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Approximate Controllability of the Two Trapped Ions

System

Esteban Paduro∗†, Mario Sigalotti ‡§

December 9, 2014

Abstract

We prove the approximate controllability of a bilinear Schrödinger equation modelling
a two trapped ions system. A new spectral decoupling technique is introduced, which
allows to analyze the controllability of the infinite-dimensional system through finite-
dimensional considerations.

1 Introduction

In this paper we study the controllability of a system modelling a two trapped ions system
driven by two laser beams.

1.1 The Model

The two trapped ions system models a pair of identical charged particles confined to a small
region of the space. Both ions are stabilized by the same spatial oscillation, given by a
harmonic oscillator with of frequency ω. The controls are monochromatic lasers of frequencies
Ω and Ω± ω.

The state of the system is represented by a function φ = (φgg, φge, φeg, φee) ∈ (L2(R))
4
,

which represents the different possible configurations of electrons in the ions (e for excited
state, g for ground state). In the Lamb–Dicke limit, the system can be written (see [22]) as
the following two trapped ions system

i d
dt
φgg = (u1 + u1ra

† + u1ba)φeg + (u2 + u2ra
† + u2ba)φge,

i d
dt
φeg = (u∗1 + u∗1ra+ u∗1ba

†)φgg + (u2 + u2ra
† + u2ba)φee,

i d
dt
φge = (u1 + u1ra

† + u1ba)φee + (u∗2 + u∗2ra+ u∗2ba
†)φgg,

i d
dt
φee = (u∗1 + u∗1ra+ u∗1ba

†)φge + (u∗2 + u∗2ra+ u∗2ba
†)φeg,

(1.1)
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where u1, u1r, u1b, u2, u2r, u2b ∈ C are the controls of the system and a = 1√
2
(x+ ∂x), a

† =
1√
2
(x− ∂x) are the creation and annihilation operators.

We are interested in the approximate controllability problem for system (1.1) which can
be read as follows:

Given ε > 0, φ0, φT ∈ (L2(R))
4
with ‖φ0‖(L2(R))4 = ‖φT‖(L2(R))4 , find T0 > 0 such

that for any T ≥ T0 there exist bounded piecewise constant controls u1(t), u1r(t),
u1b(t), u2(t), u2r(t), u2b(t), with initial data φ(0) = φ0 satisfying

‖φ(T )− φT‖(L2(R))4 < ε.

1.2 Existing Literature

For a single trapped ion counterpart of (1.1), exact controllability has been proved on some
finite-dimensional subspaces of (L2(R))

2
in [19] and [18]. In [23] an approximate controlla-

bility result on (L2(R))
2
is obtained using spectral properties of coupling operators, allowing

the decoupling of the internal dynamics. A similar approach is proposed in a more general
framework in [3]. A different approach, based on adiabatic evolution, is proposed in [1]. The
system modelling the single trapped ion before Lamb–Dicke limit has been studied in [12],
obtaining approximate controllability in (L2(R))

2
and also in with respect to some stronger

norms. Such results are based on a set of explicit estimates of the approximation error with
respect to the Lamb–Dicke limit. The approximate controllability of a different model for the
interaction of between a bosonic mode and a two-level system is proved in [7].

For several trapped ions in the Lamb–Dicke limit, in [4] (see also [21]) an approximate con-
trollability result is obtained, based on the analysis on a sequence of nested finite-dimensional
system, which can be decoupled from the rest of system. In the recent paper [17] the (approxi-
mate) controllability of the system is established by considering different families of controlled
dynamics. Many other works studying the two trapped ions system deal with the construc-
tion of quantum gates [11, 10, 14] but up to our knowledge, they do not present general
controllability results for system (1.1).

1.3 Main Results

Theorem 1.1 (Approximate Control of the two trapped ions system). Let ε > 0, M > 0 and
(φ0, φT ) ∈ (L2(R))

4
, with ‖φ0‖ = ‖φT‖. Then, there exists T0 > 0 such that for all T > T0 we

can find u1, u1r, u1b, u2, u2r, u2b ∈ L∞((0, T ),C) with L∞-norm smaller than M such that
the solution φ(t, x) of system (1.1) with initial data φ(0) = φ0 satisfies

‖φ(T )− φT‖(L2(R))4 < ε.

For the proof we introduce a new finite-dimensional approximation of system (1.1) with
good control properties. In a second step we study spectral properties of the coupling op-
erators of the original system; this allows us to construct the control laws of the original
system based on those of the finite-dimensional approximation. Finally, using estimates for
the approximation error, we obtain the approximate controllability of system (1.1).
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The proof also shows that not all vector fields are necessary for the approximate control-
lability of the system. In particular, it is sufficient to exploit red shift only (respectively, blue
shift only), that is, the system is still approximately controllable if one sets to zero the controls
u1b, u2b (respectively, the controls u1r, u2r). See the appendix for more details on this issue.

1.4 Outline of the Work

The paper is organized as follows. In Section 2 we develop the technical tools required for the
proof. Section 3 is devoted to the proof of Theorem 1.1. In Section 3.1 we present a modal
representation for the system. Section 3.2 discusses the modal approximation of the problem
and some auxiliary controllability properties. In Section 3.3 we present the decoupled modal
approximation and the proof of the main theorem.

2 A Decoupling Technique for Oscillatory Systems

In this section we study a decoupling technique for oscillatory systems. This technique is based
on the spectral decomposition of skew-hermitian operators and non-resonance conditions that
make the decoupling possible. This is the main technical tool used to pass from the control-
lability result for the finite-dimensional approximation to the approximate controllability of
the infinite-dimensional system.

