S. Abramsky, The lazy lambda calculus, Research Topics in Functional Programming, pp.65-117, 1990.

M. Alberti, U. D. Lago, and D. Sangiorgi, On coinductive equivalences for higher-order probabilistic functional programs, Proc. POPL'14, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01091573

M. Bernardo, D. Sangiorgi, and V. Vignudelli, On the discriminating power of passivation and higher-order interaction, Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS '14, 2014.
DOI : 10.1145/2603088.2603113

URL : https://hal.archives-ouvertes.fr/hal-01089467

D. Comaniciu, V. Ramesh, and P. Meer, Kernel-based object tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.5, pp.564-577, 2003.
DOI : 10.1109/TPAMI.2003.1195991

W. Ferreira, M. Hennessy, and A. Jeffrey, A theory of weak bisimulation for Core CML, Journal of Functional Programming, vol.8, issue.5, pp.447-491, 1998.
DOI : 10.1017/S0956796898003165

D. Andrew, M. Gordon, J. Aizatulin, G. Borgström, T. Claret et al., A model-learner pattern for bayesian reasoning, POPL, pp.403-416, 2013.

J. C. Godskesen and T. T. Hildebrandt, Extending Howe???s Method to Early Bisimulations for Typed Mobile Embedded Resources with Local Names, Proc. FSTTCS, pp.140-151, 2005.
DOI : 10.1007/11590156_11

J. Chr, T. Godskesen, and . Hildebrandt, Extending Howe's method to early bisimulations for typed mobile embedded resources with local names, Foundations of Software Technology and Theoretical Computer Science, pp.140-151, 2005.

S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and System Sciences, vol.28, issue.2, pp.270-299, 1984.
DOI : 10.1016/0022-0000(84)90070-9

URL : http://doi.org/10.1016/0022-0000(84)90070-9

N. D. Goodman, The principles and practice of probabilistic programming, POPL, pp.399-402, 2013.

A. D. Gordon, Functional Programming and Input/Output, 1993.

D. Andrew, G. D. Gordon, and . Rees, Bisimilarity for a first-order calculus of objects with subtyping, Proceedings of the 23rd ACM SIGPLAN- SIGACT Symposium on Principles of Programming Languages, pp.386-395, 1996.

D. J. Howe, Proving congruence of bisimulation in functional programming languages Information and Computation A probabilistic powerdomain of evaluations, LICS, pp.103-112, 1989.

A. Jeffrey, J. Koutavas, and M. Hennessy, Towards a theory of bisimulation for local names Symbolic bisimulation for a higher-order distributed language with passivation, 14th Annual IEEE Symposium on Logic in Computer Science Proc. CONCUR'13, pp.56-66, 1999.

V. Koutavas, P. B. Levy, and E. Sumii, From Applicative to Environmental Bisimulation, Electronic Notes in Theoretical Computer Science, vol.276, pp.215-235, 2011.
DOI : 10.1016/j.entcs.2011.09.023

V. Koutavas and M. Wand, Small bisimulations for reasoning about higher-order imperative programs, Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming LanguagesLas98] S. B. Lassen. Relational Reasoning about Functions and Nondeterminism, pp.141-152, 1998.

I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt, On the expressiveness and decidability of higher-order process calculi, Information and Computation, vol.209, issue.2, pp.198-226, 2011.
DOI : 10.1016/j.ic.2010.10.001

URL : https://hal.archives-ouvertes.fr/inria-00494584

]. S. Lss09a, A. Lenglet, J. Schmitt, and . Stefani, Howe's method for calculi with passivation, Proc. CONCUR'09, pp.448-462, 2009.

S. Lenglet, A. Schmitt, and J. Stefani, Normal Bisimulations in Calculi with Passivation, Proc. FOSSACS, pp.257-271, 2009.
DOI : 10.1007/978-3-540-31794-4_9

URL : https://hal.archives-ouvertes.fr/inria-00330565

S. Lenglet, A. Schmitt, and J. Stefani, Characterizing contextual equivalence in calculi with passivation, Mil89] R. Milner. Communication and Concurrency, pp.1390-1433, 1989.
DOI : 10.1016/j.ic.2011.08.002

URL : https://hal.archives-ouvertes.fr/hal-00903877

J. H. Morris and J. , Lambda-Calculus Models of Programming Languages, 1968.

D. Christopher, H. Manning, and . Schütze, Foundations of statistical natural language processing, 1999.

D. Park, A new equivalence notion for communicating systems Abstract of the talk presented at the Second Workshop on the Semantics of Programming Languages, Bulletin EATCS, vol.14, pp.78-80, 1981.

D. M. Park, Concurrency and automata on infinite sequences, Conf. on Theoretical Computer Science, 1981.
DOI : 10.1007/BFb0017309

J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference, 1988.

A. Pfeffer, IBAL: A probabilistic rational programming language, IJ- CAI, pp.733-740, 2001.

A. Pitts, Operationally-Based Theories of Program Equivalence, Semantics and Logics of Computation, Publications of the Newton Institute, pp.241-298, 1997.
DOI : 10.1017/CBO9780511526619.007

[. Park, F. Pfenning, and S. Thrun, A probabilistic language based on sampling functions, ACM Transactions on Programming Languages and Systems, vol.31, issue.1, 2008.
DOI : 10.1145/1452044.1452048

A. Piérard, E. Sumii, [. Ramsey, A. Pfeffersan94, and ]. D. Sangiorgi, A higher-order distributed calculus with name creation Stochastic lambda calculus and monads of probability distributions The lazy lambda calculus in a concurrency scenario, LICS POPLSan98] David Sands. Improvement theory and its applications Higher Order Operational Techniques in Semantics, Publications of the Newton Institute, pp.531-540, 1994.

D. Sangiorgi, On the origins of bisimulation and coinduction, ACM Trans. Program. Lang. Syst, vol.31, issue.4, 2009.

D. Sangiorgi, Introduction to Bisimulation and Coinduction, 2012.
DOI : 10.1017/CBO9780511777110

URL : https://hal.archives-ouvertes.fr/hal-00907026

D. Sangiorgi, N. Kobayashi, and E. Sumii, Logical Bisimulations and Functional Languages, Proc. Fundamentals of Software Engineering (FSEN), pp.364-379, 2007.
DOI : 10.1007/978-3-540-75698-9_24

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Sangiorgi, N. Kobayashi, E. Sumii, [. Sumii, and B. C. Pierce, Environmental bisimulations for higher-order languages A bisimulation for type abstraction and recursion The m-calculus: a higher-order distributed process calculus, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages Proc. POPL'03, pp.63-74, 2003.

D. Sangiorgi and D. Walker, The pi-Calculus ? a theory of mobile processes Robotic mapping: A survey. Exploring artificial intelligence in the new millennium, Thr02] Sebastian Thrun, pp.1-35, 2001.