D. Angluin, G. Leslie, and . Valiant, Fast probabilistic algorithms for hamiltonian circuits and matchings, Journal of Computer and System Sciences, vol.18, issue.2, pp.155-193, 1979.
DOI : 10.1016/0022-0000(79)90045-X

M. Buchet, F. Chazal, S. Oudot, R. Donald, and . Sheehy, Efficient and robust persistent homology for measures, Proceedings of the 26th ACM-SIAM symposium on Discrete algorithms. SIAM, 2015.
DOI : 10.1016/j.comgeo.2016.07.001

URL : https://hal.archives-ouvertes.fr/hal-01074566

F. Chazal, V. De-silva, M. Glisse, and S. Oudot, The structure and stability of persistence modules, 2013.
DOI : 10.1007/978-3-319-42545-0

URL : https://hal.archives-ouvertes.fr/hal-01107617

F. Chazal, D. Cohen-steiner, M. Glisse, L. J. Guibas, and S. Oudot, Proximity of persistence modules and their diagrams, Proceedings of the 25th annual symposium on Computational geometry, SCG '09, pp.237-246, 2009.
DOI : 10.1145/1542362.1542407

URL : https://hal.archives-ouvertes.fr/inria-00292566

F. Chazal, D. Cohen-steiner, and Q. Mérigot, Geometric Inference for Probability Measures, Foundations of Computational Mathematics, vol.40, issue.2, pp.733-751, 2011.
DOI : 10.1007/s10208-011-9098-0

URL : https://hal.archives-ouvertes.fr/hal-00772444

F. Chazal, L. J. Guibas, Y. Steve, P. Oudot, and . Skraba, Scalar Field Analysis over Point Cloud Data, Discrete & Computational Geometry, vol.33, issue.2, pp.743-775, 2011.
DOI : 10.1007/s00454-011-9360-x

URL : https://hal.archives-ouvertes.fr/hal-00772430

F. Chazal and S. Y. Oudot, Towards persistence-based reconstruction in euclidean spaces, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, pp.232-241, 2008.
DOI : 10.1145/1377676.1377719

URL : https://hal.archives-ouvertes.fr/inria-00197543

D. Cohen-steiner, H. Edelsbrunner, and J. Harer, Stability of Persistence Diagrams, Discrete & Computational Geometry, vol.37, issue.1, pp.103-120, 2007.
DOI : 10.1007/s00454-006-1276-5

K. Tamal, J. Dey, Y. Sun, and . Wang, Approximating cycles in a shortest basis of the first homology group from point data, Inverse Problems, vol.27, issue.12, p.124004, 2011.

Y. Dong and S. Xu, A New Directional Weighted Median Filter for Removal of Random-Valued Impulse Noise, IEEE Signal Processing Letters, vol.14, issue.3, pp.193-196, 2007.
DOI : 10.1109/LSP.2006.884014

H. Edelsbrunner and J. Harer, Computational Topology: An Introduction. Amer, Math. Soc, 2009.
DOI : 10.1090/mbk/069

H. Federer, Curvature measures. Transactions of the, pp.418-491, 1959.

A. Gray, The volume of a small geodesic ball of a Riemannian manifold., The Michigan Mathematical Journal, vol.20, issue.4, pp.329-344, 1974.
DOI : 10.1307/mmj/1029001150

L. Guibas, D. Morozov, and Q. Mérigot, Witnessed k-Distance, Discrete & Computational Geometry, vol.40, issue.2, pp.22-45, 2013.
DOI : 10.1007/s00454-012-9465-x

URL : https://hal.archives-ouvertes.fr/hal-00872490

L. Györfi, A distribution-free theory of nonparametric regression, 2002.
DOI : 10.1007/b97848

J. Kloke and G. Carlsson, Topological de-noising: Strengthening the topological signal. arXiv preprint, 2009.

C. Lu and T. Chou, Denoising of salt-and-pepper noise corrupted image using modified directional-weighted-median filter, Pattern Recognition Letters, vol.33, issue.10, pp.1287-1295, 2012.
DOI : 10.1016/j.patrec.2012.03.025

S. Wang and C. Wu, A new impulse detection and filtering method for removal of wide range impulse noises, Pattern Recognition, vol.42, issue.9, pp.2194-2202, 2009.
DOI : 10.1016/j.patcog.2009.01.022

A. Zomorodian and G. Carlsson, Computing Persistent Homology, Discrete & Computational Geometry, vol.33, issue.2, pp.249-274, 2005.
DOI : 10.1007/s00454-004-1146-y

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=