2.1 Preliminary Definitions

Let X be an infinite-dimensional separable Hilbert space and {φj}j∈N an orthonormal basis
of X. Let U : X → X be a skew-hermitian operator with compact resolvent. Denote by
Σ(U) = {ωj}Γj=1 ⊂ [0,+∞) the sequence of distinct moduli of the eigenvalues of U , with
Γ ∈ N ∪ {∞}. We say that the elements of Σ(U) are the frequencies associated with the
operator U .

For each frequency w ∈ Σ(U), we define the subspaces Aw ⊂ X as the space generated by
eigenfunctions associated with the eigenvalues with modulus w, that is,

Aw = span{x | Ux = λx, |λ| = w},

and for sets of frequencies B ⊂ Σ(U) we set

AB =
⊕

w∈B
Aw.

Definition 2.1 (Resonant Class). For ν 6= 0 we define the set of Q-resonant frequencies with
ν as

R(ν) =
{
w ∈ Σ(U) | w

ν
∈ Q \ {0}

}
.

We find also useful to set R(0) = {0} and to introduce, for every m ∈ N and every ν ∈ R,

Rm(ν) = R(ν) ∩ {ωj}j<m.

For every m ∈ N, we define an equivalence relation in {ω1, . . . , ωm−1} by ωj ∼ ωk if and
only if Rm(ωj) = Rm(ωk) and we denote by N(m) the number of equivalence classes of such
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a relation. For each class Cj 6= {0}, j = 1, . . . , N(m), we choose νj > 0 such that w
νj

∈ N for

each w ∈ Cj (νj exists because Cj is finite). We also set vj = 0 if Cj = {0}. By definition of
∼, the elements of {νj | j = 1, . . . , N(m), νj 6= 0} are Q-linearly independent.

Definition 2.2 (Decoupled Decomposition). For every m ∈ N with m ≤ Γ the decoupled

decomposition of U at order m is the family of operators U1, . . . , UN(m), Udec, Uρ : X → X
given by





Uj = U Π[ARm(νj)], j = 1, . . . , N(m),
Udec = U Π[Aωm

],

Uρ = U −
∑N(m)

j=1 Uj − Udec = U
(
I −

∑N(m)
j=1 Π[ARm(νj)]− Π[Aωm

]
)
,

(2.1)

where Π[C] denotes the orthogonal projection over the space C. By definition

U = U1 + · · ·+ UN(m) + Udec + Uρ. (2.2)

Some basic properties of this decomposition are summarized in the following lemma.

Lemma 2.3. Let U be a skew-hermitian operator with compact resolvent and let U1, . . . , UN(m), Udec, Uρ

be the decoupled decomposition at order m defined as above. Then

(a) – im (Uj) ⊂ ARm(νj), j = 1, . . . , N(m),

– im (Udec) ⊂ Aωm
,

– im (Uρ) ⊂
(

N(m)
⊕

j=1
ARm(νj)

⊕Aωm

)

⊥

.

(b) Each pair of operators in the decomposition commute. Moreover, if U, V ∈ {U1, . . . , UN(m), Udec, Uρ}
and U 6= V then U V = V U = 0.

Proof. (a) It is enough to notice that the spaces ARm(νi) are direct sum of eigenspaces of U .
The space ARm(νj) is then invariant under U . (b) It follows from the fact that eigenspaces
associated with different eigenvalues are orthogonal, and therefore the image of each operator
is contained in the kernel of the other.

2.2 Approximate Decoupling of Skew-Hermitian Operators

In this section we develop the main technical tool used in this paper, namely, an approximation
method for the operators exp (Ujt) by means of exp(Uτ). This technique is based on the
geometric fact classically known as the “irrational windings of the torus”, which says that
the integer multiples of an irrational number modulo 1 are dense in interval the [0, 1). In
[10, 13, 23] similar decoupling techniques are used for control purposes. Our formulation gives
an abstract framework which could be applied to other problems.

For the proof we need a n-dimensional formulation of the mentioned result. The proof of
this result is classical (see, e.g., [16, Prop. 1.4.1]).

Lemma 2.4 (Irrational Winding of the Torus). Let Tn = Rn/Zn be the n-dimensional torus
with the usual distance. Let ϕ the automorphism: x→ x+ω (mod 1), where ω ∈ Rn, x ∈ Tn.
Then the orbits of ϕ are everywhere dense if and only if

k · ω ∈ Z with k ∈ Zn ⇒ k = 0.
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The main result of the section is the following.

Theorem 2.5 (Approximate Decoupling of Skew-Hermitian Operators). Let X be a separable
Hilbert space and U : X → X a skew-hermitian operator with compact resolvent. Let Σ(U),
R(·) and N(·) be defined as in Section 2.1. Suppose that there exists m ∈ N such that ωm 6= 0
and

ωj

ωm
∈ (R \Q) ∪ {0} for each j < m.

Let Y be a subspace of X such that

⊕

j<m

Aωj
⊂ Y and

⊕

j>m

Aωj
⊂ Y ⊥. (2.3)

Then, given t̂ ∈ R, ℓ ∈ 1, . . . , N(m), and ε > 0 there exist t̄ ∈ R and a unitary operator
Σ : X → X such that exp(t̄ U) admits the decomposition

exp(t̄ U) = exp(t̂ Uℓ)Σ = Σexp(t̂ Uℓ), (2.4)

where Uℓ is defined by (2.1) and the operator Σ satisfies

‖(Σ− I)|Y ‖L(Y,X) < ε.

Proof. Let ℓ ∈ {1, . . . , N(m)}, t̂ ∈ R, and ε > 0 be fixed. We split the proof in 4 steps.

