works. Publications 1938?1974, volume II, chapter Postscript to Spector, p.253, 1962.

K. Gödel, Collected works. Publications 1938?1974, volume II, chapter On a hitherto unutilized extension of the finitary standpoint, pp.241-251, 1990.

K. Gödel, Collected works. Unpublished essays and lectures, volume III, chapter In what sense is intuitionistic logic constructive, pp.189-200, 1995.

H. Herbelin, An Intuitionistic Logic that Proves Markov's Principle, 2010 25th Annual IEEE Symposium on Logic in Computer Science, pp.11-14, 2010.
DOI : 10.1109/LICS.2010.49

H. Herbelin, A Constructive Proof of Dependent Choice, Compatible with Classical Logic, 2012 27th Annual IEEE Symposium on Logic in Computer Science, pp.25-28, 2012.
DOI : 10.1109/LICS.2012.47

URL : https://hal.archives-ouvertes.fr/hal-00697240

H. William-alvin, Functional interpretation of bar induction by bar recursion, Composition Mathematica, vol.20, pp.107-124, 1968.

D. Ilik, Constructive Completeness Proofs and Delimited Control, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00529021

D. Ilik, Delimited control operators prove Double-negation Shift, Annals of Pure and Applied Logic, vol.163, issue.11, pp.1549-1559, 2012.
DOI : 10.1016/j.apal.2011.12.008

URL : https://hal.archives-ouvertes.fr/hal-00647389

D. Ilik, Continuation-passing style models complete for intuitionistic logic, Annals of Pure and Applied Logic, vol.164, issue.6, pp.651-662, 2013.
DOI : 10.1016/j.apal.2012.05.003

URL : https://hal.archives-ouvertes.fr/hal-00647390

D. Ilik, Formal proof of normalization of System T+ in Agda, 2014.

D. Ilik and K. Nakata, A direct version of Veldman's proof of open induction on Cantor space via delimited control operators, Leibniz International Proceedings in Informatics (LIPIcs), pp.188-201, 2014.

U. Kohlenbach, Applied Proof Theory: Proof Interpretations and Their Use in Mathematics, 2008.

G. Kreisel, Interpretation of analysis by means of constructive functionals of finite types, Constructivity in Mathematics, Proceedings of the colloqium held at Amsterdam Studies in Logic and The Foundations of Mathematics, pp.101-127, 1957.

G. Kreisel, Review of the paper The model G of the theory BR " by Ersov, Zentralblatt für Mathematik und ihre Grenzgebiete, p.312, 1976.

J. Krivine, Dependent choice, ???quote??? and the clock, Theoretical Computer Science, vol.308, issue.1-3, pp.259-276, 2003.
DOI : 10.1016/S0304-3975(02)00776-4

URL : https://hal.archives-ouvertes.fr/hal-00154478

S. Kuroda, Intuitionistische untersuchungen der formalistischer logik, Nagoya Mathematical Journal, vol.3, pp.35-47, 1951.

H. Lombardi and C. Quitté, Algèbre commutative ? Méthodes constructives, Calvage & Mounet, 2011.

H. Schwichtenberg, On bar recursion of types 0 and 1. The Journal of Symbolic Logic, 1979.

H. Schwichtenberg and S. S. Wainer, Proofs and Computations. Perspectives in Logic, 2012.

M. Seisenberger, Programs from proofs using classical dependent choice, Annals of Pure and Applied Logic, vol.153, issue.1-3, pp.97-110, 2008.
DOI : 10.1016/j.apal.2008.01.004

J. P. Seldin, Abstract, The Journal of Symbolic Logic, vol.37, issue.03, pp.626-647, 1986.
DOI : 10.2307/2274019

C. Spector, Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics, Proc. Sympos. Pure Math, pp.1-27, 1962.
DOI : 10.1090/pspum/005/0154801

M. Bezem, S. Berardi, and T. Coquand, On the computational content of the axiom of choice, The Journal of Symbolic Logic, vol.63, issue.2, pp.600-622, 1998.