Step 1 Consider the decoupled decomposition (2.1) of the operator U , with m satisfying the
hypotheses of the theorem. By Lemma 2.3 the terms in the decomposition commute
and then we have

exp(tU) = exp(tU1) · · · exp(tUN(m)) exp(tUdec) exp(tUρ). (2.5)

By definition of νℓ, either νℓ = 0 or w
νℓ

∈ N with w ∈ Rm(νℓ). Let ν̂ℓ = νℓ if νℓ 6= 0 while,

if νℓ = 0, choose ν̂ℓ = 1. Define t̄ by

t̄ = t̂+
2π

ν̂ℓ
s, s ∈ N, (2.6)

where s will be chosen later. Then we have

wt̄ = wt̂+ 2π
w

ν̂ℓ
s ≡ wt̂ (mod 2π), ∀w ∈ Rm(νℓ).

(Notice that w = 0 if νℓ = 0.) By definition of Uℓ, it follows that

exp(t̄Uℓ) = exp(t̂Uℓ), (2.7)

independently of the choice of s ∈ N.

Step 2 By definition of theQ-resonant frequency classes, the elements of {νj}j∈{1,...,ℓ−1,ℓ+1,...,N(m)},νj 6=0∪
{ωm} are Q-linearly independent. Let N̂(m) be equal to N(m) if νj 6= 0 for every
j ∈ {1, . . . , ℓ − 1, ℓ + 1, . . . , N(m)} and to N(m) − 1 otherwise. Define ν̂1, . . . , νN̂(m) in

such a way that {νj}j∈{1,...,ℓ−1,ℓ+1,...,N(m)},νj 6=0 ∪ {ωm} = {ν̂j}N̂(m)
j=1 .
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Consider the application

F : R → TN̂(m),

s 7→ s2π
ν̂ℓ

(
ν̂1, . . . , ν̂N̂(m)

)
.

By Lemma 2.4 we obtain that F (N) is dense in the torus TN̂(m). Since F (s) can be taken

as close to −t̂
(
ν̂1, . . . , ν̂N̂(m)

)
as desired, it is possible, for every c > 0 (to be chosen

later suitably small) to select s ∈ N in such a way that

dT1

(
s
2π

ν̂ℓ
ν̂j,−t̂ν̂j

)
< cε, for j = 1, . . . , N̂(m).

By definition of t̄, the latter system of inequalities can be rewritten as

dT1 (t̄ ν̂j, 0) < cε, for j = 1, . . . , N̂(m).

Equivalently, there exist δ1, . . . , δN̂(m) such that

|δj| < cε, δj = t̄ ν̂j (mod 2π), for j = 1, . . . , N̂(m). (2.8)

Step 3 Let h ∈ {1, . . . , ℓ− 1, ℓ+ 1, . . . , N(m)}. By construction, Uh only has finitely many
eigenvalues, so we can write its spectral decomposition as

t̄Uh = iθ1t̄Πθ1 + · · ·+ iθnt̄Πθn , (2.9)

where iθ1, . . . , iθn ∈ iR are the eigenvalues of Uh|ARm(νh)
and Πθk the projection operator

onto the eigenspace associated with iθk. Using the representation (2.9) we can compute
the exponential of the operator Uh as follows

exp(t̄Uh) = eiθ1 t̄ Πθ1 + · · ·+ eiθn t̄ Πθn +Π[A⊥
Rm(νh)

].

Fix k = 1, . . . , n. Notice that either νh = 0 = θk or there exists j ∈ {1, . . . , N̂(m)} such

that νh = ν̂j and
|θk|
ν̂j

is in N. By equation (2.8) it then follows that

dT1 (θk t̄, 0) = dT1

(
θk
ν̂j
ν̂j t̄, 0

)
≤ |θk|

ν̂j
cε.

Hence,
∥∥∥et̄Uh − I

∥∥∥
L(X)

≤
n∑

k=1

∣∣∣eit̄ θk − 1
∣∣∣ ≤

n∑

k=1

dT1(θk t̄, 0) ≤ cε

n∑

k=1

|θk|
ν̂j
,

with et̄Uh = I if νh = 0. Moreover, reasoning similarly for Udec, whose only possible
nonzero eigenvalues are ±iωm, we get

∥∥∥et̄Udec − I
∥∥∥
L(X)

< 2cε.

Finally, for every c′ > 0 there exists a choice of t̄ as in (2.6) such that
∥∥∥et̄Uh − I

∥∥∥
L(X)

< c′ε, for h ∈ {1, . . . , ℓ− 1, ℓ+ 1, . . . , N(m), dec}. (2.10)
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Step 4 Define

Σ =




N(m)∏

j=1,j 6=ℓ

exp(t̄ Uj)


 exp(t̄ Udec) exp(t̄ Uρ).

Then (2.4) follows from the commutativity of the terms in the decomposition (2.5) and
from the identity (2.7).

By hypothesis, Y ⊂ Ker (Uρ) and therefore exp(τUρ)φ = φ for φ ∈ Y . Then estimate
(2.10) with c′ = 1/N(m) implies that Σ satisfies

‖(Σ− I)|Y ‖L(Y,X) ≤
∑

j 6=ℓ

∥∥∥et̄Uj − I
∥∥∥
L(Y )

+
∥∥∥et̄Udec − I

∥∥∥
L(X)

< N(m)
ε

N(m)
= ε.

Based on the unitarity of the evolution, we next provide an estimate for the tracking error
made by iterated approximations.

Lemma 2.6 (Iterated Approximations). Let X be a Hilbert space and Y a subspace of X.
Take x0 ∈ Y , ‖x0‖ = 1 and let Υ1, . . . ,ΥN be a sequence of unitary operators such that

xk = Υkxk−1 ∈ Y for k = 1, . . . , N . Let Υ̃k be an approximation of Υk of the form Υ̃k = ΣkΥk,
where Σk is an unitary operator on X that satisfies

‖(Σk − I)|Y ‖L(Y,X) < εk, for some εk > 0.

Then the approximate trajectory x̃0 = x0, x̃k = Υ̃kx̃k−1 satisfies

‖xn − x̃n‖ <
n∑

k=1

εk, for n = 1, . . . , N.

Proof. We prove the lemma by induction. For x̃1, we have:

x̃1 = Σ1Υ1x0 = Υ1x0 + (Σ1 − I)Υ1x0 = x1 + δ̂1

where ‖δ̂1‖X < ε1 because Υ1x0 ∈ Y .

Now suppose that for some n ≤ N − 1 we known that x̃n = xn + δ̂n, with ‖δ̂n‖ <
∑n

k=1 εk.
We have to prove that the same is valid for n+ 1.

x̃n+1 = Σn+1Υn+1xn = Υn+1xn + (Σn+1 − I)Υn+1xn + Σn+1Υn+1δ̂n = xn+1 + δ̂n+1

where ‖δ̂n+1‖X < εn+1 + ‖δ̂n‖X <
∑n+1

k=1 εk. Therefore we obtain

‖xn − x̃n‖X <
n∑

k=1

εk, n ≤ N.

This concludes the proof of Lemma 2.6.
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3 Control of the Two Trapped Ions System

In this section we present the decoupled modal decomposition of the two trapped ions system
and we use it to prove the approximate controllability of the latter.

3.1 Galerkin Representation

For convenience, let us rewrite here the two trapped ions system introduced in (1.1), that
is,

i d
dt
φgg = (u1 + u1ra

† + u1ba)φeg + (u2 + u2ra
† + u2ba)φge,

i d
dt
φeg = (u∗1 + u∗1ra+ u∗1ba

†)φgg + (u2 + u2ra
† + u2ba)φee,

i d
dt
φge = (u1 + u1ra

† + u1ba)φee + (u∗2 + u∗2ra+ u∗2ba
†)φgg,

i d
dt
φee = (u∗1 + u∗1ra+ u∗1ba

†)φge + (u∗2 + u∗2ra+ u∗2ba
†)φeg,

and recall that a = 1√
2
(x+ ∂x), a

† = 1√
2
(x− ∂x).

Choose as orthonormal basis of (L2(R))
4
the family {φj}∞j=1 defined by

φ4j+1 =




|j〉
0
0
0


 , φ4j+2 =




0
|j〉
0
0


 , φ4j+3 =




0
0
|j〉
0


 , φ4j+4 =




0
0
0
|j〉


 , (3.1)

where |j〉 denotes the j-th Hermite function, j = 0, 1, 2, . . . The orthonormal basis identifies
a system of coordinates in the space of wavefunctions ψ ∈ (L2(R))

4
through the relation

ψ =
∞∑

n=0


c

n
gg




|n〉
0
0
0


+ cneg




0
|n〉
0
0


+ cnge




0
0
|n〉
0


+ cnee




0
0
0
|n〉





 . (3.2)

It is useful to split the controls in their real and imaginary parts in order to write a system
with real-valued controls:

u1 = v1+iw1, u2 = v2+iw2,
u1r = v1r+iw1r, u2r = v2r+iw2r,
u1b = v1b+iw1b, u2b = v2b+iw2b.

(3.3)

For j, k ∈ N, define the skew-adjoint operators Ej,k, Fj,k : (L2(R))
4 → (L2(R))

4
by their

actions on the basis {φj}∞j=1 as follows

Ej,kφj = iφk, Ej,kφk = iφj, Fj,kφj = −φk, Fj,kφk = φj,
Ej,kφℓ = 0, Fj,kφℓ = 0, for ℓ /∈ {j, k}. (3.4)

We can rewrite system (1.1) as

d

dt
φ =

(
v1V1 + w1W1 + v1rV1r + w1rW1r + v1bV1b + w1bW1b (3.5)

+v2V2 + w2W2 + v2rV2r + w2rW2r + v2bV2b + w2bW2b

)
φ,
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where
V1 = − ∑∞

n=0 (E4n+1,4n+2 + E4n+3,4n+4) ,
W1 =

∑∞
n=0 (F4n+1,4n+2 + F4n+3,4n+4) ,

V1r = − ∑∞
n=0

√
n+ 1 (E4n+2,4n+5 + E4n+4,4n+7) ,

W1r =
∑∞

n=0

√
n+ 1 (F4n+2,4n+5 + F4n+4,4n+7) ,

V1b = − ∑∞
n=0

√
n+ 1 (E4n+1,4n+6 + E4n+3,4n+8) ,

W1b = − ∑∞
n=0

√
n+ 1 (F4n+1,4n+6 + F4n+3,4n+8) ,

V2 = − ∑∞
n=0 (E4n+1,4n+3 + E4n+2,4n+4) ,

W2 =
∑∞

n=0 (F4n+1,4n+3 + F4n+2,4n+4) ,
V2r = − ∑∞

n=0

√
n+ 1 (E4n+1,4n+7 + E4n+2,4n+8) ,

W2r =
∑∞

n=0

√
n+ 1 (F4n+1,4n+7 + F4n+2,4n+8) ,

V2b = − ∑∞
n=0

√
n+ 1 (E4n+3,4n+5 + E4n+4,4n+6) ,

W2b = − ∑∞
n=0

√
n+ 1 (F4n+3,4n+5 + F4n+4,4n+6) .

(3.6)

3.2 Control of the Modal Approximations

Let us study the controllability of modal (or Galerkin) approximations of system (3.6), ob-
tained by truncating the high energy levels of the system in order to obtain a finite-dimensional
reduction.

For every n ∈ N, let Yn = span{φj | j = 1, . . . , n} ⊂ (L2(R))
4
. The modal approxi-

mation of order n of the two trapped ions system is the control system in Y4n given
by

d
dt
φ =

(
v1V

(4n)
1 + w1W

(4n)
1 + v1rV

(4n)
1r + w1rW

(4n)
1r + v1bV

(4n)
1b + w1bW

(4n)
1b

+v2V
(4n)
2 + w2W

(4n)
2 + v2rV

(4n)
2r + w2rW

(4n)
2r + v2bV

(4n)
2b + w2bW

(4n)
2b

)
φ,

(3.7)

with coupling operators defined by

Z(4n)
γ = Π[Y4n]Zγ, Z(4n)

γ⋆ = Π[Y4n]Zγ⋆, Z = V,W, γ = 1, 2, ⋆ = b, r. (3.8)

By a useful abuse of notation, the operators Z
(4n)
γ , Z

(4n)
γ⋆ are identified in (3.7) with operators

in L(Y4n), while equation (3.8) actually defines operators in L((L2(R))4).
Up to the permutation in the coordinates of Y4n defined by

P (c0gg, c
0
eg, c

0
ge, c

0
ee, . . . , c

n−1
gg , cn−1

eg , cn−1
ge , cn−1

ee ) =
(
c0gg, . . . , c

n−1
gg , c0eg, . . . , c

n−1
eg , c0ge, . . . , c

n−1
ge , c0ee, . . . , c

n−1
ee

)
, (3.9)

9



the coupling operators have the following matrix representations

PV
(4n)
1 P−1 = −i




In
In

In
In


 , PW

(4n)
1 P−1 =




In
In

In
In


 ,

PV
(4n)
1r P−1 = −i




DT

D

DT

D


 , PW

(4n)
1r P−1 =




DT

D

DT

D


 ,

PV
(4n)
1b P−1 = −i




D

DT

D

DT


 , PW

(4n)
1b P−1 =




D

DT

D

DT


 ,

PV
(4n)
2 P−1 = −i




In
In

In
In


 , PW

(4n)
2 P−1 =




In
In

In
In


 ,

PV
(4n)
2r P−1 = −i




D

D

DT

DT


 , PW

(4n)
2r P−1 =




D

D

DT

DT


 ,

PV
(4n)
2b P−1 = −i




DT

DT

D

D


 , PW

(4n)
2b P−1 =




DT

DT

D

D


 ,

(3.10)

where the matrix D is defined as

D =




0
√
1

0
√
2

. . . . . .

0
√
n− 1
0



. (3.11)

Proposition 3.1 (Exact Controllability of the Modal Approximations of the Two Trapped
Ions System). Let n ≥ 3, M > 0 and (φ0, φT ) ∈ Y4n × Y4n, with ‖φ0‖ = ‖φT‖. Then, there
exists T0 > 0 such that for any T ≥ T0 we can find controls in L∞ ((0, T ),C) with L∞-norm
smaller than M such that the solution of system (3.7) with initial data φ(0) = φ0 satisfies
φ(T ) = φT .

Remark 3.2. The boundedness on the controls implies that the infimum of the controllability
time is positive (at it happens for the single ion case, see [19]).

The proof is based on the classical Chow–Rashevskii theorem, recalled here below. (For
a proof, see, e.g., [15].) Recall that, given a set F of smooth vector fields on a manifold M ,
LiexF denotes the evaluation at a point x ∈M of the Lie algebra LieF generated by F .

Theorem 3.3. Assume that a driftless control affine system ẋ =
∑m

j=1 ujXj(x), (u1, . . . , um) ∈
U ⊂ Rm, defined on a finite-dimensional compact manifold M satisfies Liex{X1, . . . , Xm}

10



Figure 1: Transition diagram between energy levels of the system by considering a finite
number of Fock states in the oscillator. The lines of the same type represent the action of the
same control

= TxM for all x in M and that the convex hull of U contains the origin in its interior. Then
there exists T0 > 0 such that for any T ≥ T0 and any open connected set Ω in M , any two
points of Ω can be connected by a trajectory x : [0, T ] →M of the control system with support
in Ω.

The proof of Proposition 3.1, which can be found in the appendix, consists then in the
computation of the iterated Lie brackets of the vector fields appearing in system (3.7). We
show in the appendix, moreover, that it is possible to set some of the controls appearing in
(3.7) identically equal to zero and still recover the controllability of the modal approximation
(for every n ≥ 3).

3.3 The Decoupled Modal Approximation

The inconvenient of using the modal approximation (3.7) to study system (1.1) is that when-
ever we apply the controls associated with the blue lasers (u1b and u2b) or the red lasers
(u1r and u2r), some population is transmitted from the phonon level |n〉 to the phonon level
|n+ 1〉 (see Figure 1). The truncation defining the modal approximation does not keep track
of this transfer, hence the control laws computed on the model approximations do not work for
system (1.1). To overcome this issue we use a different truncation, the decoupled modal ap-

proximation of system (1.1), which depends on the spectrum of the coupling operators. Let
us compare this approximation with the one proposed in [6]: the goal of both approximations
is to guarantee that the admissible motions of the approximate system are also admissible,
in an approximate way, in the full system. However, the technical arguments leading to the
two approximations are different: in [6] (see also [5, 8, 9]) the approximation is based on the
dynamical and spectral analysis of the drift Hamiltonian (exploiting the non-resonances of
its spectrum), while in the case considered here the drift is null and the non-resonances are

11



exploited separately for different values of the control parameters and then composed together.
The following proposition lists the main spectral properties of the operators defined in

(3.6).

Proposition 3.4 (Spectral Properties of the Coupling Operators). Let U be one of the oper-
ators V1,W1, V2,W2. Then the spectrum of U satisfies

a) the eigenvalues of U are i and −i;

b) for each n ∈ N the space Y4n is invariant under U .

If U is one of the operators V1r,W1r, V1b,W1b, V2r,W2r, V2b,W2b then the spectrum of U satisfies

a′) the eigenvalues of U are {±i√j}∞j=0;

b′) span{x | Ux = λx, |λ| < √
n} ⊂ Y4n, n ∈ N;

c′) span{x | Ux = λx, |λ| > √
n} ⊂ Y4n

⊥, n ∈ N.

The proof follows directly from the definition of the operators given in (3.6), noticing that if
U is one of the operators V1,W1, V2,W2 then each space span{φj | j = 4n+1, . . . , 4(n+1)}, n ∈
N, is invariant under U , while if U is one of the operators V1r,W1r, V1b,W1b, V2r,W2r, V2b,W2b

then
span{x | Ux = λx, |λ| =

√
n} ⊂ span{φj | j = 4(n− 1) + 1, . . . , 4(n+ 1)}

for every n ∈ N.
We apply in the following the construction of Section 2.1 to the operators V1b,W1b, V1r,W1r, V2b,W2b, V2r,W2r

Let m ∈ N and write ωj =
√
j − 1 for j ≥ 1. Let us associate with {ωj}∞j=1 the integer N(m)

and the frequencies νj, i = 1, . . . , N(m), as detailed in Section 2.1.
Given n ∈ N, set m = n+1 and define the decoupled modal approximation of order

n of the two trapped ions system as the control system in Y4n with 8N(m) + 4 controls
given by

d
dt
φ =

(
v1V

(4n)
1 + w1W

(4n)
1 + v2V

(4n)
2 + w2W

(4n)
2

+
N(m)∑
j=1

(
v1r,jV

(4n)
1r,j + w1r,jW

(4n)
1r,j + v1b,jV

(4n)
1b,j + w1b,jW

(4n)
1b,j

+ v2r,jV
(4n)
2r,j + w2r,jW

(4n)
2r,j + v2b,jV

(4n)
2b,j + w2b,jW

(4n)
2b,j

))
φ,

(3.12)

where Z
(4n)
γ , for Z = V,W and γ = 1, 2, are defined as in (3.8) and

Z
(4n)
γ⋆,j = Zγ⋆Π[ARm(νj)], Z = V,W, γ = 1, 2, ⋆ = b, r. (3.13)

Notice that, by Proposition 3.4 point b′), since
√
n = ωn+1 = ωm, the operators Z

(4n)
γ⋆,j are

indeed well-defined operators in L(Y4n). By Proposition 3.4 point c′), moreover,

Z(4n)
γ⋆ =

N(m)∑

j=1

Z
(4n)
γ⋆,j , Z = V,W, γ = 1, 2, ⋆ = b, r. (3.14)
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Proposition 3.5 (Exact Controllability of the Decoupled Modal Approximation). Let M > 0
and (φ0, φT ) ∈ C4n × C4n, n ∈ N, with ‖φ0‖ = ‖φT‖. Then, there exists T0 > 0 such that
for any T ≥ T0 we can find controls zγ, zγ⋆,j ∈ L∞ ((0, T ),R), z = v, w, γ = 1, 2, ⋆ = b, r,
j = 1, . . . , N(n + 1), with L∞-norm smaller than M such that the corresponding solution of
system (3.12) with initial data φ(0) = φ0 satisfies φ(T ) = φT .

The proposition follows easily from Proposition 3.1, since the set of controlled operators
in (3.7) is contained in the one in (3.12), as it follows from (3.14).

Remark 3.6. Clearly, it is also true that, if

U ⊂ {zγ, zγ⋆ | z = v, w, γ = 1, 2, ⋆ = b, r}

is a family of controls which makes (3.7) controllable for every n ≥ 3 (i.e., (3.7) is controllable
if we set to zero all the controls which are not in U) then the corresponding decoupled modal
approximation (i.e., system (3.12) where all zγ which are not in U are set to zero, together
with all zγ⋆,j such that zγ⋆ is not in U) is also controllable.

Remark 3.7. It is well-know for finite-dimensional control systems that the controls in (3.5) can
be taken piecewise constant. Moreover, applying Chow–Rashevskii theorem (see Theorem 3.3)

to the control system having as admissible vector fields ±Z(4n)
γ and ±Z(4n)

γ⋆,j , with Z = V,W ,
γ = 1, 2, j = 1, . . . , N(p), and ⋆ = b, r, one deduces that φ0 can be steered to φT by the
concatenation of the flows of such vector fields. Equivalently said, (3.5) is controllable by
piecewise constants controls such that at each time instant at most one of them is nonzero.

3.4 Main Theorem

Theorem 3.8 (Approximate Controllability of the Two Trapped Ions System). Let ε > 0,
M > 0 and φ0, φT ∈ (L2(R))

4
, with ‖φ0‖ = ‖φT‖. Then, there exists T0 > 0 such that for

all T > T0 we can find piecewise constant controls u1, u1r, u1b, u2, u2r, u2b ∈ L∞ ((0, T ),C),
with norm smaller than M such that the solution of system (1.1) with initial data φ(0) = φ0

satisfies
‖φ(T )− φT‖(L2(R))4 < ε.

Proof. First notice that it is enough to prove the theorem for φ0, φT ∈ Y4n for any given
n ∈ N . Indeed, assume that n is large enough so that there exist φ̄0, φ̄T ∈ Y4n with

‖φ0‖ = ‖φ̄0‖ = ‖φ̄T‖ = ‖φT‖, ‖φ̄0 − φ0‖(L2(R))4 <
ε

3
, ‖φ̄T − φT‖(L2(R))4 <

ε

3
.

Assuming that the theorem is true in the case of initial and final data in Y4n implies that
there exists an admissible trajectory φ(·) of (1.1) such that

φ(0) = φ̄0, ‖φ(T )− φ̄T‖(L2(R))4 <
ε

3
.

The conclusion then follows from the unitarity of the flow of (1.1).
Assume then that φ0, φT ∈ Y4n, n ∈ N. Let p ≥ n be a prime number and define Y = Y4p.

Consider the decoupled modal approximation (3.12) of order p. By Proposition 3.5 we know
that it is controllable. Following Remark 3.7, there exists a sequence of times t1, . . . , tN > 0,
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amplitudes u1, . . . , uN ∈ [−M,M ], and coupling operators S1, . . . , SN ∈ {Z(4p)
γ , Z

(4p)
γ⋆,j | Z =

V,W, γ = 1, 2, j = 1, . . . , N(p+ 1), ⋆ = b, r} such that

φT = etNuNSN · · · et1u1S1φ0.

In order to mimic the control scheme of the finite-dimensional system in system (1.1), we
are going to replace the controls of the decoupled modal approximation by those given by
Theorem 2.5 and then study how close the final state φ(T ) is to the target state φT .

For a given Sk, k = 1, . . . , N , define

Υk = etkukSk

and consider the following two cases.

• Either Sk is of the type Z
(4p)
γ , with Z ∈ {V,W}, γ ∈ {1, 2}. Then we drive the original

system (3.5) by the corresponding coupling operator Zγ with the same control uk and
for the same time tk (i.e., we set the corresponding control zγ at the value uk, all the
other controls to zero, and we follow the flow of the system for a time tk).

We are then approximating the flow Υk by an admissible flow

Υ̃k = etkukZγ

of (3.5) which can be written as ΣkΥk with Σk unitary and Σk|Y = I. The latter fact
follows from Proposition 3.4, point b).

• Or Sk is of the type Z
(4p)
γ⋆,j , with Z ∈ {V,W}, γ ∈ {1, 2}, ⋆ ∈ {b, r}, j ∈ {1, . . . , N(p+1)}.

Then we apply Theorem 2.5 with m = p+ 1, U = Zγ⋆, ℓ = j, t̂ = uktk, and taking as ε
the quantity ε/N . Let us check that the hypotheses of the theorem are satisfied. On the
one hand, condition (2.3) on Y is verified thanks to Proposition 3.4, points b′) and c′)
(taking n = p). On the other hand, in order to check that ωh

ωm
∈ (R \Q) ∪ {0} for each

h < m, let us assume by contradiction that there exists 1 < h < p such that
√
h√
p
= a

b

with a, b ∈ N relatively prime. Therefore, p = h b2

a2
, which implies that a2 divides to h.

Then we can write h = sa2, with s ∈ N, and we have p = sb2. However, as p is prime,
this implies that b = 1 and s = p. Hence, h = pa2. Since h ≤ p− 1, however, this leads
to a contradiction. The hypotheses of Theorem 2.5 are then satisfied.

As a consequence of Theorem 2.5 we deduce that there exists t̄ ∈ R such that

exp(t̄Zγ⋆) = Σk exp(uktkZγ⋆Π[ARp+1(νj)]) = ΣkΥk,

where Σk is a unitary operator that satisfies
∥∥(Σk − I)|Y

∥∥
L(Y,(L2(R))4)

<
ε

N
.

The strategy is then to set in the original system (3.5) the control zγ⋆ corresponding to
Zγ⋆ at the value u′k = ±uk, all other controls to zero, and let the system flow for a time
τk > 0, where the choice of τk and of the sign of u′k are such that u′kτk = t̂. Hence

Υ̃k = exp(t̄Zγ⋆)

is an admissible flow for system (3.5).

14



With the previous procedure we have obtained a control strategy for the two trapped ions
system. Finally, applying Lemma 2.6 with X := (L2(R))

4
, x0 = φ0 xj = Υkxj−i, we obtain

‖φ(T )− φT‖ <
N∑

j=1

ε

N
= ε.

Therefore system (1.1) is approximately controllable.

Remark 3.9. It follows from the argument used to prove the theorem and from Remark 3.6
that if

U ⊂ {zγ, zγ⋆ | z = v, w, γ = 1, 2, ⋆ = b, r}
is a family of controls which makes (3.7) controllable for every n ≥ 3 then the same controls
are also sufficient to approximately control system (3.5) (or, equivalently, system (1.1) up to
identification of real and imaginary parts as in (3.3)). The appendix discusses which conditions
on the set U guarantee such a controllability property.

4 Conclusions

In this work we have studied a new decomposition method for Schrödinger systems based on
spectral techniques. The proposed decomposition allows to obtain approximate controllability
results by using finite-dimensional techniques. The method provides satisfactory theoretical
results (sufficient conditions for approximate controllability), although it requires large times
for the decoupling procedure.

The method is applied to the two trapped ions model, for which we obtain a new approx-
imate controllability result. Since the underlying approximate controllability result is based
on constructive considerations, the result on the two trapped ions model actually provides a
motion planning algorithm (as detailed in [20]).
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Appendix: Controllability of modal approximations

The scope of this appendix is to present the Lie algebra computations necessary for the proof
of Proposition 3.1 and, more generally, to identify subfamilies of controls using which it is
possible to control the modal approximation (3.7) for every n sufficiently large.

As recalled above, the key criterion allowing the controllability analysis of (3.7) is the
Chow–Rashevskii theorem (Theorem 3.3). A useful approach is to apply such a criterion to
the lift of system (3.7) in SU(4n) and to exploit the structure of homogeneous space of S8n−1

(the unit sphere in C4n) with respect to SU(4n). Based on such lifting procedure, Albertini
and D’Alessandro proved in [2] a result implying that (3.7) is controllable if and only if the Lie
algebra generated by {Zγ, Zγ⋆ | Z = V,W, γ = 1, 2, ⋆ = r, b} is equal to su(4n) or contains a
subalgebra conjugate to sp(2n).

The main result of the appendix, which implies Proposition 3.1 as a particular case, is the
following.

Proposition 4.1. Let n ≥ 3 and assume that F ⊂ {Z(4n)
γ , Z

(4n)
γ⋆ | Z = V,W, γ = 1, 2, ⋆ =

r, b} is such that, for every γ = 1, 2 there exists ⋆ ∈ {r, b} (possibly depending on γ) such that

{Z(4n)
γ , Z

(4n)
γ⋆ | Z = V,W} ⊂ F . Then the Lie algebra generated by F is equal to su(4n).

A preliminary step in the proof of Proposition 4.1 is the analysis of the controllability of
the modal approximation of order n of the Law–Eberly system, namely, the control system in
C2n

d

dt
φ =

(
vV (2n) + wW (2n) + vrV

(2n)
r + wrW

(2n)
r + vbV

(2n)
b + wbW

(2n)
b

)
φ, (4.1)
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where the controls v, w, v, wr, vb, wb, are real-valued and the coupling operators are defined by

V (2n) = −i
(

0 In
In 0

)
, W (2n) =

(
0 −In
In 0

)
,

V
(2n)
b = −i

(
0 D
DT 0

)
, W

(2n)
b =

(
0 −D
DT 0

)
,

V
(2n)
r = −i

(
0 DT

D 0

)
, W

(2n)
r =

(
0 −DT

D 0

)
,

(4.2)

where the matrix D is defined as in (3.11).

Proposition 4.2. Let n ≥ 2 and assume that FEL = {Z(2n), Z
(2n)
⋆ | Z = V,W} for ⋆ = r or

⋆ = b. Then the Lie algebra generated by FEL is equal to su(2n).

Proof. The proof is contained in [23] in the case ⋆ = r. The case ⋆ = b can be treated in

complete analogy, since by a simple reordering of coordinates one can transform V
(2n)
b and

W
(2n)
b into

V̂
(2n)
b = −i

(
0 D̂T

D̂ 0

)
, Ŵ

(2n)
b =

(
0 −D̂T

D̂ 0

)
, (4.3)

respectively, with

D̂ =




0
√
n− 1
0

√
n− 2
. . . . . .

0
√
1
0



,

while preserving V (2n) and W (2n). The same arguments as in [23] then allow to conclude.

Proof of Proposition 4.1. First of all let us fix the following notation: in order to ease the
reading of the proof, we add here below an index to each square matrix indicating its size,
so that A(k) denotes a general k × k matrix and 0(k) the k × k null matrix. We also write
diag(A(k1), . . . , A(kr)) to denote the square matrix of size k1 + · · · + kr having A(k1), . . . , A(kr)

as block-diagonal terms.
Let us apply Proposition 4.2 to each of the two subsystems of (3.7) obtained by setting

to zero either all controls of the type z1, z1⋆ or all controls of the type z2, z2⋆. In each of the
two cases, we recover two decoupled copies of the Law–Eberly modal approximation of order
n, controlled simultaneously by the same controls. Proposition 4.2 then implies that for any
choice of

A(2n),

(
B

(n)
11 B

(n)
12

B
(n)
21 B

(n)
22

)
∈ su(2n)

the Lie algebra LieF contains both

(
A(2n) 0(2n)

0(2n) A(2n)

)
and




B
(n)
11 0(n) B

(n)
12 0(n)

0(n) B
(n)
11 0(n) B

(n)
12

B
(n)
21 0(n) B

(n)
22 0(n)

0(n) B
(n)
21 0(n) B

(n)
22


 . (4.4)
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Special types of matrix appearing in (4.4) are

diag(A(n), B(n), A(n), B(n)), diag(C(n), C(n), D(n), D(n)),

for A(n), B(n), C(n), D(n) ∈ su(n). Taking brackets between them (with A(n) = 0(n) or B(n) =
0(n) and C(n) = 0(n) or D(n) = 0(n)) and since [su(n), su(n)] = su(n), one deduces that,

diag(A(n), B(n), C(n), D(n)) ∈ LieF (4.5)

for every A(n), B(n), C(n), D(n) ∈ su(n).
Another special type of matrices appearing in (4.4) are




0(n) A(n) 0(n) 0(n)

−(A(n))† 0(n) 0(n) 0(n)

0(n) 0(n) 0(n) A(n)

0(n) 0(n) −(A(n))† 0(n)


 (4.6)

with A(n) ∈ gl(n). Taking brackets of matrices in (4.5) and in (4.6), and exploiting the fact
that su(n)gl(n) = gl(n), we conclude that all matrices of the type




0(n) A(n) 0(n) 0(n)

−(A(n))† 0(n) 0(n) 0(n)

0(n) 0(n) 0(n) B(n)

0(n) 0(n) −(B(n))† 0(n)


 (4.7)

with A(n), B(n) ∈ gl(n) are in LieF . Taking linear combinations of matrices of the type (4.7)
with those of the type (4.5), it turns out that LieF contains all matrices of the type

diag(A(2n), B(2n)) ∈ LieF , A(2n), B(2n) ∈ su(2n).

We are left to prove that

(
02n C2n

−(C2n)† 02n

)
is in LieF for C2n ∈ gl(2n). Because of (4.4)

and (4.5), LieF contains all brackets between matrices of the type diag(A(n), B(n), 0(2n)) and



0(n) 0(n) C(n) 0(n)

0(n) 0(n) 0(n) C(n)

−(C(n))† 0(n) 0(n) 0(n)

0(n) −(C(n))† 0(n) 0(n)


 ,

for A(n), B(n) ∈ su(n), and C(n) ∈ gl(n). Hence



0(n) 0(n) A(n) 0(n)

0(n) 0(n) 0(n) B(n)

−(A(n))† 0(n) 0(n) 0(n)

0(n) −(B(n))† 0(n) 0(n)


 ∈ LieF , for all A(n), B(n) ∈ gl(n). (4.8)

Taking brackets between matrices of the type (4.7) and (4.8), we easily deduce that



0(n) 0(n) 0(n) C(n)

0(n) 0(n) D(n) 0(n)

0(n) −(D(n))† 0(n) 0(n)

−(C(n))† 0(n) 0(n) 0(n)


 ∈ LieF , for every C(n), D(n) ∈ gl(n).

This, together with (4.8), completes the proof of the equality LieF = su(4n). �
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